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1. Introduction  
Estimating software development projects belongs to the planning phase in the software development 

life cycle (SDLC) [1]. Software Effort Estimation (SEE) assesses the effort and associated costs needed 

to create a new software system. Effort estimation is paramount for software companies, as they must 

guarantee that the software is delivered within predefined time and budget limitations. Nevertheless, 

most software projects exceed their designated time and budget limit, with delays and cost overruns 

being persistent challenges in software development for numerous years [2]. 

There are three groups of methods for estimating software effort: expert judgment, algorithmic, and 

machine learning. Expert-based methods entail consulting one or more experts, leveraging their domain 

expertise and comprehension of the organizational context to estimate the cost of software projects. 

Analytical hierarchy process (AHP), Delphi, and Planning Poker methods belong to the expert judgment 

group. The algorithmic group consists of methods used to estimate effort based on software 

requirements specifications. Methods that fall into this category are COCOMO [3], SLIM, Function 

Points [4], Use Case Points (UCP), COSMIC, and so on. Meanwhile, the machine learning-based group 
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 Use Case Points estimation framework relies on the complexity weight 

parameters to estimate software development projects. However, due to the 

discontinue parameters, it lead to abrupt weight classification and results 

in inaccurate estimation. Several research studies have addressed these 

weaknesses by employing various approaches, including fuzzy logic, 

regression analysis, and optimization techniques. Nevertheless, the 

utilization of optimization techniques to determine use case weight 

parameter values has yet to be extensively explored, with the potential to 

enhance accuracy further. Motivated by this, the current research delves 

into various metaheuristic search-based algorithms, such as genetic 

algorithms, Firefly algorithms, Reptile search algorithms, Particle swarm 

optimization, and Grey Wolf optimizers. The experimental investigation 

was carried out using a Silhavy UCP estimation dataset, which contains 71 

project data from three software houses and is publicly available. 

Furthermore, we compared the performance between models based on 

metaheuristic algorithms. The findings indicate that the performance of 

the Firefly algorithm outperforms the others based on five accuracy metrics: 

mean absolute error, mean balance relative error, mean inverted relative 

error, standardized accuracy, and effect size. This research could be useful 

for software project managers to leverage the practical implications of this 

study by utilizing the UCP estimation method, which is optimized using 

the Firefly algorithm. 
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is a set of methods that applies learning algorithms to estimate software project efforts such as regression, 

artificial neural network (ANN), case-based reasoning (CBR), and others. Among algorithmic approach, 

COCOMO and function points suffered from its parameter vulnerabilities: function points and line of 

codes (LoC) [5]. Moreover, they are not compliance with object oriented development as widely used 

today by most of software organizations [6]. One popular software sizing and estimation framework is 

Use Case Points (UCP) [7] that adopt object oriented development paradigm. UCP determines the 

software size by multiplying use case diagrams and the productivity factor (PF). In the second phase of 

the UCP process, as indicated by Table 1, the complexity weight of the use case (UC) is categorized into 

three levels: simple, average, and complex. The weight assignment to each complexity level is determined 

by the number of transactions of the Use Cases (UC). The original UCP framework consists of three 

levels of complexity weights, namely 5, 10, and 15, for Simple, Average, and Complex, respectively. The 

original level of complexity weighting has faced criticism from researchers due to its discontinuous nature 

in the complexity hierarchy, leading to occasional inaccuracies in measurements and abrupt classifications 

of use cases. For instance, the use case containing eight transactions possesses twice the weight of the 

use case involving seven transactions. Furthermore, they exclude the consideration of large use case 

transactions. As an illustration, a use case with 25 transactions holds equal weight as a use case involving 

nine transactions. 

Numerous efforts have been made to tackle the sudden classification problem associated with the 

complexity weighting level in the use case. For example, the currently available fuzzy methods are 

employed and suggested by Xie at al., Wang et al., and Nassif et al. [8]–[10]. The fuzzy approach is 

consistently employed for discretizing the prevailing level of complexity weighting. It aims to alleviate 

the sudden classification problem by offering a continuous and incremental classification process. Most 

research demonstrates that using fuzzy on UCP enhances estimation performance compared with the 

original UCP.  

Employing a continuous level of use case weighting enables us to enhance UCP accuracy through an 

optimization approach. Optimization stands out as a renowned approach for addressing continuous 

problems. The implementation of metaheuristic optimization in software effort estimation is called 

search-based software estimation (SBSE).  

The research focused on search-based software effort estimation has been employed in numerous 

studies [11].  For example, Cased-Based Reasoning (CBR) effort estimation has been optimized by using 

Genetic Programming (GP) [12], [13], Particle Swarm Optimization (PSO) [14], evolutionary-based 

algorithm [15]–[17], and hybrid PSO-SA [18]. Firefly [19], [20], PSO [21]–[24], GA [25], and DE [26] 

are employed to enhance the optimization of COCOMO effort estimation. Although the previous works 

succeeded in improving the utilization of the use case complexity weight by applying PSO [27] and 

MUCPSO [28], these two investigations were still hampered by prematur convergence and local 

optimum traps. In addition, these studies only use the PSO algorithm and do not investigate various 

alternative metaheuristic algorithms. 

Thus, this article extensively investigates various metaheuristic search-based models aimed at 

optimizing parameter values for the use case complexity weight. The methods under scrutiny encompass 

Genetic Algorithm (GA), Firefly Algorithm (FA), Reptile Search Algorithm (RSA), Particle Swarm 

Optimization (PSO), and Grey Wolf Optimizer (GWO). These metaheuristic algoritms are employed 

because they have more diverse characteristics as well as strengths and weaknesses to solve the particular 

optimization problem in search-based software effort estimation. For example, RSA and GWO are two 

algorithms based on encircling and hunting mechanisms. PSO and Firefly are algorithms based on large 

flocks of animals looking for food. Meanwhile, GA is an algorithm that adopts evolutionary theory. The 

experimental analysis was carried out using a publicly accessible UCP estimation dataset. The 

effectiveness of diverse metaheuristic search-based models has been assessed through various 

performance evaluation metrics. The findings and insights derived from these experiments can be 

instrumental in constructing ensemble models for UCP estimation. Moreover, the contribution of this 

presented work: our study involved a thorough exploration of five metaheuristic search-based models 

using unimodal and multimodal test functions, a novel approach that had not been previously undertaken 

in search-based software effort estimation field. 
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2. Related Works 
The examination of effort estimation in UCP research reveals three main trends: the refinement of 

the UCP sizing approach, the scrutiny and simplification of UCP, and the fusion of UCP with data 

mining and machine learning (MLDM) techniques.  

Numerous research works have suggested the overhaul of the UCP sizing method. Braz and Vergilio 

[29] adapted the use case complexity weight by applying fuzzy theory, and [28] effectively optimized this 

adjusted weight. In Robiolo and Orosco [30], two new variables, namely size-transactions and entity 

objects, were introduced and calculated based on the information in the use case description. The 

research presented by Mohagheghi et al. [31] has revised the assessment of actor complexity and 

addressed the consideration of non-functional requirements. This study made a significant contribution 

to enhancing the adaptability of UCP for incremental development approaches. Anda et al. [32],[33] 

examined and simplified the UCP better to comprehend the effects of technical and environmental 

complexity factors. The authors recommended fine-tuning the environmental factors according to the 

organization's type to enhance estimation accuracy. In contrast, Ochodek et al. [34], [35] omitted various 

segments of the UCP in order to simplify the UCP calculation process. The researcher contended that 

these sections are of negligible importance in effort estimation. In a recent development, Nhung et al. 
[36] enhanced the accuracy of the modified UCP by refinement of the environment complexity factors 

(ECF) and technical complexity factors (TCF) and employing a model of multiple regression for 

estimation. 

Recent years have witnessed the exploration of MDLM techniques to enhance the UCP’s 

performance. The introduction of a log-linear regression model [37] establishes relations between UCP, 

effort, and productivity factors. A hybrid model was introduced in a subsequent study referenced as in 

Ochodek et al.  [34]. This model concurrently predicts the PF and effort estimation by leveraging past 

projects. Similarly, Nassif et al. [38] calculated the effort required by utilizing team productivity and 

UCP with Treebost. 

The overarching objective of SEE research is to reduce the disparity between the real and predicted 

effort value. The rigidity weight level of the use case complexity has a notable influence on the accuracy 

of the estimation, as indicated by Nassif et al. [10]. Furthermore, it is worth noting that the initial 

complexity and assigned weight value may not accurately represent real-world scenarios, as suggested in 

Qi et al. [39]. Fortunately, this was previously validated by Karner [7], indicating that the suggested 

complexity weight is derived from the subjective assessment of individuals at Objective Systems. Karner 

[7] also emphasizes the need for additional data to refine parameters, models, and weights. The initial 

weight should not be considered the definitive and optimal weighting parameter. In simpler terms, it is 

crucial to have flexibility in granularity to establish the most appropriate weighting system and achieve 

the highest estimation performance. Three primary methodologies revolve around proposing 

improvements to the complexity weight of use cases: introducing additional weight levels, discretizing 

the existing scale, and calibrating in this way as outlined. 

Two critical parameters for SEE were introduced in  Silhavy and Silhavy [40]: the specifications of 

actors and the use case. At the same time, Nhung et al. [41] assessed TCF and ECF. To compute the 

number of transactions and automatically generate the class diagrams, Qi and Boehm [42] proposed 

USIM to determine the project size. Numerous studies have suggested incorporating additional 

complexity weight levels to account for factors that influence the level of complexity weight. Examples 

such as the nature of the application and the particular manner in which use cases are employed 

constitute two determinants affecting the degree of complexity weighting. Thus, it is advisable to re-

evaluate the complexity weight by specific circumstances. As part of their proposal, Galorath and Evans 

[43] introduced weight values of 10 for simple, 15 for average, and 20 for complex. In contrast, 

Periyasamy and Ghode [44] proposed “most complex” as an additional degree of complexity weight to 

enhance the complexity weight of the use case. Periyasamy and Ghode [44] suggested including an extra 

"critical" level in their proposal. An additional "very high" level for use cases with more than 14 

transactions was proposed [45], with corresponding weight assignments of 5, 10, 15, and 20. In contrast, 

on the other hand, three more complexity weights were introduced by Nassif [46]: 20, 25, and 30. 
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In order to reduce the existing level of complexity weights, a fuzzy approach is commonly used. This 

approach aims at reducing categorization abruption by gradually and continuously classifying them. Early 

attempts to discretize the established complexity weight levels were put forward by Xie at al., Wang et 
al., and Nassif et al. [8]–[10]. Wang et al. [9] expanded the complexity weight levels from three to five. 

They introduced the Extended Use Case Points (EUCP) by combining the theory of fuzzy logic and the 

Bayesian Belief Network (BBN). The outcomes indicated that the proposed EUCP outperformed UCP 

in the case of the two projects. Xie at al. [8] introduced the discretization degree of complexity weight 

that extended use-case complexity from 3 to 4. The outcomes of their study indicated that the suggested 

weight level demonstrated an increment of 5.5 person-hours, accompanied by a 15.45% margin of error, 

as determined from an analysis of four authentic project datasets. Nassif et al. [10] proposed ten levels 

of complexity weight based on the count of transactions associated with each use case. Their results 

showed a 22% improvement in particular projects concerning the proposed approach, assuming that ten 

transactions were covered by the most extensive use case and had a complexity factor 15. 

The investigation into UCP adjustment was initiated by Nassif et al. [47] and continued by Qi et al. 
[39]. In the work of Nassif et al. [47], a six-tier use case complexity weighting system was introduced as 

an alternative to the original three-tier weighting scheme outlined by Karner [7]. They used a neural 

network to calibrate these six proposed complexity weight levels. In order to cope with any sudden 

change in complexity levels and weights, Fuzzy Logic has been applied following successful calibration 

of the weights. Unfortunately, there was no evidence of any experimental results or model validation in 

this study. 

On the other hand, Qi et al. [39] delved into Bayesian analysis for calibrating use case weighting. As 

inputs, their study collected the weight of the use case and the empirical project data. The weighting of 

a priori-based use case is used to calculate the mean and variance. Simultaneously, empirical project data 

was utilized to calibrate the weights of the use case via a multiple linear regression process. In the last 

phase of this calibration procedure, the outcomes of the mean and variance were harnessed to compute 

the Bayesian weighted average, ultimately producing Bayesian weight estimations as the resulting output. 

This approach underwent assessment through data analysis from 105 projects, which was subsequently 

juxtaposed against a priori estimations, regression-based, and Karner’s UCP method. As a result, the 

Bayesian approach demonstrated superior accuracy in effort estimation. 

These methodologies have a broader option to enhance the complexity factor by expanding Karner’s 

UCP method, which has shown positive results by using continuous and incremented classification 

values. However, despite the endeavors of researchers referenced in Nhung et al. [36], Hoc et al. [48], 

and Hariyanto and Wahono [49] to enhance the performance of UCP, they did not delve into the 

possibilities associated with continuous complexity weight levels when optimizing functions. 

Metaheuristics optimization, renowned for its ability to handle continuous function optimization, can 

effectively mitigate abrupt complexity-level changes. While prior research has indeed succeeded in 

enhancing the utilization of use case complexity weight through the application of PSO [27] and 

MUCPSO [28], it is essential to note that these two studies have focused solely on the utilization of the 

PSO algorithm. They have not explored the potential benefits of various alternative metaheuristic 

algorithms. 

Therefore, this study comprehensively examines various metaheuristic search-based models to 

optimize the weights of use case complexity. The methods under investigation include genetic 

algorithms, firefly algorithms, reptile search algorithms, particle swarm optimization, and grey wolf 

optimizers. 

2.1. UCP 
The UCP method suggested by Karner [7] comprises seven steps, as summarized in Table 1. Firstly, 

calculate UAW (unadjusted actor weighting) and UUCW (unadjusted use case weighting) by classifying 

actors and use cases into three levels of complexity: Simple (1), Average (2), and Complex (3). The sum 

of UAW and UUCW yields unadjusted use case points (UUCP). Secondly, it calculates technical and 

environmental complexity factors. Finally, project size and estimated effort can be determined using 

these factors.  
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Table 1.  Use Case Points estimation parameters and formula 

Parameter Formula 

UAW 

𝑈𝑈𝑈𝑈𝑈𝑈 = ∑ 𝑊𝑊𝑖𝑖 × 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖3
𝑖𝑖=1 , where 𝑊𝑊𝑖𝑖 represents the weight factor, categorized as 1 for simple, 

2 for average, and 3 for complex actors. 

UUCW 

𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 = ∑ 𝑊𝑊𝑖𝑖 × 𝑈𝑈𝑈𝑈𝑖𝑖3
𝑖𝑖=1 , where 𝑊𝑊𝑖𝑖 represents a weight factor, classified as 5 for simple, 10 for 

average, and 15 for complex use cases, respectively. 

UUCP 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 = 𝑈𝑈𝑈𝑈𝑈𝑈 + 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈  

TCF 𝑇𝑇𝑇𝑇𝑇𝑇 = 0.6 + �0.01 × ∑ 𝑊𝑊𝑖𝑖 × 𝐺𝐺𝑖𝑖13
𝑖𝑖=1 �  

ECF 𝐸𝐸𝐸𝐸𝐸𝐸 = 1.4 + �−0.03 × ∑ 𝑊𝑊𝑖𝑖 × 𝐺𝐺𝑖𝑖8
𝑖𝑖=1 �  

Project Size 𝑈𝑈𝑈𝑈𝑈𝑈 = 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 × 𝑇𝑇𝑇𝑇𝑇𝑇 × 𝐸𝐸𝐸𝐸𝐸𝐸  

Estimated Effort 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 𝑈𝑈𝑈𝑈𝑈𝑈 × 𝑃𝑃𝑃𝑃, PF represents the productivity factor, and assigning a value of 20 

person-hours per UCP is possible.  

 

In addition to the original weight levels, Table 2 presents the complexity weight levels proposed by 

[6] and [46]. 
Table 2.  The original and modified use case complexity weight level 

Number of Use Case 
Transactions 

Original weight level Modified weight level 

1-2 5 5.00 

3 5 6.45 

4 10 7.50 

5 10 8.55 

6 10 10.00 

7 10 11.40 

8 15 12.50 

9 15 13.60 

>10 15 15.00 

2.2. Metaheuristic Algorithms 
2.2.1. Grey Wolf Optimizer 

The Grey Wolf Optimizer algorithm, introduced by Mirjalili et al. [50], is inspired by grey wolves' 

social structure and hunting behavior. Grey wolves in the wild operate within a hierarchical structure 

consisting of alpha, beta, delta, and omega wolves, each with distinct roles in the pack. These roles are 

translated into the GWO algorithm's search mechanisms to explore and exploit the solution space 

effectively. The GWO algorithm begins with an initial population of grey wolves, where each wolf 

represents a potential solution to the optimization problem. The algorithm iteratively updates the 

positions of the wolves to converge towards an optimal solution as shown in Algorithm 1 (Fig. 1). 
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16 

Generate initial grey wolf population 𝐱𝐱𝑖𝑖(𝑖𝑖 = 1, 2, … ,𝑛𝑛) 

Initialize 𝑎𝑎, 𝐴𝐴, and 𝐶𝐶 

Calculate the fitness value of each wolf 

𝑋𝑋𝛼𝛼 = 𝑡𝑡ℎ𝑒𝑒 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤  

𝑋𝑋𝛽𝛽 = 𝑡𝑡ℎ𝑒𝑒 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑢𝑢𝑢𝑢 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤  

𝑋𝑋𝛿𝛿 = 𝑡𝑡ℎ𝑒𝑒 𝑡𝑡ℎ𝑖𝑖𝑖𝑖𝑖𝑖 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤  

While (𝑡𝑡 < max number of iterations) 

   For each wolf 

      Update the position of the current wolf 

   End for 
   Update 𝑎𝑎, 𝐴𝐴, and 𝐶𝐶 

   Compute the fitness value of all wolf 

   Update 𝑋𝑋𝛼𝛼, 𝑋𝑋𝛽𝛽, dan 𝑋𝑋𝛿𝛿 

   𝑡𝑡 = 𝑡𝑡 + 1 

end while 
return 𝑋𝑋𝛼𝛼 

Fig. 1.  Grey wolf optimizer pseudocode 
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2.2.2. Particle Swarm Optimizer 

PSO drew inspiration from the behavior of birds flocking and fish schooling in search of locations 

with an ample food supply [25]. PSO begins by randomly generating a population based on swarm size 

parameters. This population comprises N particles, with each particle i representing a potential solution 

to the problem. Each individual particle is represented by the vector 𝑥𝑥𝑖𝑖 in the decision space and possesses 

both position (𝑥𝑥) and velocity (𝑣𝑣) attributes, as indicated in Eq. (1) and Eq. (2). 

𝑣𝑣𝑖𝑖 = 𝜔𝜔𝑣𝑣𝑖𝑖 + 𝐶𝐶1𝑅𝑅1 × (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖 − 𝑥𝑥𝑖𝑖) + 𝐶𝐶2𝑅𝑅2 × (𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑖𝑖 − 𝑥𝑥𝑖𝑖)   (1) 

𝑥𝑥𝑖𝑖+1 = 𝑥𝑥𝑖𝑖 + 𝑣𝑣𝑖𝑖   (2) 

where 𝑣𝑣𝑖𝑖 represents the current or initialized velocity of the particle, which is endowed with a random 

number value falling within the interval [0, 1] at the onset of the population generation process. 

Constants 𝐶𝐶1 and 𝐶𝐶2, cognitive and social learning factors, remain unchanging throughout the 

computation. 𝑅𝑅1 and 𝑅𝑅2 are stochastic variables defined within the [0, 1] range. 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖 represents the 

most optimal position attained by particle 𝑖𝑖, while 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑖𝑖 represents the overall best position achieved 

by the entire ensemble particles. Lastly, 𝑥𝑥𝑖𝑖 is used to denote the present position of the particle. 

Additionally, 𝜔𝜔 is an inertia weight, a constant value set to 0.9. Algorithm 2 outlined the PSO in pseudo-

code format to provide a schematic representation of the algorithm (Fig. 2). 
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Generate initial population 𝐱𝐱𝑖𝑖(𝑖𝑖 = 1, 2, … ,𝑛𝑛) 

Gbest = maximum fitness value of particle in population 

Pbests = initial population 

While t < max iterations 

   For each particle in the population 

      Update velocity 

      Update position 

      Update particle 

      Update pbest 

   End for 

   Updated population 

   Update gbest 

End while 

Return gbest 

Fig. 2.  Particle swarm optmization pseudocode 

2.2.3. Firefly 

The Firefly Algorithm (FA) [51], [52] draws inspiration from the idealized behavior of fireflies' 

flashing characteristics. These flashing characteristics can be simplified into the following three rules for 

ease of understanding: 

• In the FA, all fireflies are considered unisex, meaning that one firefly is attracted to other fireflies 

irrespective of their gender. 

• In the FA, the attractiveness of a firefly is directly proportional to its brightness. Therefore, 

comparing two flashing fireflies, the less bright one will move toward the brighter one. This 

attractiveness is influenced by brightness, and both attractiveness and brightness decrease as the 

distance between fireflies increases. If no firefly is found to be brighter than a particular firefly, it will 

move randomly. 

• The brightness or light intensity of a firefly is influenced or determined by the characteristics of the 

objective function landscape that is being optimized. 

The light intensity 𝐼𝐼(𝑟𝑟) changes monotonically and exponentially with distance 𝑟𝑟. This relationship 

can be expressed as: 

𝐼𝐼 = 𝐼𝐼0𝑒𝑒−𝛾𝛾𝛾𝛾   (3) 
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where the original light intensity is 𝐼𝐼0 and the light absorption coefficient is 𝛾𝛾. The attractiveness β of 

a firefly can be defined based on the light intensity seen by neighboring fireflies. This relationship is 

expressed as follows: 

𝛽𝛽 = 𝛽𝛽0𝑒𝑒−𝛾𝛾𝑟𝑟
2
   (4) 

where the attractiveness at 𝑟𝑟 = 0 is 𝛽𝛽0 plays a crucial role in this definition. It is important to note 

that the exponent 𝛾𝛾𝛾𝛾 can be replaced with other functions, such as 𝛾𝛾𝛾𝛾𝑚𝑚 when 𝑚𝑚 > 0. In summary, 

Algorithm 3 outlined the FA in pseudo-code format to provide a schematic representation of the 

algorithm (Fig. 3). 
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14 

15 

16 

Initialize a population of fireflies 𝐱𝐱𝑖𝑖(𝑖𝑖 = 1, 2, … ,𝑛𝑛) 

γ = Coefficient of light absorption 

while (t < MaxGeneration) 

   for i = 1:n all n fireflies 

      for j = 1:i all n fireflies 

         light intensity 𝐼𝐼𝑖𝑖 at 𝐱𝐱𝑖𝑖 is calculated using 𝑓𝑓(𝐱𝐱𝑖𝑖) 

         if (𝐼𝐼𝑖𝑖 > 𝐼𝐼𝑗𝑗) 
            Move firefly i towards j in all d dimensions 

         end if 

         attractiveness varies with distance r via exp[−𝛾𝛾𝛾𝛾] 
         evaluate new solutions and update light intensity 

      end for j 

   end for i 

   Rank the fireflies and find the current best 

end while 

return the best firefly 

Fig. 3.  Firefly algorithm pseudocode 

2.2.4. Genetic Algorithm 

The Genetic algorithms first proposed by Holland [53] encompass the following fundamental 

processes: 1) encoding the objective or optimization functions, 2) establishing a fitness function or 

selection criteria, 3) generating a population of individuals, 4) cycling through evolution iterations, which 

involve evaluating the fitness of all individuals in the population, creating a new population through 

actions such as crossover, mutation, and fitness-proportionate reproduction, replacing the old 

population, and iterating once more using the new population; 5) decode the outcomes acquired from 

the solution to the problem. These steps can be represented schematically in the pseudo-code of genetic 

algorithms, as illustrated in Algorithm 4 (Fig. 4). 
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Define an objective function 𝑓𝑓(𝒙𝒙),𝒙𝒙 = (𝑥𝑥1, … , 𝑥𝑥𝑛𝑛)𝑇𝑇 

Translate the solution into chromosome representations. 

Initialize GA parameters: number of chromosomes, number of generations, mutation rate (mr), crossover 

rate (cr), etc 

Generate the initial population 

While (t < number of generations) 

   Generate fresh solution through a combination of crossover and mutation 

   If cr > rand, Crossover; end if 

   If mr > rand, Mutate; end if 

   If fitness value increases, accept the new solution 

   Select the current best solution for the next generation 

End while 

Return the best solution 

Fig. 4. Genetic algorithm pseudocode 
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2.2.5. Reptile Search Optimizer 

The optimization process starts with the creation of a randomly selected set of candidate solutions 

that will be used to form an early population at RSA. Throughout the repetition trajectory, the search 

mechanisms of RSA systematically explore potential positions in search of near-optimal solutions. In 

this pursuit, each solution adjusts its positions based on the processes outlined in the RSA algorithm, 

potentially replacing its positions with those from the best-obtained solution found thus far. 

The search procedures are classified as two primary methods of exploration and exploitation to ensure 

balance in both exploration and exploitation.  Exploration is based on a strategy of high or belly walking 

and exploitation based on hunting coordination or cooperation. The potential candidates use these 

strategies to widen the search area when 𝑡𝑡 ≤ and seek to converge with near-optimal solutions if 𝑡𝑡 > 𝑇𝑇
2
. 

In the initial exploration phase, the high walking movement strategy is employed when 𝑡𝑡 ≤ 𝑇𝑇
4
. 

Subsequently,  as t progresses and reaches between 𝑡𝑡 ≤ 2 𝑇𝑇
4

and 𝑡𝑡 > 𝑇𝑇
4
, the belly walking movement 

strategy is adopted. During the exploitation phase, the hunting coordination strategy is put into action 

when it falls within the range of 𝑡𝑡 ≤ 3 𝑇𝑇
4

and 𝑡𝑡 > 2 𝑇𝑇
4
. In contrast,  the hunting cooperation strategy is 

deployed when 𝑡𝑡 <  𝑇𝑇 and 𝑡𝑡 > 3 𝑇𝑇
4
. The RSA shall cease to operate as soon as it complies with the 

applicable termination criteria. In Algorithm 5 (Fig. 5), a pseudocode is provided for the proposed RSA 

algorithm. 
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Initialize RSA parameters 𝛼𝛼,𝛽𝛽, etc 

Initialize reptile population 𝐱𝐱𝑖𝑖(𝑖𝑖 = 1, 2, … ,𝑁𝑁) 

While (𝑡𝑡 <  𝑇𝑇) 

   Calculate fitness value for all reptile 

   Find the best fitness value of all reptiles so far 

   Update Evolutionary Sense (ES) 

   For (𝑖𝑖 = 1 to 𝑁𝑁) do 

      For (𝑗𝑗 = 1 to 𝑁𝑁) do 

         Update the 𝜂𝜂,𝑅𝑅,𝑃𝑃, and values, respectively 

         If �𝑡𝑡 ≤ 𝑇𝑇
4
� then 

            Update reptile using a high walking procedure 

         Else if �𝑡𝑡 ≤ 2 𝑇𝑇
4

and 𝑡𝑡 > 𝑇𝑇
4
� then 

            Update reptile using belly walking procedure 

         Else if �𝑡𝑡 ≤ 3 𝑇𝑇
4

and 𝑡𝑡 > 2 𝑇𝑇
4
� then 

            Update reptile using hunting coordination procedure 

         Else 

            Update reptile using hunting cooperation procedure 

         End if 

      End for 𝑗𝑗 
   End for 𝑖𝑖 
End while 

Return best reptile (𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑋𝑋)) 

Fig. 5.  Reptile Search Optimize pseudocode 

3. Method 
The objective of effort estimation is to reduce the disparity in accuracy between the actual effort and 

the estimated effort, as denoted in Eq. 5. Hence, Fig. 6 illustrates the proposed method of this study. 

As depicted in the figure, the complexity weighting comprises two primary elements: actors and use 

cases. Optimization in the use case component is performed individually using metaheuristic algorithms, 

including GWO, PSO, GA, RSA, and FA. Each algorithm will search the use case complexity weight 

that provide optimal result according to the allowed weight range. The results of these optimizations for 

actors and use cases are combined to generate the Unadjusted Use Case Points (UUCP). 
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Additionally, in conjunction with complexity factors (TCF and ECF), the actors and use cases 

contribute to the calculation of software size, specifically in UCP metric units. Subsequently, the 

obtained software size is multiplied by the PF (Productivity Factor) parameter to derive the estimated 

effort value, expressed in person-hour units. A detailed description of methods including dataset and 

evaluation techniques used is discussed specifically in section 3.1, 3.2, and 3.3. 

 

Fig. 6. The proposed model 

3.1. Experimental Design 
Fig. 7 shows the complete experimental design flow. The experimental design is provided to outline 

the details of the experiment at each stage. The dataset is divided into two, namely training data and test 

data. Test data is only taken for one instance. This means that each project will definitely become test 

data. This is in accordance with the validation method used, namely Leave one out cross validation. 

Each test data consists of seven attributes or effort drivers as shown in Table 3. The UUWC value is 

generated by the summation function of multiplying the use case weights with the Simple, Average, and 

Complex attributes. The weight of the three use case will be determined using the five metaheuristic 

algorithms. The weight that gives optimum results is then used to calculate UUCP and estimated effort. 

The estimated effort is then compared with the actual results in order to calculate the accuracy 

performance. 

 

Fig. 7. Experimental design flow 
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3.2. Dataset 
This research utilized historical project data derived from three actual software companies. Seventy-

one projects collected by Silhavy [54] constitute the dataset for this project. The dataset encompasses 

various problem domains, including insurance, government, banking, etc. The dataset comprises a total 

of thirty-eight (38) effort drivers. For this study, we utilized seven (7) effort drivers and excluded the 

remainder. The comprehensive set of effort drivers encompasses simple, average, and complex use case 

(UC), technical and environmental complexity factors, UAW, and actual effort. These effort drivers were 

selected based on their significant influence within the UCP estimation methodology, as outlined in 

Table 1. Most projects were executed utilizing programming languages such as Java and C#. Summary 

statistics for the project dataset are provided in Table 3. 

Table 3.  Descriptive statistics for a dataset of 71 projects 

Effort Driver Avg StDev Skewness Kurtosis Max Min 
Simple 2.7 2.9 3.29 17.658 20 0.00 

Average 15.84 5.37 0.296 0.140 30 3.00 

Complex 14.29 4.45 0.191 -0.290 27 5.00 

UAW 10.49 5.01 0.803 -1.264 19 6.00 

TCF 0.92 0.114 -0.269 -1.019 1.12 0.71 

ECF 0.86 0.117 -0.556 0.861 1.09 0.51 

Actual Effort 6558.72 664.24 0.574 -0.922 7970 5775 

 

Referring to Table 3 reveals distinct distributions among the variables under consideration. UC-

Average, UC-Complex, and TCF exhibit distribution patterns that closely resemble a normal 

distribution, as evidenced by their skewness values approaching zero. Conversely, UC-Simple deviates 

from a normal distribution, with its skewness significantly deviating from zero. Notably, the UC-

Complex variable demonstrates a relatively wider distribution, indicated by a kurtosis value of -0.290. At 

the same time, UC-Simple displays a leptokurtosis curve, indicated by its substantially high kurtosis 

value of 17.658. It is important to note that a kurtosis value below three suggests a lower susceptibility 

to outliers. Only UC-Simple surpasses this threshold among the mentioned variables, indicating a higher 

susceptibility to outliers. This infers that Average, Complex, UAW, TCF, ECF, and Actual Effort 

variables are comparatively less prone to outlier effects. Notably, the majority of the project use cases are 

of average complexity. This highlights that the Average variable has a mean and maximum value that is 

broader in range compared to the Simple and Complex effort drivers. 

3.3. Model Validation and Evaluation 
In this study, model validation was carried out utilizing the Leave-One-Out Cross-Validation 

(LOOCV) technique. LOOCV involves partitioning each dataset into n-1 folds for training data and 

one-fold for testing data. LOOCV was chosen due to its lower conclusion instability resulting from 

random selection in training and testing data, in contrast to the potential instability experienced in k-

fold, 3-way, and 10-way techniques [55].  The comprehensive list of model performance evaluation 

formulas is presented in Table 4. 

Table 4.  Performance measurement list 

Measure Formula 
Absolute error (AE) AE = |y𝑖𝑖 − y�𝑖𝑖|   

Mean absolute error (MAE) MAE = 1
𝑛𝑛
∑ AE𝑖𝑖𝑛𝑛
𝑖𝑖=1   

Mean balance relative error MBRE = 1
𝑛𝑛
∑ AE𝑖𝑖

min(y𝑖𝑖,y�𝑖𝑖)
𝑛𝑛
𝑖𝑖=1   

Mean inverted balance relative error MIBRE = 1
𝑛𝑛
∑ AEi

max(y𝑖𝑖,y�𝑖𝑖)
𝑛𝑛
𝑖𝑖=1   

Standardized accuracy [56], [57] SA𝑃𝑃𝑗𝑗 = 1 − �
MAE𝑃𝑃𝑗𝑗
𝑀𝑀𝑀𝑀𝑀𝑀𝑃𝑃0�����������  x 100  

Effect size [56], [57] Δ =
MAE𝑃𝑃𝑗𝑗−MAE�������𝑃𝑃0

S𝑃𝑃0
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The performance of the estimation model was assessed using a variety of measurements. In this study, 

six measurement metrics were employed: absolute error (AE), mean absolute error (MAE), mean balance 

relative error (MBRE), mean inverted balance relative error (MIBRE), standardized accuracy, and effect 

size. These performance metrics were chosen due to their non-biased nature, in contrast to metrics such 

as mean squared error (MSE), mean absolute percentage error (MAPE), and prediction accuracy (PRED) 

that have been known to exhibit bias in their results [56], [57]. 

Based on Table 4, y𝑖𝑖 and y�𝑖𝑖 represent the actual and estimated effort for the i-th project, respectively. 

MAE𝑃𝑃𝑗𝑗 denotes the Mean Absolute Error (MAE) value generated by the j-th estimation model, such as 

FA+UCP, RSA+UCP, etc. Meanwhile, 𝑀𝑀𝑀𝑀𝑀𝑀𝑃𝑃0���������
 is obtained from the random guessing technique, and 

S𝑃𝑃0 represents the standard deviation produced by the 𝑃𝑃0 model. 

3.4. Problem Formulation 
This section presents the mathematical formulation of the optimization problem in UCP estimation. 

The objective function in UCP estimation is the minimum absolute error (MAE) between the estimated 

effort and the actual effort as follows: 

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑁𝑁
∑ |𝑦𝑦�𝑖𝑖 − 𝑦𝑦𝑖𝑖|𝑁𝑁
𝑖𝑖=1    (5) 

Subject to: 

𝑦𝑦�𝑖𝑖 = 20 × 𝑈𝑈𝑈𝑈𝑈𝑈   (6) 

𝑈𝑈𝑈𝑈𝑈𝑈 = 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 × 𝑇𝑇𝑇𝑇𝑇𝑇 × 𝐸𝐸𝐸𝐸𝐸𝐸   (7) 

𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 = 𝑈𝑈𝑈𝑈𝑈𝑈 + 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈   (8) 

𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 = ∑ 𝑤𝑤𝑖𝑖 × 𝑈𝑈𝑈𝑈𝑖𝑖3
𝑖𝑖=1    (9) 

5 ≤ 𝑈𝑈𝑈𝑈1 ≤ 7.49   (10) 

7.5 ≤ 𝑈𝑈𝑈𝑈2 ≤ 12.49   (11) 

12.5 ≤ 𝑈𝑈𝑈𝑈3 ≤ 15   (12) 

where the value of 𝑦𝑦𝑖𝑖, TCF, ECF, and UAW taken from the data set, and 𝑤𝑤𝑖𝑖 with values of 5, 10, and 

15 respectively. 

4. Results and Discussion 
The experimental results are described in two parts. First are the evaluation results of 12 benchmark 

functions, and second are the experimental results of metaheuristic optimization on UCP. Furthermore, 

the parameter settings should be determined based on the best-performing or commonly used 

configurations in Table 5 to ensure a fair comparison between algorithms. 

Table 5.  Parameter settings of five metaheuristic algorithms 

Algorithm Parameters 

Grey Wolf Optimizer (GWO) [58] PopSize = 100, 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚= 20 

Firefly Algorithm (FA) [59] PopSize = 20, 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚= 20, α = 0.5, 𝛽𝛽𝑚𝑚𝑚𝑚𝑚𝑚 = 0.2, β = 1, γ = 1 

Particle Swarm Optimization (PSO) PopSize = 70, 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 = 20, 𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚 = 0.9, 𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚 = 0.4, 𝐶𝐶1 = 2, 𝐶𝐶2 = 2 

Genetic Algorithms (GA) PopSize = 20, 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚= 20, Cr=0.25, Mr=0.1 

Reptile Search Optimizer (RSA) [60] PopSize = 30, 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚= 20, α = 0.1, β = 0.1 
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4.1. Evaluation of Classic Benchmark Functions 
In order to assess the exploitation and exploration potential of optimization algorithms, 12 

benchmark functions, consisting of six unimodal and six multimodal functions, are used in this study. 

An overview of the benchmark functions, including their functions names, types, dimensions, ranges, 

and 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 value is given in Table 6. Additionally, their two-dimensional representations are depicted in 

Fig. 8.  

Table 6.  The benchmark functions: F1-F6 for unimodal, and F7-F12 for multimodal 

Functions Type Dim Range 𝒇𝒇𝒎𝒎𝒎𝒎𝒎𝒎 
F1 Sphere Unimodal 30 [-100, 100] 0 

F2 Schwefel 2.22 Unimodal 30 [-10, 10] 0 

F3 Schwefel 1.2 Unimodal 30 [-100, 100] 0 

F4 Schwefel 2.21 Unimodal 30 [-100, 100] 0 

F5 Rosenbrock Unimodal 30 [-30, 30] 0 

F6 Step Unimodal 30 [-100, 100] 0 

F7 Quartic Noise Multimodal 30 [-1.25, 1.28] 0 

F8 Schwefel 2.26 Multimodal 30 [-500, 500] −418.9829 × Dim 

F9 Rastrigin  Multimodal 30 [-5.12, 5.12] 0 

F10 Ackley Multimodal 30 [-32, 32] 0 

F11 Griewank Multimodal 30 [-600, 600] 0 

F12 Penalized Multimodal 30 [-50, 50] 0 

 

There are six benchmark functions, labeled with ID and function names F1-F6, which are unimodal 

and are employed to assess the exploitation ability. Subsequently, six benchmark functions, denoted by 

ID and function names F7-F12, are considered multimodal, featuring numerous local optima that 

increase as the dimensionality grows. These functions are utilized to evaluate the exploration capability. 

    

F1 Sphere F2 Schwefel 2.22 F3 Schwefel 1.2 F4 Schwefel 2.21 

    

F5 Rosenbrock F6 Step F7 Quartic Noise F8 Schwefel 2.26 

    

F9 Rastrigin F10 Ackley F11 Griewank F12 Penalized 

Fig. 8. Twelve classic benchmark functions F1 to F12 
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Table 7 provides an overview of the assessment results pertaining to four metrics: the best optimal 

solution, the least favorable solution, the average solution, and the standard deviation (STD). 

Table 7.  Comparison of FA, GA, GWO, PSO, and RSA for 12 benchmark functions 

Functions Metric FA GA GWO PSO RSA 
F1 Sphere Best 5.60E+04 5.41E+04 5.83E-24 2.80E+05 0.00 

Worst 8.52E+04 9.42E+04 6.28E-21 3.00E+05 8.42E-26 

Mean 6.77E+04 7.67E+04 1.31E-21 2.87E+05 4.63E-27 
STD 7576.46 10078.89 1.84E-21 4572.47 1.71E-26 

F2 Schwefel 2.22 Best 1.84E+02 3.13E+02 1.32E-21 5.63E+02 3.63E-57 

Worst 2.27E+02 2.13E+02 6.83E-14 5.83E+02 1.00E-08 

Mean 2.10E+02 2.53E+02 5.11E-15 5.76E+02 1.67E-09 

STD 10.99 26.66 1.36E-14 6.59 3.73E-09 

F3 Schwefel 1.2 Best 7.40E+05 5.63E+05 4.13E-24 4.15E+06 0.00E+00 

Worst 1.23E+06 1.39E+06 5.80E-21 4.52E+06 7.38E-22 

Mean 1.04E+06 1.09E+06 1.13E-21 4.34E+06 2.58E-23 
STD 120362.33 224568.22 1.51E-21 103173.77 1.32E-22 

F4 Schwefel 2.21 Best 8.21E+01 8.36E+01 1.28E-20 1.00E+02 0.00E+00 

Worst 8.88E+01 9.79E+01 6.48E-15 1.00E+02 2.45E-21 

Mean 8.61E+01 9.12E+01 4.65E-16 1.00E+02 1.89E-22 
STD 1.99 3.97 1.32E-15 0 5.83E-22 

F5 Rosenbrock Best 1.45E+08 2.07E+08 2.87E+01 2.12E+09 2.88E+01 

Worst 2.63E+08 4.10E+08 2.90E+01 2.36E+09 2.90E+01 

Mean 2.17E+08 2.93E+08 2.89E+01 2.23E+09 2.90E+01 
STD 26225079.4 48752581 0.078 59548404 0.04 

F6 Step Best 5.92E+04 5.43E+04 7.13E-01 2.82E+05 7.24E+00 

Worst 8.64E+04 9.09E+04 7.50E+00 3.00E+05 7.50E+00 

Mean 7.19E+04 7.34E+04 5.38E+00 2.89E+05 7.37E+00 

STD 7046.94657 9133.95 2.33 4186.15 0.12 

F7 Quartic Noise Best 3.08E+09 2.31E+09 1.07E+01 4.12E+10 9.32E+00 

Worst 6.02E+09 7.94E+09 1.36E+01 4.65E+10 1.12E+01 

Mean 4.69E+09 5.36E+09 1.25E+01 4.38E+10 1.03E+01 
STD 807671301 147885086 0.75 1.21E+09 0.49 

F8 Schwefel 2.26 Best 2.52E-02 2.01E+00 -8.88E-05 -2.02E+03 -3.74E-05 

Worst 4.15E+00 1.52E+03 1.35E-16 1.57E+03 0.00E+00 

Mean 1.44E+00 1.39E+02 -1.20E-05 3.27E+01 -2.54E-06 
STD 1.27 307.87 2.46E-05 828.31 7.23E-06 

F9 Rastrigin  Best 3.50E+02 3.72E+02 0.00E+00 8.14E+02 0.00E+00 

Worst 4.24E+02 5.35E+02 0.00E+00 8.68E+02 0.00E+00 

Mean 3.86E+02 4.62E+02 0.00E+00 8.40E+02 0.00E+00 
STD 19.46 44.01 0 11.26 0 

F10 Ackley Best 5.80E+02 5.88E+02 2.91E+01 6.10E+02 2.91E+01 

Worst 6.26E+02 6.52E+02 2.91E+01 6.29E+02 2.91E+01 

Mean 6.06E+02 6.29E+02 2.91E+01 6.16E+02 2.91E+01 
STD 11.65 14.17 0 6.21 0 

F11 Griewank Best 6.96E+02 6.66E+03 1.64E+00 3.67E+04 3.73E+01 

Worst 1.08E+04 1.30E+04 5.80E+03 4.16E+04 1.27E+04 

Mean 7.41E+03 9.57E+03 2.80E+02 3.91E+04 4.07E+03 

STD 2709.47 1488.27 1031.02 977.02 3213.44 

F12 Penalized Best 4.85E+04 2.57E+06 2.71E+02 -2.18E+11 3.60E+00 

Worst 3.99E+07 1.69E+10 2.71E+02 6.40E+10 2.71E+02 

Mean 1.23E+07 2.28E+09 2.27E+02 -2.86E+10 1.94E+02 
STD 11486247.2 433100633 76.47 6.63E+10 98.40 

 

Based on Table 7, GWO performs better than any of the metaheuristics algorithms in applying to a 

subset of functions with ID values F2 and F6, given that it is based on two quantitative metrics, namely 

mean solution and STD, from 6 unimodal functions designed as F1 to F6. Meanwhile, RSA outperforms 

all other algorithms in the F1, F3, F4, and F5 test functions. 
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Subsequently, the analysis of six multimodal functions, identified as F7 through F12, reveals that the 

RSA method consistently surpasses its competing counterparts. Specifically, it attains significantly 

reduced mean solutions for functions F7, F8, F9, F10, and F12. RSA exhibits suboptimal performance 

solely when confronted with the F11 function, wherein GWO demonstrates superior capabilities for this 

specific function. 

Similar benchmarking has been carried out by Yang [51], which shows that FA is superior to PSO 

and GA in the Schwefel, Rosenbrock, Ackley, Rastrigin, and Griewank test functions. These results are 

the same as the results obtained in this study. However, when faced with relatively new algorithms, 

namely RSA and GWO, it turns out that FA's performance is inferior to both. This is due to RSA's 

exploration ability, which uses two techniques: high walk and belly walk. Likewise, two other techniques 

are used in the exploitation phase: hunting coordination and cooperation. These four techniques produce 

great diversity. In addition, the stochastic coefficients of GWO produce dense solutions to exploit the 

optimal solution area. 

4.2. Evaluation of Empirical Results 
This section presents the empirical findings derived from our experimental configuration, 

encompassing model validation and assessment. A higher SA value signifies an estimation model's 

robustness and statistical significance. A more excellent effect size value indicates a reduced likelihood 

that the predictive model was derived by random chance. To address these considerations, we pose two 

research questions (RQ): 

RQ1: To what extent is 𝑃𝑃𝑖𝑖 superior to 𝑃𝑃0? 

RQ2: To what extent do FA+UCP, GA+UCP, GWO+UCP, PSO+UCP, and RSA+UCP outperform 

the Karner+UCP model? 

4.2.1. RQ1: The performance of 𝑷𝑷𝒊𝒊 versus 𝑷𝑷𝟎𝟎 
The five models underwent validation through the assessment of (SA) and ES (Δ), with the baseline 

model being random guessing (𝑃𝑃0). As provided in Table 8, all models achieved SA values superior to 

random guessing, with FA+UCP achieving the highest SA value. This demonstrates that these models 

were engaged in prediction rather than random guessing, as they consistently outperformed random 

guessing. As a result, within the framework of this investigation, these models produced meaningful and 

reliable predictions. 

On the contrary, all models displayed notably superior ES measurements compared to 𝑃𝑃0. FA+UCP, 

GA+UCP, GWO+UCP, PSO+UCP, and RSA+UCP demonstrated substantial effect size improvements. 

Thus, we can confidently assert that the emergence of these five models was not a result of random 

chance. The significance test rendered inconclusive results for all six null hypotheses, as p-values were 

below the 0.05 threshold. 

Table 8.  The outcomes of SA, Δ, and Sig. are assessed relative to a baseline model of 𝑃𝑃0 

Algorithm SA ES  Sig. 
FA+UCP 99.7337849077717 1.7306198385471399 0.00 (p < 0.05) 

GA+UCP 99.70517937608656 1.729459431930611 0.00 (p < 0.05) 

GWO+UCP 99.71166481163766 1.7315092038540898 0.00 (p < 0.05) 

PSO+UCP 99.71243041125878 1.7279026606546029 0.00 (p < 0.05) 

RSA+UCP 99.72075459687476 1.7289635371943752 4.2 p < 0.05) 

 

4.2.2. RQ2: The performance of FA+UCP, GA+UCP, GWO+UCP, PSO+UCP, and RSA+UCP 
versus Karner+UCP model 

The validation process of the five models was conducted using the Karner+UCP model as the 

reference point. The selection of the Karner model is based on its significance as a fundamental reference 

in the realm of effort estimation studies utilizing the UCP approach. Numerous prior studies, such as 
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those conducted by Azzeh and Nassif [61], Silhavy et al. [54],  [62], and Nassif et al. [37], have employed 

the Karner model for comparative purposes in their investigations. 

Based on Table 9, concerning the effect size, it is worth highlighting that all the models exhibited 

substantially more significant effect size enhancements than the Karner+UCP model. These 

enhancements exceeded the thresholds indicative of medium to significant effects, which can be 

practically meaningful. Consequently, we can confidently assert that these five models did not arise by 

chance since the significance test yielded rejection for all four null hypotheses. 

Table 9.  SA, Δ, and Sig. results are evaluated with the baseline model being Karner+UCP 

Algorithm Standardized Accuracy Δ Sig. 
FA+UCP 44.17589661527976  0.6380015048902027 0.00 (p < 0.05) 

GA+UCP 38.891466757195836  0.5616821891487283 0.00 (p < 0.05) 

GWO+UCP 38.736842824674646  0.5594490640918746 0.00 (p < 0.05) 

PSO+UCP 39.97863138376142  0.5773833456833154 0.00 (p < 0.05) 

RSA+UCP 41.60756357990875 0.6009088714141645 0.00 (p < 0.05) 

 

Next, we assess the performance of all models to determine the optimum solution obtained for the 

estimated UCP effort. Table 10 provides an overview of the examination results, assessed using six key 

metrics: the best optimal solution, the least favorable solution, the average solution, the standard 

deviation (STDev), MBRE, and MIBRE. The following sections further elaborate on these metrics to 

comprehensively understand the results. In the context of UCP estimation, FA+UCP delivers the best 

solution among all the algorithms. However, when considering the worst and mean solution metrics, 

GA+UCP performs the worst and highest mean solution. This discovery is consistent with previous 

research [28], which also demonstrated that the GA+UCP algorithm performed inadequately in UCP 

effort estimation. 

Table 10.  Comparison of FA+UCP, GA+UCP, GWO+UCP, PSO+UCP, and RSA+UCP for UCP estimation 

method 

Method Best Worst Mean Median StDev MBRE MIBRE 
FA+UCP 1008.4625 1008.5421 1008.4916 753.59 0.019 0.2689 0.1541 
GA+UCP 1084.5897 1128.3754 1108.6966 826.87 8.3154 0.3123 0.1701 

GWO+UCP 1082.8284 1123.9388 1100.0671 821.24 10.8890 0.3057 0.1680 

PSO+UCP 1069.7307 1107.0869 1090.2106 771.72 8.7341 0.2821 0.1663 

RSA+UCP 1054.8891 1055.4724 1054.9256 753.59 0.1368 0.2764 0.1613 

 

Table 10 shows that the FA+UCP has performed better than the existing algorithms regarding 

different key metrics, but these results need validation. In this section, a statistical analysis was carried 

out to examine the characteristics of various algorithms. The Wilcoxon rank-sum test was utilized to 

assess the comparative effectiveness of the algorithms employed in this investigation. The selection of 

the Wilcoxon rank-sum test was based on the fact that the experimental data used for this analysis does 

not need to adhere to any specific distribution and has less effect caused by outliers [63]. The Wilcoxon 

test results for all algorithms are shown in Table 11. The table shows that the p-values for most 

algorithms except GWO+UCP versus GA+UCP are less than 0.05. Hence, we can conclude that the 

FA+UCP algorithm has significantly improved over other existing algorithms. 

Table 11.  The p-value results from the Wilcoxon-rank sum statistical test for each metaheuristic optimization 

algorithm, along with Friedman mean rank (FMR) 

 FA+UCP GA+UCP GWO+UCP PSO+UCP RSA+UCP 
FA+UCP  3.007E-13 2.4298E-13 0.000060 0.000196 

GA+UCP 3.007E-13  0.237863 0.006960 0.002346 

GWO+UCP 2.4298E-13 0.237863  0.010603 0.005171 

PSO+UCP 0.000060 0.006960 0.010603  0.005062 

RSA+UCP 0.000196 0.002346 0.005171 0.005062  

FMR 1.73 3.94 4.10 2.76 2.66 
Rank 1 4 5 3 2 
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Fig. 9 presents a plot showing the actual and estimated effort values between FA+UCP and 

Karner+UCP models. The x-axis represents the project instance, while the y-axis represents the value of 

effort. The continuous black line represents the value of actual effort, while the dotted blue and orange 

represent the estimated effort value produced by FA+UCP and Karner+UCP models. In all cases, the 

models aim to produce estimated values that closely align with the actual effort values. When the dotted 

blue or orange approaches and aligns with the solid black line, it indicates an accurate estimation by the 

model. As evident from the results, it can be observed that FA+UCP exhibits the highest proximity to 

the actual regression line, implying that the model was estimated with the highest degree of accuracy. 

FA+UCP closely approximates the regression line, indicating that the model has been estimated with 

the highest degree of precision. 

 

Fig. 9. The plot showing both the actual and estimated effort values between FA+UCP and Karner+UCP 

models 

In order to assess whether the optimization method is effective in finding optimum solutions for 

UCP functions, further detailed analysis has been carried out. The convergence behavior comparison of 

each optimization method from test data number 3 is shown in Fig. 10. The comparison reveals that 

FA+UCP and PSO+UCP exhibit a faster convergence rate when compared with GWO+UCP, GA+UCP, 

and RSA+UCP since the second iteration. 

 

Fig. 10. Convergence behavior comparison of all optimization methods 
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Beyond convergence analysis, we also investigated diversity analysis for optimal solutions on the 

benchmark algorithms with UCP estimating methods, as shown in Fig. 11. We see that the median 

values of FA+UCP, PSO+UCP, and RSA+UCP are lower than those of GWO+UCP and GA+UCP. 

From the interquartile perspective, all optimization-based algorithms show a similar shape size, 

indicating that these models have the same spread. 

 

Fig. 11. Best solution diversity analysis of all models 

As detailed in section 5.1, RSA and GWO consistently outperformed FA across all benchmark test 

functions. However, in the evaluation of UCP estimation, FA+UCP exhibited superior performance 

compared to RSA+UCP and GWO+UCP. This finding aligns with a prior study conducted by Ghatasheh 

et al. [19], which employed COCOMO as the estimation method and indicated that FA outperforms 

GA and PSO. The rationale behind this lies in the ability of FA+UCP to maximize the efficiency of 

UCP convergence by handling smaller dimensional sizes effectively. This is critical because larger 

dimensional sizes tend to result in suboptimal performance for optimization algorithms, as previously 

documented by Boussaïd et al. [64], and Halim et al. [65]. Furthermore, GWO+UCP underperformed 

compared to FA+UCP due to its optimal performance conditions being defined with population sizes of 

50 and a maximum of 600 iterations [66]. In contrast, in our study, the parameter settings only three 

dimensions and a maximum of 20 iterations. 

4.3. Threats to Validity 
Simple, average, and complex actors in the dataset were determined by previous researchers and are 

publicly available. However, we are not aware as to how they were calculated. Thus, the accuracy of the 

actors cannot be confirmed. This is a possible threat to construct validity. This study utilizes only one 

dataset, which raises concerns about the generalizability of the results. Neverthless, the dataset employed 

is an industrial dataset created by proficient developers. Consequently, the findings may be applicable to 

software industrial practices. Furthermore, the dataset predominantly employ the waterfall development 

methodology, indicating that the conclusions drawn may not be transferable to the agile methodology. 

One possible threat to external validity in this study is the set of metaheuristic algorithms explored 

(GA, PSO, GWO, RSA, and FA). Metaheuristic is vast and dynamic field, and any individual study can 

only utilize a limited subset of the numerous known metaheuristic algorithms. For instance, this study 

does not investigate Salp algorithms, which were emphasized by Tawhid and Ibrahim [67]. In practical 

terms, it is not feasible to examine all conceivables algorithms. The most we can do is establish our 

experimental procedure and anticipate that other researchers will implement it with a different set of 

metaheuristic algorithms. 
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5. Conclusion 
This study suggests that the FA+UCP model exhibited outstanding results compared with GA+UCP, 

PSO+UCP, GWO+UCP, and RSA+UCP. As a result, the FA+UCP model introduced in this study can 

be valuable for improving the Use Case Point (UCP) estimation performance. Its high accuracy and 

ability to search appropriate use case complexity weight make it a promising tool for UCP to provide 

more accurate software effort estimation. Hence, the findings of this study hold practical implications 

for software project managers. They can utilize the UCP estimation method which is optimized using 

the Firefly algorithm. It must be borne in mind that the parameter configuration of FA+UCP in this 

study, which is 𝛼𝛼 =  0.5, 𝛾𝛾  =  1, was found to be weak in 12 classical test functions but excelled in 

the UCP effort estimation evaluation. Therefore, further research is needed to identify the optimal 

configuration for the Firefly algorithm to excel in both classical benchmark test functions and UCP 

effort estimation evaluations. 
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