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I. Introduction 

The theory of chaotic systems is a fast-growing branch of the dynamic system theory. This 
branch has a wide application in various spheres of human activities, such as robotic [1], 
communication [2], cryptography [3], meteorology [4], economy or business application [5], and so 
on. Great interest to the chaotic systems was caused by their unique properties. Microcontroller one 
can use these sequences in various ways. For example, they can be used for setting up secure data 
transmission, planning path of mobile robot, investigating exchange rate fluctuations. This list can 
be continued for pages. 

Wide ranges of applications of chaotic systems have caused a great number of its researches. One 
can find a lot of papers on researches on dynamics and implementations of integer-order [1]–[3] and 
fractional-order [6] chaotic systems in continuous-time and discrete-time domains. These researches 
proposed the novel chaotic systems [7] and investigated existing ones [1]–[3] [6].  

One of the directions of the chaotic systems theory is control of chaotic systems. So many 
publications on chaos control [7][8] and chaos systems synchronization [2][3][9] can be found in 
scientific press today. The great interest to chaos control is caused by the possibility to test novel 
control algorithms for nonlinear unstable dynamical objects. If these algorithms work correctly for 
chaotic systems, they will work for various industrial objects with stable dynamics likewise. 

The feedback linearization [10] is one of the effective control technique for nonlinear controller 
construction, but the main drawback of this linearization is the use of the object’s complete state 
vector. This fact makes the researcher to set up and to use tons of different sensors. It is obvious that 
the control system becomes more complex and difficult to configure.  

To avoid this drawback, we propose to transform a chaotic system’s dynamic into a canonical 
form. It allows us to use only one sensor in the control system feedback. The transformation of the 
chaotic system into the canonical form is known only for one class of chaotic systems [11][12] and 
it is hard to use it for another one. 

In this paper, we propose to perform transformation of an arbitrary chaotic system into a 
canonical form by using generalized approach based on differential geometry methods and nonlinear 
algebraic equations’ solution. We suggest using numerical methods while the mentioned 
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transformation is being performed. It avoids us to use complex mathematical apparatus and gives 
numerical algorithms, which can be used as numerical routines while control system is being 
programmed on microcontroller. 

Our paper is organized as follows: firstly, we get a transformation procedure for a general 
dynamical object given in the continuous-time domain. We then adapt the mentioned procedure for 
discrete-time domain. Finally, we show usage of proposed approach for transformation continuous-
time and discrete-time dynamics of Lorenz system into canonical form. 

II. Method 

A. Continuous-time Transformation Algorithm for A Generalized Dynamical Object  

Let us consider a generalized n-th order continuous-time dynamical object given in the following 
way  

   n,,1j,i,xfx ijj   , (1) 

where ji x,x  are state variables of dynamical object,  ij xf  are some nonlinear functions. 

We assume that these functions are differentiable in all state variables ix  for n times. This 

assumption allows us to transform (1) into canonical form 

 
 ,ygy

1n,,1j;yy

inn

1jj



 




 (2) 

where iy  are new state variables,  in yg  are nonlinear functions. 

One can perform the above mentioned nonlinear coordinate transformation by using the 
following algorithm: 

1. One state variable kx  is selected as output variable 

 n,,1k;xy k1  , (3) 

where k is the number of output variable. 

2. This variable is differentiated for n times and Lie derivatives are defined [10]: 

 n,,1i;xLy k
i

1i  f
, (4) 

where f  is an (n x 1)-size matrix of functions  ij xf  

       Tini2i1 xfxfxf f . (5) 

3. The interrelations between new iy  and old ix  state variables are defined as solution the 

first n-1 equations of (4) for ix  thus 

   1n,,1i,yAx ii   , (6) 

where  iyA  is some nonlinear operator. 

4. The unknown function  in yg  is defined from n-th equation of (4) by substituting into 

the Lie derivative k
n xLf  (6). 

The given algorithm allows us to get transformed equations of a nonlinear object given by (1) 
into a canonical form. The main drawback of the proposed method is the difficulty in analytically 
determining the  iyA -operator. This operator in the elementary functions can be defined only for the 

short range right-hand expressions in (1). The determination of the  iyA -operator is associated with 

the usage of non-elementary functions in general case. The definition of these functions is a separate 
nontrivial scientific problem with a weak practical usage due to the usage of complex mathematical 
apparatus. 
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We propose to simplify the determination of the  iyA -operator by transition into discrete-time 

domain and using numerical methods. 

B. Discrete-time Transformation Algorithm for A Generalized Dynamical Object 

The known numerical methods are based on various approximations of the differentiation 
operator. These approximations are built on the basis of future, current, and past values of state 
variables.  

We use a following general approximation of differentiation operator [13]: 

           wix,,1ix,ix,,1qix,qixddt/dxx   , (7) 

where  ix  is the value of state space variable x in i-th time interval,  qix   is the value of state 

variable x on q-th time interval in the future, and  wix   is the value of state x on w-th interval in 

the past; or in z-form: 

  xz,,xz,x,,xz,xzdx w11qq   , (8) 

where 1z  is the one step backward shift operator and  1z  is the one step forward shift operator. 

An approximation for j-th order differential operator can be written down by using (8) in the 
following way: 

     .jw2,jq2,xz,,xz,x,,xz,xzdx w11qqjj     (9) 

One can rewrite (4) by using (9) thus 

    n,1i;xLyz,,yz,y,,yz,yzd k
i

1
w

1
1

11
1q

1
q1i 

f
 . (10) 

Solution of (10) allows us to determine interrelations between the new coordinate 1y  and old 

one ix . We propose to use for solution of these equations iterative numerical methods like Newton-

Raphson method [14]. This method allows us to write down the following iterative expression for 
state variables:  

 n,,1i,
F

F
xzx

i

i
i

1

i 






  , (11) 

where 

     n,,1i;xLyz,,yz,y,,yz,yzdy,xzF k
i

1
w

1
1

11
1q

1
q1i

1i
1

i   
f

. (10) 

Function  in yg  can be defined by substituting (11) into Lie derivative k
n xLf . This function is 

used while we are making the transformation of the differential equations (1) into algebraic ones:  

 
 
   .ygyz,,yz,y,,yz,yzd

,1n,,1j;yyz,,yz,y,,yz,yzd

in1
w

1
1

11
1q

1
qn

j1
w

1
1

11
1q

1
qj












 (12) 

Numerical solution of (12) allows us to define canonical state variables jy  in general case. 

III. Results and Discussion 

Now we show two examples of using a proposed approach to transform the differential equations 
in normal form into canonical one. 

We consider a well-known Lorenz system, which is given by the following equations [15]: 

 

,xxxx

;xxxxx

;xxx

3213

31212

211













 (12) 

where  ,,  are some coefficients and ix are state variables. 
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Equations (12) describe nonlinear objects with chaotic dynamic. Let us transform (12) into the 
classical matrix form; 

  XfX  , (13) 

where  

 
 

   .xxxxxxxxx

;xxx

321312121

T
321





Xf

X
 (14) 

We consider transformations of (12) into the canonical form for 1x  state variables. 

A. Analytical Transformation of The Lorenz Equations for x1 Variable 

After selecting 1x  variable as output, we use iy  as new state variables. The new state variables 

iy  are defined as Lie derivatives of the output variable 1x  

 

,xLy

;xLy

;xy

1
2

3

12

11

f

f







 (15) 

where 

 
  .xxxxxxxL

;xxxL

3121211
2

211





f

f
 (16) 

Let us substitute (16) into (15) 

 

  3121213

212

11

xxxxxxy

;xxy

;xy







 (17) 

or 

 
    31213

212

xyx1yy

;xyy




. (18) 

We solve (18) for the variables 2x  and 3x   

 

11

2
3

1
2

2

y

3y

y

y1
11x

;y
y

x




















. (19) 

Now let us find the 3-rd Lie derivative for variables 1x  

      2
2

31
2

32
2
11

3 x1++++x-+x--2-x1+2++xx-xL f . (20) 

We define an unknown function  3213 y,y,yg  by substituting (19) into (20): 

        
 

1

32
2
2

3212
2
1

3
13213

y

yy+1+y
+1y-1y-y1-+yy-y-y,y,yg


 . (21) 

Finally, we can write down the Lorenz system’s dynamic in canonical form: 

 

     
 

.
y

yy+1+y
+1y-1y-y1-+yy-y-y

;yy

;yy

1

32
2
2

3212
2
1

3
13

32

21














 (22) 
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It is simple to transform 3-rd order system of differential equations (22) into one 3-rd order 
equation 

      
 

.
y

yy+1+y
+1y-1y-y1-+yy-y-y

1

11
2
1

1111
2
1

3
11





  (23) 

We call the equation as Lorenz equation in the canonical form and  the corresponding dynamical 
system as a continuous-time canonical Lorenz system.  

Analyzing (22)-(23) allows us to formulate the following statement:  

Statement 1: Equations of nonlinear system’s dynamic in canonical form are more complex than 
in normal one. Thus, contrary to linear systems, whose mathematical model is simpler in canonical 
state space, the transformation of a nonlinear system into another state space does not allow us to 
simplify it.  

Numerical solutions of (12) (curve 1) and (22) (curve 2) are shown on Fig. 1.  

3

1

2

sec,t

1
1

1
1

y
x

,
x

,
y



 

Fig. 1.  Results of numerical sollution of (12) and (22) for 1x  variable. 

The complete coincidence of the shown curves is clearly understood. This coincidence is 
approved by near zero values of error curve 3. Thus, we can claim the correct performing of 
transformation of the Lorenz equation into the canonical form by using the proposed approach. 

The usage of the proposed approach ensures a coincidence of normal and canonical state spaces 
by only one variable. That is why other variables are differing. This difference cause different 
attractors in different state spaces. For example, a Lorenz attractor in the canonical state space and 
its projections are shown on Fig. 2. It is clearly understood the significant difference between the 
shown and well-known classical Lorenz attractors. 

B. Numerical Transformation of The Lorenz Equations for x1 Variable 

We define the following functions as in (24). 

 
    312112

2111

xyx1yyF

;xyyF








. (24) 

Let us transform (24) into discrete-time domain by using the simplest backward difference 
approximation of the differential operator: 

 

2

21

2

2

1

T

zz21

dt

d

;
T

z1

dt

d











, (25) 

where T is the sample time,  
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Fig. 2.  Lorenz attractor in canonical state space. 

as follows: 

 

    31212

1
2

1
1

1
2

21
1

1
1

1

xyx1y
T

yzyz2y
F

;xy
T

yzy
F















 (26) 

or 

 

    .xyx1yz
T

1
yz

T

2
y

T

1
F

;xyz
T

1
y

T

1
F

3121
2

21
1

2122

21
1

11

























 (27) 

At first, we define 2x  variable by using the following iterative algorithm based on Newton-

Raphson method (28). 

 

















2

1
1

1

2
1

2

x
T

yz
y

T

1

xzx . (28) 

This algorithm can be simplified as follows: 

 
2

T

yz
y

T

1
xz

x

1
1

12
1

2


 










 . (29) 

At last, we define 3x  variable by using similar procedure to (29) algorithm:  
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   

1

21
2

21
1

212
3

1

3
y2

x1yz
T

1
yz

T

2
y

T

1

2

xz
x


















. (30) 

Equations (29)-(30) allows us to write down the following iterative canonical equations for the 
Lorenz system given in discrete-time domain: 

 

     ,xx-1+++T+y--2-x1+2+T+xTy-yzy

;Tyyzy

;Tyyzy

23
2

1
2

32
2
13

1
3

32
1

2

21
1

1













 (31) 

where 

 

  
    

.
y2

x1yzT/1yzT/2yT/1

2

xz
x

;2/T/yzyT/1xzx

1

21
22

1
12

1
2

3
1

3

1
1

12
1

2












 (32) 

Equations (31) and (32) are simpler than (22). These equations allow us to define both canonical 

iy  and normal ix  variables by solving the appropriate algebraic equations by using the following 

algorithm: 

1. Current values of canonical variables 1y  and 2y  are defined by using the first and 

second expressions of (31). 

2. Current values of normal variables 2x  and 3x  are defined by using (32) in iterative way. 

3. Current value of canonical variable 3y  is defined by using the third equation of (31). 

4. The cycle is repeated for all simulation time. 

Similar to (23), we call equations (31)-(32) discrete-time Lorenz equations in canonical form. 

It is clearly understood the simplicity of the proposed approach contrary to the solution of 
differential equations (22). Equations (31)-(32) depend on the sample time T as well as coefficients 
of equations (12). So, we claim the following statement: 

Statement 2. The dynamic of the discrete-time Lorenz system in the canonical form depends not 
only on its parameters but also on the used numerical method.  

This statement is proved by the numerical solution results of (31) and (32) for different sample 
time (Fig. 3-4). 

 

We claim following as the result of all given mathematical expressions: 

 

Fig.4 Results of the canonical Lorenz system 

simulation with sample time sec10T 4  

 

Fig.3 Results of the canonical Lorenz system 

simulation with sample time sec10T 3  
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Statement 3: If a dynamic system has a chaotic attractor in one state space, it has chaotic 
dynamic in other state spaces.  

IV. Conclusion 

The dynamic of a generalized chaotic system can be transformed into canonical form by defining 
n-th Lie derivatives and solving n-1 nonlinear algebraic equations. This transformation can be 
simplified by using numerical methods. One can develop numerical transformation algorithm as a 
part of controller software by using the mentioned numerical methods. The use of the proposed 
algorithm is one way of new chaotic attractors’ discovering. These attractors can be obtained by 
transformation of known chaotic systems into various state spaces. 
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