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I. Introduction  

Currently, time series forecasting methods are constantly evolving where this method is a 
quantitative approach with past data as a basis for forecasting [1]. Therefore, various forecasting 
techniques based on mathematics is one of the oldest models (i.e. autoregressive-AR, moving average-
MA, exponential smoothing-ES and autoregressive integrated moving average-ARIMA) in which 
many of researchers have been using these techniques. Some researchers have proposed ARIMA 
models to predict network traffic in ICT at Mulawarman University in East Kalimantan in the period 
of June 20-24, 2013 [2]. In the economics area, ARIMA models have been used for estimation of 
Malaysia Crude Oil Production (MCOP) from January 2005 to May 2010 [3]. In the hydrologic area, 
ARIMA models have been proposed for the forecasting of monthly inflow of Dez dam reservoir from 
1960 to 2007. The statistics related to the first 42 years were used to train the models and the 5 past 
years were used to forecast [4]. All those researchers have confirmed that by using ARIMA, good 
results and accuracy can be obtained. Although mathematics models are proved to be reasonably 
powerful, but it still has some obstacles especially when applied to non-linear data.   

For that reason, many researchers have also tried to apply artificial neural networks-ANNs (i.e. 
backpropagation-BPNN, radial basis function-RBFNN, and recurrent neural network-RNN) to 
improve the prediction accuracy by using data non-linear. An approach using ANNs has been 
proposed to predict network traffic by using BPNN [5] and predict the students’ achievement by using 
RBFNN [6]. In the economics area, ANNs models have been used for stock market predictions [7, 8]. 
In the hydrologic area, ANNs models have been proposed by researchers to predict the weather, wind 
speed, and rainfall [9, 10]. 

However, one of the important issues on ANNs is the training or learning of the networks in which 
to find a set of optimal network parameters. These issues are the drawbacks of ANNs (i.e. over fitting, 
local minimum, and slow convergence). Then, hybrid models by using mathematics or ANNs models 
itself is a solution to improve of ANNs performances. Recently, numerous researchers have been 
trying related model combining as an alternative in prediction area including, ARIMA with RBFNN, 
ARIMA with BPNN, BPNN, RBFNN with genetic algorithm (GA), particle swam optimization (PSO) 
has been proposed to provide better prediction performance [1, 7, 8, 11, 12]. Therefore, this paper will 
apply two models, namely ARIMA and RBFNN that have been developed and compared in order to 
predict the tourist quantity to Indonesia. Section 2 describes the architectures of ARIMA and RBFNN 
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models. Section 3 explains the time series predictor and models. Section 4 describes the analysis and 
discussion of the results. Finally, conclusions are summarized in Section 5.  

II. Methodology 

In this section, a brief information on the general tourist quantity prediction models is presented 
including time series models, ARIMA, and RBFNN. 

A. Time Series 

The time series is a dataset of observations ordered in time. A time series is an ordered sequence 
of observations and many ways are used to forecast the time series data. In principle, a time series 
model is used to predict the values of data (yt+1, yt+2,…,yt+n) based on the data (xt+1, xt+2,..., xt+n). In this 
experiment, data tourist quantity 1974-2013 (40 years of samples) was captured from BPS website 
http://www.bps.go.id, Table 1 and Fig. 1. Then, the data are analyzed by using MATLAB R2013b. 
The ARIMA and RBFNN were engaged. 

Table 1.  Real tourist arrival to Indonesia 1974-2013 

1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 

313.452 366.293 401.237 433.393 468.614 501.430 561.178 600.151 592.046 638.855 

1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 

700.910 749.351 825.035 1.060.347 1.301.049 1.625.965 2.177.566 2.569.870 3.064.161 3.403.138 

1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 

4.006.312 4.324.229 5.034.472 5.185.243 4.606.416 4.727.520 5.064.217 5.153.620 5.033.400 4.467.021 

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 

5.321.165 5.002.101 4.871.351 5.505.759 6.234.497 6.323.730 7.002.944 7.649.731 8.044.462 8.802.129 

 

 

Fig. 1.  Plots tourist arrival to Indonesia in period 1974-2013 (BPS, 2014) 

B. ARIMA 

One of the famous methods used in forecasting a time series data is ARIMA. The ARIMA method 
is used to analyze a time series data in which it is designed by integrating the AR (autoregressive) and 
MA (moving average) methods. The ARIMA (p, d, q) is a general method that is formulated with 
respect to the data series that are stationary only, where, p is the number of processes in AR, d is the 
number of differencing a time series of data to be stationary, and finally, q is the number of processes 
in MA. According to the Box-Jenskins methodology [13], there are four forecasting stages, that 
includes; (1) identification model; The data series will be carefully examined in order to determine 
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whether the series contains a trend, seasonality, cycles or random phenomena. After that, the sample 
ACF and PACF of the original series are computed and examined in order to further confirm that the 
time series data is stationary. If the sample ACF decays very slowly, it indicates that differencing 
processes are needed, (2) parameter estimation; the purpose of model validation is to ensure that the 
right model is used. In this study, it can be done by using t-statistic and p-value, (3) model checking; 
the purposed model needs to be hypothesized and to have diagnostic test before it can be used for 
forecasting. In this test, we checked by p-value > � 0.05, and (4) forecasting; the forecasted values in 
confidence limit (upper and lower limits) provide 95% confidence interval. In this study, we used the 
trial and error method to get good model and prediction. 

C. RBFNN 

The RBFNN emerged as a variant of ANN in late 80’s is a kind of feed-forward neural network 
(FFNN). The RBFNN structure has a three-layer FFNN which includes an input layer, single only of 
hidden layer with RBF neurons (Euclidean distance between the input signal vector and parameter 
vector of the network) and an output layer with linear neurons. Hence, the RBFNN has a unique 
training algorithm including supervised and unsupervised as well. Furthermore, RBFNN learning 
philosophy can be differentiated into two stages: first stage, self-organizing learning stage, solving the 
center and change of the hidden layer base functions; second stage, mentor learning stage, this stage 
is unwinding weights which is between the hidden layer and output layer [11, 12]. In this study, we 
used three layers and Euclidean function as an activation function (1). Furthermore, in this experiment 
we used the mean square error (MSE), then comparing the predicted output with the desired output 
between ARIMA and RBFNN. The architecture of RBFNN as shown in Fig. 2. 

 

Fig. 2.  The RBFNN architecture [12] 

Y � 	∑ W��. φ���� , where: Y output value, φ = hidden layer value, W = weights (0-1)                           (1) 

The algorithm of RBFNN to analyze within time series data characteristics is:  

1. Initialization of the network; randomly selecting some training and testing samples as the vectors 
P(t-0)=[p(t-5), p(t-4), ..., p(t-n)], where n is a series data. 

2. Find, Dij distance between i to j i,j=1,2,…,Q, where Q is input-output vectors, R is input variable. 

�� � �∑ ���� � ���������                    (2) 

3. Find �1, where �1 is a result activation from distance data multiply bias, spread is constant 

�1�� � 	�����∗�� �!                (3) 

"1 � #�$%	�&.'�
()*+,-   (4) 

4. Calculation weights and biases, where wij is a new weights, wij (t) is a current weights, α is a 
learning rate.  

/���0 1 1� � 	/���0� 1 	��0�23� �	/���0�4                 (5) 
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III. Experimental 

A. Analysis using ARIMA 

The first analysis, tourist quantity data were tested by using ARIMA technique. Based on ARIMA 
Box-Jenskins rules, the data were listed in a sequence from 1974-2013 or contained 40 samples. In 
this experiment, we studied many models including ARIMA (1,0,0), (1,1,0), (1,1,1), (1,1,2), (2,0,0), 
(2,1,0), (2,1,1), (2,1,2), then decided to choose the best ARIMA (2,1,2) as a model for predicting as 
shown in Fig 3 and 4. 

 

Fig. 3. Plots check goodness of fit model of ARIMA(2,1,2) 

 

Fig. 4. Performance and plots forecast of ARIMA(2,1,2) 

B. Analysis using RBFNN 

In the second experiment, the tourist arrivals to Indonesia data were tested using RBFNN 
technique. Based on ANN’s rules, the data were divided into training and testing data. The inputs and 
tests data would be normalized. The aim of the normalization process is to get the data with a smaller 
size that represents the original data without losing its own characteristics. In this experiment, the 
training data was 86% (30 samples series data) and testing was 14% (5 samples series data) as shown 
in Table 2. The normalization formula form is as follow, 
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56 �  
7� 78�9

78:;� 78�9

  (6) 

where, X is the actual value of samples, 5<,= for maximum value, and 5<�> is the minimum value. 
In MATLAB function, the RBFNN can creating by newrb(P,T,error_goal,spread) function, which is 
this function create RBFNN structure, automatically selected the number of hidden layer and made 
the error to 0. In this study, we tried the sum-square error (SSE) goal values were 0.001, 0.002, and 
0.003. The spread value of 200 was settled. In this experiment, we decided the RBFNN with SSE 
value was 0.001, spread was 200 as a good model. The RBFNN results are shown in Fig 5, 6 and 7. 

Table 2.  Real tourist arrival data after normalization 

Group 

Input Neurons  

P=[p(t-5),p(t-4),p(t-3),p(t-2),p(t-1)] 
Output 

Neurons 

T 
p(t-5) p(t-4) p(t-3) p(t-2) p(t-1) 

Training 

1 0.000 0.006 0.010 0.014 0.018 0.022 

2 0.006 0.010 0.014 0.018 0.022 0.029 

3 0.010 0.014 0.018 0.022 0.029 0.034 

4 0.014 0.018 0.022 0.029 0.034 0.033 

5 0.018 0.022 0.029 0.034 0.033 0.038 

6 0.022 0.029 0.034 0.033 0.038 0.046 

7 0.029 0.034 0.033 0.038 0.046 0.051 

8 0.034 0.033 0.038 0.046 0.051 0.060 

9 0.033 0.038 0.046 0.051 0.060 0.088 

10 0.038 0.046 0.051 0.060 0.088 0.116 

11 0.046 0.051 0.060 0.088 0.116 0.155 

12 0.051 0.060 0.088 0.116 0.155 0.220 

13 0.060 0.088 0.116 0.155 0.220 0.266 

14 0.088 0.116 0.155 0.220 0.266 0.324 

15 0.116 0.155 0.220 0.266 0.324 0.364 

16 0.155 0.220 0.266 0.324 0.364 0.435 

17 0.220 0.266 0.324 0.364 0.435 0.472 

18 0.266 0.324 0.364 0.435 0.472 0.556 

19 0.324 0.364 0.435 0.472 0.556 0.574 

20 0.364 0.435 0.472 0.556 0.574 0.506 

21 0.435 0.472 0.556 0.574 0.506 0.520 

22 0.472 0.556 0.574 0.506 0.520 0.560 

23 0.556 0.574 0.506 0.520 0.560 0.570 

24 0.574 0.506 0.520 0.560 0.570 0.556 

25 0.506 0.520 0.560 0.570 0.556 0.489 

26 0.520 0.560 0.570 0.556 0.489 0.590 

27 0.560 0.570 0.556 0.489 0.590 0.552 

28 0.570 0.556 0.489 0.590 0.552 0.537 

29 0.556 0.489 0.590 0.552 0.537 0.612 

30 0.489 0.590 0.552 0.537 0.612 0.698 

Testing 

31 0.590 0.552 0.537 0.612 0.698 0.708 

32 0.552 0.537 0.612 0.698 0.708 0.788 

33 0.537 0.612 0.698 0.708 0.788 0.864 

34 0.612 0.698 0.708 0.788 0.864 0.911 

35 0.698 0.708 0.788 0.864 0.911 1.000 
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Fig. 5. Performance and plots training of RBFNN 

 

Fig. 6. Performance and plots testing of RBFNN 

 

Fig. 7. Performance and plots forecast of RBFNN 
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IV. Results and Discussions 

This section describes the test of tourist arrival data using two different models. Table 3 shows that 
the error prediction of ARIMA and RBFNN. We choose the MSE as an error prediction. The ARIMA 
error prediction was 0.00722784 and RBFNN was 0.00098188. This mean that the tourist arrival 
results had a good prediction accuracy by using the RBFNN technique with the setting parameters, 
spread was 200 and error goal was 0.001. In this study, to compare the predicted output with the 
desired output, MSE was predefined, as shown in Table 4. Then, the best results of MSE by using 
RBFNN, which that mean the RBFNN was good accuracy. The comparison prediction between 
ARIMA and RBFNN models of 5 years ahead, as shown in Fig. 8. 

Table 3.  Comparison of MSE from ARIMA and RBFNN models 

Models MSE 
ARIMA (212) 0.00722784 

RBFNN 

Error_goal = 0.001 
Spread       = 200 

0.00098188 

Table 4.  Predicton results of tourist arrivals to Indonesia in 2014-2018 

Years ARIMA (211) RBFNN 

2014 9.128.791 9.908.224 

2015 9.464.387 10.891.264 

2016 9.724.224 11.892.736 

2017 10.019.368 12.865.536 

2018 10.259.238 13.727.744 

 

 

Fig. 8. Plots bar forecast of ARIMA and RBFNN 

V. Conclusions 

This paper has presented the performance comparison of statistical and machine learning 
techniques, namely ARIMA and RBFNN, in learning time series data. The mean squared errors are 
computed for each model and compared. Based on the results obtained, the RBFNN algorithm is found 
to be more efficient than ARIMA in modelling time series dataset related to tourist quantity of 
Indonesia. Furthermore, the future works include a comparison of a few ANN methods and the 
optimization process in order to obtain more accurate forecasting results. 
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