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1. Introduction 
The primary cause of attention deviating from the road is driver distraction, which can be extremely 

dangerous to the lives of drivers, passengers, and pedestrians [1]. One of the most critical aspects of 

driver monitoring is observing their visual attention. This assists in keeping track of their status and 

avoiding traffic accidents caused by distractions. Therefore, it is essential to monitor the driving state, 

assess the distraction of the driver, and warn the driver. Recently, driver’s gaze monitoring has been 

mentioned in a lot of research [2]. This related research can be categorized using both hardware-based 

and appearance-based techniques. The studies that are hardware-based often make use of additional 

equipment to evaluate the driver's visual attention [3]–[5]. Mizuno et al. [5] developed a system that 

detects visual attention by utilizing a gaze tracker and a device installed in the vehicle. Moreover, some 

researchers implemented a driver's gaze mapping system that uses an additional camera [6], [7]. While 
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 Distracted driving is a leading cause of traffic accidents, and often arises 

from a lack of visual attention on the road. To enhance road safety, 

monitoring a driver's visual attention is crucial. Appearance-based gaze 

estimation using deep learning and Convolutional Neural Networks (CNN) 

has shown promising results, but it faces challenges when applied to 

different drivers and environments. In this paper, we propose a domain 

adaptation-based solution for gaze mapping, which aims to accurately 

estimate a driver's gaze in diverse drivers and new environments. Our 

method consists of three steps: pre-processing, facial feature extraction, and 

gaze region classification. We explore two strategies for input feature 

extraction, one utilizing the full appearance of the driver and environment, 

and the other focusing on the driver's face. Through unsupervised domain 

adaptation, we align the feature distributions of the source and target 

domains using a conditional Generative Adversarial Network (GAN). We 

conduct experiments on the Driver Gaze Mapping (DGM) dataset and the 

Columbia Cave-DB dataset to evaluate the performance of our method. 

The results demonstrate that our proposed method reduces the gaze 

mapping error, achieves better performance on different drivers and camera 

positions, and outperforms existing methods. We achieved an average 

Strictly Correct Estimation Rate (SCER) accuracy of 81.38% and 93.53% 

and Loosely Correct Estimation Rate (LCER) accuracy of 96.69% and 

98.9% for the two strategies, respectively, indicating the effectiveness of 

our approach in adapting to different domains and camera positions. Our 

study contributes to the advancement of gaze mapping techniques and 

provides insights for improving driver safety in various driving scenarios.  
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these approaches have proven to be effective and reliable, they can be intrusive, expensive, and impractical 

for real-world use. Moreover, such systems can be challenging to operate and may cause driver fatigue. 

On the other hand, Appearance-based gaze estimation is one of the most effective methods, and it 

requires the least amount of additional equipment [8]–[12].  

Deep learning (DL) technology and Convolutional Neural Networks (CNN) have significantly 

improved their performance in appearance-based gaze estimation tasks. Over the last few years, numerous 

versions of different CNN-based gaze estimating techniques have been presented and have achieved 

remarkable results [13]–[20]. In driver gaze region estimation, also known as gaze mapping, the methods 

consider eye images, face images, or a combination of the two. Also, some studies used images of the 

full appearance of the driver [21]–[23]. However, these existing systems in the field of gaze mapping 

encounter numerous common challenges. The predominant one is that the performance tends to 

deteriorate for the different drivers and environments. This can be caused by a variety of factors, such as 

domain disparities, insufficient data for the target driver, environmental influences, and disparate camera 

positions. In other words, although DL technology and CNN perform well on the learned data, the 

results are still not satisfactory for different car environments, camera positions, and domains [24]–[27]. 

To address these challenges, techniques for domain adaptation are employed to mitigate the negative 

effects of domain shifting, allowing the model to be applicable across different domains and 

environments. Wang et al. utilize an appearance discriminator and head pose classifier to achieve domain 

adaptation by adversarial learning [24]. Moreover, Cheng et al. proposed to enhance cross-domain 

performance without target domain data by eliminating gaze-irrelevant features [25]. Also, Liu et al. 

designed an outlier-guided collaborative domain adaptation method and tested cross-subjects between 

several datasets. More recently, Bao et al. have proposed a rotation-enhanced unsupervised domain 

adaptation technique for the problem of the lack of access to target domain labels in real-world situations 

[27]. To enhance unsupervised domain adaptation gaze estimation, Guo et.al. developed a novel 

embedding technique that incorporates prediction consistency loss. This innovative approach allows for 

the measurement of the variance between the source and target domains [28].  

While the aforementioned methodologies have demonstrated notable advancements in enhancing 

gaze-related tasks, it is imperative to distinguish between gaze mapping and gaze estimation. Gaze 

estimation primarily involves determining the direction in which a person's gaze is focused, typically 

relying on technologies like eye-tracking to pinpoint the location of the eyes and infer the point of focus. 

Essentially, gaze estimation answers the question of 'where' the eyes are directed. On the other hand, 

gaze mapping extends beyond mere estimation, aiming to provide a comprehensive and spatial 

representation of the entire gaze behavior. Gaze mapping encompasses not only the predefined regions 

but also the dynamic patterns, head and body movements, and interactions of the gaze within a given 

environment. It seeks to create a detailed map or model that reflects how the individual's gaze traverses 

and engages with different elements in their surroundings. In the context of driver behavior, gaze 

mapping becomes particularly crucial for understanding not just the instantaneous points of focus but 

also the broader context of how the driver visually navigates through complex outdoor environments. 

This includes considerations for factors such as scanning the road, monitoring mirrors, and responding 

to dynamic stimuli. Despite significant progress in gaze estimation, achieving accurate and robust gaze 

mapping, especially in the challenging conditions presented by outdoor driving environments and 

without additional devices, remains a formidable task in the field of research and development. 

In this paper, we present a domain adaptation-based solution to gaze mapping for robustness to 

different drivers and new environments. It's important to find ways to adapt to different domains and 

environments in a way that is effective and efficient, and this proposal has a lot of potential. We believe 

that our study has the following contributions. 

• Accurate gaze mapping across various drivers is achievable using a simple dashboard camera. 

• Self-calibration possibility for different camera positions in the same domains. 

• Experimental results demonstrate that the proposed method reduces the gaze mapping error of the 

pre-trained adapted model and even has better performance on different drivers (cross-subject) and 

environments (different camera positions). 



ISSN 2442-6571 International Journal of Advances in Intelligent Informatics 96 

 Vol. 10, No. 1, February 2024, pp. 94-108 

 
 

 Sonom-Ochir et al. (Domain adaptation for driver's gaze mapping for different drivers and new environments) 

In our work, we achieve an accuracy that is at par or better than the state-of-the-art results for tested 

domain adaptation on gaze mapping from the Driver Gaze Mapping (DGM) dataset (our prepared 

dataset) to the open dataset Columbia Cave-DB [29].  In this paper, we have structured the content into 

distinct sections. Section 2 offers insight into the two strategies of our proposed method and the training 

and domain adaptation process. Section 3 outlines the diverse datasets of camera positions employed for 

training, the driver's gaze regions that were used, and the experiments conducted and compares them 

with existing studies. Finally, Section 4 presents our conclusions. 

2. Method 

2.1. Overview of the Proposed Method 
The proposed method has three steps, pre-processing, facial feature extraction, and gaze region 

classification as shown in Fig. 1, represented by the blue arrow.  The process of domain adaptation is 

represented by the red arrow, while the process of testing the proposed method is represented by the 

blue arrow. Furthermore, the fine-tuned network parameters are indicated by the dashed line. 

 

Fig. 1. Structure of the proposed method. 

During training, we tried two pre-processing strategies for the input feature extraction step. The first 

strategy involved using an image of the driver's full appearance and the environment. This allowed us to 

skip the face detection and face bounding box & crop step and directly train the feature extraction from 

the input images, shown by line A, in Fig. 1. In the second strategy, we specifically detected the driver's 

face and used it as input for the feature extraction step, shown by line B, in Fig. 1. The facial feature 

extraction step involves extracting relevant facial features from images of pre-processing step. Finally, 

the gaze region classification step predicts one of the 13 predefined gaze regions using these features. 

2.2. Domain Adaptation for Gaze Mapping 
In this section, we will provide a detailed description of our proposed model, including the principles 

of the base model, the algorithmic steps, and the mathematical aspects. Our paper's main theoretical 

underpinning is that the model is designed to address challenges related to domain shift, leveraging 

adversarial training and transfer learning principles for unsupervised domain adaptation in gaze mapping 

(DGM dataset to Columbia Cave-DB). To provide a detailed explanation, let's begin by selecting the 

components of the proposed model structure.  
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First, we choose a discriminative base model, as we assume that when adapting a model from a source 

domain to a target domain, the discriminative aspects of the model are more important than the 

generative aspects. Then, the choice between shared and unshared weights depends on the nature of the 

adaptation problem. If the domains are expected to have similar characteristics, shared weights might be 

more appropriate. In our case, the target and source domains are quite different regarding participating 

drivers' environment and facial appearance. Hence, separate sets of model parameters are used for the 

source and target domains. This is because unshared weights allow the model to adapt more flexibly to 

domain-specific characteristics, which is important when there is a significant domain shift. Therefore, 

we chose an unsupervised domain adaptation method with unshared weights. Moreover, adversarial loss 

is another important component of our proposed model. It is a crucial component of unsupervised 

domain adaptation, particularly in methods that leverage domain adversarial training. We used separate 

sets of model parameters for the source and target domains, and therefore, we chose the GAN loss as 

the adversarial loss for our case. By combining unshared weight and GAN loss, we assumed that the 

model can adapt to the specific features present in each domain while minimizing the domain shift 

through adversarial training. 

2.3. Training and Domain Adaptation 
In this section, we will provide a detailed description of the adversarial training process of the feature 

extraction and classification steps, as shown in Fig. 1, represented by the red arrow. The training aims 

to achieve unsupervised domain adaptation for gaze mapping, specifically from the DGM dataset to 

Columbia Cave-DB. When images are from different distributions, a feature extractor maps them to 

different clusters in the feature space. To bring these clusters closer together, a conditional generative 

adversarial network (CGAN) [30] is used. In detail, we utilized the ResNet18 model [31] as the backbone 

model. Fig. 2. shows an overview of domain adaptation process. 

 

Fig. 2. An overview of domain adaptation 

To modify the network, we replaced its final layer with a new fully connected layer consisting of 13 

neurons. Additionally, a softmax layer was included on top of it. The model uses a feature extractor as a 

generator G(x), where x represents the input image, and an external multi-layer perceptron acts as a 

discriminator D(x), which determines whether the extracted feature is from the source or target domain. 

This classification is represented through one-hot encoding, Y(x). During each epoch, the discriminator 

is optimized first, to minimize the difference between D(G(x)) and Y(x) for all x in both domains. The 

generator is then optimized to confuse the discriminator, to minimize the difference between D(G(x)) 

and Y', where Y' represents the one-hot encoding for the source domain and x is from the target domain, 

as shown in Fig. 2. This process maps images from the target domain to a cluster that is closer to the 

cluster in the source domain's feature space. We provide a step-by-step algorithm that gives a 

mathematical overview of the key components and processes involved in unsupervised domain adaptation 

for gaze mapping (Fig. 3).  
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Algorithm 1: Training procedure  

Inputs: Source domain images 𝑋𝑋𝑠𝑠 with labels 𝑌𝑌𝑠𝑠 ; Target domain images 𝑋𝑋𝑡𝑡 
Outputs: Feature extractor network G; Classifier network C 

1. Initialize and pre-training:  

# This involves training the feature extractor network G and the classifier network C on the source domain data (𝑋𝑋𝑠𝑠) with 
corresponding labels (𝑌𝑌𝑠𝑠). This is a standard pre-training step. 
o ResNet18 network G with modified final layers (13 neurons + softmax), G = ResNet18 

(num_classes=13) 
o Multi-layer perceptron (MLP) discriminator D, D = MLP(input_dim=G.output_dim, 

hidden_dim=128, output_dim=1)      
o Classifier network C, C = MLP(input_dim=G.output_dim, hidden_dim=64, output_dim=13)          
o For each epoch:  

 For each image x in 𝑋𝑋𝑠𝑠 
 Compute features f = G(x) 
 Encode domain label y = Y(x) 
 Calculate loss 𝐿𝐿𝑠𝑠 based on 𝑋𝑋𝑠𝑠 and ground truth labels 𝑌𝑌𝑠𝑠 
 Back-propagate 𝐿𝐿𝑠𝑠 to update G parameters θ 

2. Feature Extraction and Adversarial Training:  
# After pre-training, the algorithm freezes the pre-trained feature extractor (G) and introduces a multi-layer perceptron 
(MLP) discriminator (D) for adversarial training. 
o Freeze pre-trained feature extractor parameters θ 

o For each epoch:  

 For each image x in 𝑋𝑋𝑠𝑠 and 𝑋𝑋𝑡𝑡:  
 Compute features f = G(x) 
 Encode domain label y = Y(x) 

 Train discriminator D to minimize loss:  

 𝐿𝐿𝐷𝐷  = -1/n * sum(y * log(D(f)) + (1-y) * log(1-D(f))) 
# n: total number of images (including both source and target. 

 Train generator G to minimize loss: 
# 𝒏𝒏𝒕𝒕: number of target domain images. 
# Y': the one-hot encoded vector for the source domain. 

 𝐿𝐿𝐺𝐺  = -1/𝑛𝑛𝑡𝑡 * sum(Y' * log(D(G(𝑋𝑋𝑡𝑡)))) 
3. Joint Fine-tuning and Classifier Training:  

# The feature extractor parameters (θ) are unfrozen for joint fine-tuning. 
# The algorithm then samples batches from both source (𝑋𝑋𝑠𝑠and target (𝑋𝑋𝑡𝑡)domains, extracts features using the fine-tuned G, 
and computes both classification loss (𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐) and domain adaptation loss (𝐿𝐿𝐷𝐷𝐷𝐷) using Maximum Mean Discrepancy (MMD). 
# The combined loss (𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) includes both classification and domain adaptation components. The feature extractor (G) 
and classifier (C) parameters are updated based on this combined loss. 
o Un-Freeze feature extractor parameters θ 

o For fine_tune_epochs: 

 Sample a batch from source and target domains (𝑋𝑋𝑠𝑠_batch, 𝑋𝑋𝑡𝑡_batch, 𝑌𝑌𝑠𝑠_batch) 

 Extract features: 𝑓𝑓𝑋𝑋𝑠𝑠_batch = G(𝑋𝑋𝑠𝑠_batch), 𝑓𝑓𝑋𝑋𝑡𝑡_batch = G(𝑋𝑋𝑡𝑡_batch) 
 Compute classification loss: 𝑳𝑳𝒄𝒄𝒄𝒄𝒄𝒄 = C(𝑓𝑓𝑋𝑋𝑠𝑠_batch).loss(𝑌𝑌𝑠𝑠_batch) 

 Compute domain adaptation loss: 𝑳𝑳𝑫𝑫𝑫𝑫 = MMD(𝑓𝑓𝑋𝑋𝑠𝑠, 𝑓𝑓𝑋𝑋𝑡𝑡) 
 Combined loss: 𝑳𝑳𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄  = 𝑳𝑳𝒄𝒄𝒄𝒄𝒄𝒄  + λ * 𝑳𝑳𝑫𝑫𝑫𝑫 

 Back-propagate 𝑳𝑳𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 to update both G and C parameters 

4. Output:  

# The output includes the fine-tuned feature extractor (G) with domain adaptation and the classifier (C) trained on the 
source domain and fine-tuned by the target domain. 

o Feature extractor network G(fine-tuned with domain adaptation) 

o Classifier network C (trained on source domain and fine-tuned by target domain) 

Fig. 3.  Training procedure for for gaze mapping 
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The feature extractor parameters are frozen, and the classifier is trained on the source domain. Since 

the feature extractor is generalized, training on the source domain can enhance performance on the 

target domain. Furthermore, we will explain the proposed model in terms of process. One important 

aspect of our method is the adversarial training procedure.  

3. Results and Discussion 

3.1. Implementation details 
We experimented with gaze mapping using the domain adaptation method and trained the model 

with specific parameters in both the source and target domains. For the feature extractor, the learning 

rates were set to 0.001 in the source domain and 0.0005 in the target domain. The classifier's learning 

rate was set to 0.001 in both domains. We set the adversarial loss weight and domain classifier weight 

to 0.1. The training was done with a batch size of 64 and 30 epochs. We initialized the feature extractor 

with a pre-trained model and used the Adam optimizer. We provided a step-by-step algorithm 

adversarial training in the following section. For more details on the training process, please refer to 

Algorithm 1. 

3.2. Evaluation metrics 
Strictly correct estimation rate (SCER) and Loosely correct estimation rate (LCER) are mostly used 

in our field research. In our study, the accuracy of gaze mapping also was measured based on the Strictly 

correct estimation rate (SCER) and the Loosely correct estimation rate (LCER ). 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹

   (1) 

SCER measures the ratio of the number of frames where the estimated gaze region is strictly correct 

(equivalent to the ground truth gaze region) to the total number of frames. 

Strictly Correct Frame: A frame is considered strictly correct if the estimated gaze region is precisely 

equal to the ground truth gaze region. 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 =  𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑖𝑖𝑖𝑖 (𝐺𝐺𝐺𝐺∪𝑁𝑁)
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹

   (2) 

LCER measures the ratio of the number of frames where the estimated gaze region is loosely correct 

(within the ground truth gaze region and neighboring regions) to the total number of frames. 

Loosely Correct Frame: A frame is considered loosely correct if the estimated gaze region is placed 

within the ground truth gaze region or in one of the neighboring regions. 

The numerator now represents the count of frames where the estimated gaze region is in the union 

of the ground truth gaze region (GT  ) and the set of neighboring regions (N). 

3.3. Experimental datasets 
training process, we utilized the DGM dataset as the source domain. We trained on this dataset and 

subsequently adapted and tested it to the Cave-DB dataset as the target domain. As a result of the 

training described in Section 2, our proposed method shown in Fig. 1 is prepared for testing on the 

target domain. In the preprocessing step, there are two modes available - full appearance image and face 

image, mentioned in Section 2.1. So, in this section, we will present and analyze the experimental results 

of strategies of the proposed method. Additionally, we conduct experiments on the DGM dataset, which 

includes different camera positions. It explores the possibility of adapting to different camera positions 

in the same domain for self-calibration tasks. Furthermore, we provided an analysis of the results 

obtained from the proposed model. This includes a discussion of the implications of these results, a 

comparison with existing methods, and the limitations of our study.  
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3.3.1. IDGM Dataset 
The Driver Gaze Mapping (DGM) dataset was used for the gaze mapping task. This dataset features 

13 distinct gaze regions and data collected from two different camera positions, as described in Fig. 4.  

 

Fig. 4. Camera positions (1) bottom of the rear mirror (2) top-front of windshield 

The dataset comprises the driver's gaze and information about the driving environment. The 13 

predefined gaze regions, illustrated in Fig. 5, include the gaze region on the windshield, left and right-

side mirrors, and left and right-side windows (regions 1-9). To avoid the risk of the driver causing an 

accident while observing the designated areas, we opted to capture images of various locations - including 

university campus roads and parking lots - while the vehicle was in motion. We used a COOAU-D30-

1080P dual dash camera to take pictures in the morning, afternoon, and night, ensuring that we had a 

diverse set of images from different times of the day. The drivers gazed at 13 predefined gaze regions, 

and they were allowed to move their heads and bodies freely, simulating the naturalistic movements of 

a driver. Additionally, we have accounted for the neighboring regions adjacent to each gaze region. 

 

Fig. 5. Predefined 13 gaze region 

The dataset includes 12,285 images with 13 labels using camera position 1. Additionally, we collected 

3900 images with the same labels using camera position 2, for the self-calibration task experiment. 



101 International Journal of Advances in Intelligent Informatics   ISSN 2442-6571 

 Vol. 10, No. 1, February 2024, pp. 94-108 

 

 Sonom-Ochir et al. (Domain adaptation for driver's gaze mapping for different drivers and new environments) 

3.3.2. Open dataset Cave-DB 
We created a new dataset using the open dataset Columbia gaze dataset CAVE-DB for fair 

comparison. This enabled us to apply unsupervised classification to different domain shifts. This was 

done as previous studies [17], [19], [20] also evaluated their methods using SCER and LCER through 

CAVE-DB. The CAVE-DB contains a large gaze database of 56 individuals with 5880 images that vary 

in head poses and gaze directions. There are 105 gaze directions as 5 head poses with 21 gaze directions 

per head pose. From the database, we chose 13 gaze direction images considering the DGM dataset in 

Fig. 5. The examples of images with gaze regions are shown in Fig. 6. 

 

Fig. 6. Sample images selected from CAVE-DB 

3.4. Experimental result 
In this section, we have provided a detailed analysis of experimental results obtained from the 

proposed model. This includes a discussion of the implications of these results, a comparison with 

existing methods, and the limitations of our study. In this, we prepared the source and target datasets 

in the following ways: on different drivers in the same environment, on the same driver in different 

environments, and on different drivers in different environments, as shown in Fig. 7. As a result, domain 

adversarial training was performed on the above differentially trained datasets. As a result, we determined 

how different drivers, different environments, and different environments and different drivers affect the 

results of gaze estimation methods using domain adaptation. Also, during domain adaptation, we 

determined which of the driver's full appearance with environment images and face images were effective 

for adaptive training. 

 

Fig. 7. Prepared datasets and domain adaptation versions 
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3.4.1. Experiment of Strategy A 
As shown in Fig. 7, we organized domain adaptation training in 3 different versions using the driver's 

full appearance with environment images (Strategy A). First, we trained the DGM dataset using camera 

position 1 as the source domain, and camera position 2 as the target domain, using sets of datasets as 

shown in Table 1. 

Table 1.  Amount of datasets used in domain adaptation versions 

Domain adaptation versions Source Target Test 

DGM-1 to DGM-2 12285 images 

with 13 labels 

3900 images 

with 13 labels 

1300 images 

with 13 labels 

DGM-1 to DGM (diff.driver) 

12285 images 

with 13 labels 

3900 images 

with 13 labels 

1300 images 

with 13 labels) 

DGM-1 to Cave-DB 

12285 images 

with 13 labels 

3900 images 

with 13 labels 

1300 images 

with 13 labels 

 

In this experiment, we explored the possibility of learning from each other between datasets with the 

same driver or facial features but different camera positions. Based on the results, the average accuracy 

was 85%. In the experiment, it is evident from Fig. 8 that there is significant confusion between gaze 

regions 6 and 9, as well as between gaze regions 7 and 8. Furthermore, it can be observed that there is 

some confusion in regions with low head movement. Also, a small of confusion was formed between 

gaze regions 1 and 2, and gaze regions 8 and 11, which are regions that can be moved by the movement 

of the eyeball. This suggests a risk of confusion between gaze regions that require minimal head 

movement and require small changes in gaze direction. Although the confusion was between the 

aforementioned gaze regions, the feasibility of self-calibration was demonstrated using the domain 

adaptation method across different camera positions within the same domain. 

 

Fig. 8. Confusion matrix of strategy A on the same driver, different environment 

Second, we trained the DGM dataset using camera position 1 as the source domain, and a different 

driver with the same environment as the target domain, using sets of datasets as shown in Table 1. In 

this experiment, we aimed to determine the adaptive performance of different domains in the same 

environment. According to the results of the experiment, the performance of each gaze region 

demonstrated that the minimum accuracy was 76% or more, and the average accuracy was 88.76%. This 

indicates that serious confusion has not occurred in each region. Also, it can be seen from Fig. 9 that 

the resulting confusion is usually observed with the neighboring gaze region. 
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Fig. 9. Confusion matrix of strategy A on different drivers, same environment 

Finally, we conducted an experiment where we used the DGM dataset as the source domain and the 

Cave-DB dataset as the target domain, using sets of datasets as shown in Table 1. The purpose of this 

experiment was to demonstrate how our proposed model can adapt to different domains and 

environments. The results showed that the target domain was classified with reasonable accuracy, except 

for gaze region 5 which was misclassified as neighboring gaze region 4. Apart from this, the results were 

reasonable, with an average accuracy of 81.38%, as shown in Fig. 10. 

 

Fig. 10. Confusion matrix of strategy A on different drivers, different environments 

3.4.2. Experiment of Strategy B 
In this experiment, we trained the DGM dataset as the source domain and the Cave-DB dataset as 

the target domain by strategy B of pre-processing which uses a face image. The average SCER accuracy 

was 93.53% and the LCER rate was 98.9%, as shown in Fig. 11. 
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Fig. 11. Confusion matrix of strategy B on different drivers, and different environments 

Based on the results, Strategy B proves to be more effective than Strategy A. The average SCER 

accuracy rate of Strategy B is 12.15% higher compared to Strategy A which uses the driver's full 

appearance image. Moreover, the experiment's findings indicated that there is more confusion when 

transitioning between gaze regions that require only slight head and eye movements, such as gaze regions 

1 and 2. However, there seems to be less confusion when transitioning between gaze regions that require 

more significant head and eye movements. For example, the gaze regions of side mirrors can be 

mentioned. 

Then, we tested on the DGM dataset, where camera position 1 was the source domain and camera 

position 2 was the target domain. We have achieved the following results in this experiment. The 

accuracy of strategy B of pre-processing which uses a face image was reasonable. On average, the accuracy 

of the SCER was 94.85%, as illustrated in Fig. 12. This indicates that Strategy B is also more efficient 

than Strategy A, with an average SCER accuracy rate that is 9.8% higher. As a result, strategy B proved 

to be more effective on the above two tasks. 

 

Fig. 12. Confusion matrix of strategy B on the same driver, different environment 
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3.4.3. Findings and discussion 
During the above three domain adaptation experiments, shown in Table 2, various findings were 

observed. Firstly, it was discovered that accurate gaze mapping on different drivers can be performed 

using domain adaptation. Secondly, the position of different cameras in the same domain can self-

calibrate. Additionally, the experimental results show that the proposed method can reduce gaze 

mapping errors. The findings also demonstrate that the proposed method can reduce the gaze mapping 

error of the pre-trained adapted model, and even perform better on different drivers (cross-subject) and 

environments (different camera positions). In addition, when analyzing the results of the above three 

confusion matrices, it was seen that the model is very stable only in domain transition without 

environmental change. These results underscore the effectiveness of our method in adapting to different 

domains. On the other hand, it was observed that it is comparable weak for the same domain and 

different environments (using different camera positions). In other words, we noticed that our domain 

adaptation model for gaze mapping, while robust for different domains, is affected by significant camera 

changes.  

Table 2.  Performance results on domain adaptation versions 

Training versions Full-appearance image Face image 
SCER LCER SCER LCER 

DGM-1 to DGM-2 
85.00% 98.80% 94.85% 99.23% 

DGM-1 to DGM (diff.driver) 88.76% 96.23% - - 

DGM-1 to Cave-DB 81.38% 96.69% 93.53% 98.90% 

 

This highlights the adaptability of our approach to diverse environments and even different camera 

positions for the same driver, indicating potential self-calibration capabilities. We also discovered that 

strategy B was more effective than strategy A in both of the given tasks. This indicates that strategy B 

is more successful in domain adaptive learning. In other words, we observed that the feature extraction 

step produces cleaner output as the environment's influence decreases. 

3.5. Comparative experiments with existing studies 
In this section, we conducted a comparison between the two strategies of our proposed methods and 

the other existing studies on the Cave-DB dataset. All of these studies were conducted using the same 

database and used the same number of gaze regions. The results are shown in Table 3. We found that 

our results were slightly better than those of the previous studies. 

Table 3.  Comparison of the Existing Studies on Cave-DB 

Methods Accuracy /%/ 
SCER LCER 

Choi et al. [19] 

53.09% 88.66% 

Naqvi et al. [17] 77.70% 96.31% 

Lee et al. [20] 44.00% 85.07% 

Strategy A of our proposed method 81.38% 96.69% 

Strategy B of our proposed method 93.53% 98.90% 

 

In addition, it should be noted that Vora et al. [22] and Shah et al. [32] have conducted state-of-

the-art studies in addition to the ones mentioned earlier. However, they only used 6 and 7 gaze regions 

respectively, which were Forward, Right, Left, Center Stack, Rearview mirror, and speedometer. It is 

difficult to compare the results of these studies with the ones that have 13 gaze regions as there are fewer 

gaze regions and less possibility of confusion. In the study by Vora et al., SqueezeNet was used, which is 

the best method for Face Embedded FoV, with an accuracy of 89.37% [22]. Also, Shah et al. used a 

Driver gaze estimation method based on Deep Learning, which has an accuracy of 91% [32]. However, 
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our proposed method's strategy B obtained matching results for more gaze regions, which can be 

considered decent results comparable to state-of-the-art studies. 

4. Conclusion 
This paper introduces a novel gaze mapping solution designed to enhance robustness across diverse 

drivers and environmental conditions. By integrating pre-processing, facial feature extraction, and gaze 

region classification, our method explores two feature extraction strategies, leveraging both full 

appearance and facial focus. Through unsupervised domain adaptation employing GAN loss and 

unshared weight, we successfully align feature distributions between source and target domains. 

Experimental evaluations on the Driver Gaze Mapping (DGM) dataset and the Columbia Cave-DB 

dataset demonstrate a notable reduction in gaze mapping error and superior performance compared to 

existing methods. Our approach achieves an average Strictly Correct Estimation Rate (SCER) accuracy 

of 81.38% and 93.53%, and a Loosely Correct Estimation Rate (LCER) accuracy of 96.69% and 98.9% 

for the two strategies, respectively. These results underscore the effectiveness of our method in adapting 

to different domains. Furthermore, we attain an average SCER accuracy of 85.00% and 94.84%, and 

LCER accuracy of 98.80% and 99.23% for the two strategies, respectively. This highlights the 

adaptability of our approach to diverse environments and even different camera positions for the same 

driver, indicating potential self-calibration capabilities. Our study significantly contributes to the 

evolution of gaze mapping techniques, providing valuable insights for enhancing driver safety in a variety 

of driving scenarios. The achieved accuracies demonstrate the practical effectiveness of our proposed 

solution, positioning it as a promising advancement in the field. Looking forward, this work lays the 

groundwork for future research in gaze mapping and its applications. 
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