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ARTICLE INFO ABSTRACT

Use Case Points estimation framework relies on the complexity weight
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utilization of optimization techniques to determine use case weight
parameter values has yet to be extensively explored, with the potential to
enhance accuracy further. Motivated by this, the current research delves
into various metaheuristic search-based algorithms, such as genetic
algorithms, Firefly algorithms, Reptile search algorithms, Particle swarm
optimization, and Grey Wolf optimizers. The experimental investigation
was carried out using a Silhavy UCP estimation dataset, which contains 71
project data from three software houses and is publicly available.
Furthermore, we compared the performance between models based on
metaheuristic algorithms. The findings indicate that the performance of
the Firefly algorithm outperforms the others based on five accuracy metrics:
mean absolute error, mean balance relative error, mean inverted relative
error, standardized accuracy, and effect size. This research could be useful
for software project managers to leverage the practical implications of this
study by utilizing the UCP estimation method, which is optimized using
the Firefly algorithm.
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1. Introduction

Estimating software development projects belongs to the planning phase in the software development
life cycle (SDLC) [1]. Software Effort Estimation (SEE) assesses the effort and associated costs needed
to create a new software system. Effort estimation is paramount for software companies, as they must
guarantee that the software is delivered within predefined time and budget limitations. Nevertheless,
most software projects exceed their designated time and budget limit, with delays and cost overruns
being persistent challenges in software development for numerous years [2].

There are three groups of methods for estimating software effort: expert judgment, algorithmic, and
machine learning. Expert-based methods entail consulting one or more experts, leveraging their domain
expertise and comprehension of the organizational context to estimate the cost of software projects.
Analytical hierarchy process (AHP), Delphi, and Planning Poker methods belong to the expert judgment
group. The algorithmic group consists of methods used to estimate effort based on software
requirements specifications. Methods that fall into this category are COCOMO (3], SLIM, Function
Points [4], Use Case Points (UCP), COSMIC, and so on. Meanwhile, the machine learning-based group
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is a set of methods that applies learning algorithms to estimate software project efforts such as regression,
artificial neural network (ANN), case-based reasoning (CBR), and others. Among algorithmic approach,
COCOMO and function points suffered from its parameter vulnerabilities: function points and line of
codes (LoC) [5]. Moreover, they are not compliance with object oriented development as widely used
today by most of software organizations [6]. One popular software sizing and estimation framework is
Use Case Points (UCP) [7] that adopt object oriented development paradigm. UCP determines the
software size by multiplying use case diagrams and the productivity factor (PF). In the second phase of
the UCP process, as indicated by Table 1, the complexity weight of the use case (UC) is categorized into
three levels: simple, average, and complex. The weight assignment to each complexity level is determined
by the number of transactions of the Use Cases (UC). The original UCP framework consists of three
levels of complexity weights, namely 5, 10, and 15, for Simple, Average, and Complex, respectively. The
original level of complexity weighting has faced criticism from researchers due to its discontinuous nature
in the complexity hierarchy, leading to occasional inaccuracies in measurements and abrupt classifications
of use cases. For instance, the use case containing eight transactions possesses twice the weight of the
use case involving seven transactions. Furthermore, they exclude the consideration of large use case
transactions. As an illustration, a use case with 25 transactions holds equal weight as a use case involving
nine transactions.

Numerous efforts have been made to tackle the sudden classification problem associated with the
complexity weighting level in the use case. For example, the currently available fuzzy methods are
employed and suggested by Xie at al., Wang ez al., and Nassif et al. [8]-[10]. The fuzzy approach is
consistently employed for discretizing the prevailing level of complexity weighting. It aims to alleviate
the sudden classification problem by offering a continuous and incremental classification process. Most
research demonstrates that using fuzzy on UCP enhances estimation performance compared with the
original UCP.

Employing a continuous level of use case weighting enables us to enhance UCP accuracy through an
optimization approach. Optimization stands out as a renowned approach for addressing continuous
problems. The implementation of metaheuristic optimization in software effort estimation is called
search-based software estimation (SBSE).

The research focused on search-based software effort estimation has been employed in numerous
studies [11]. For example, Cased-Based Reasoning (CBR) effort estimation has been optimized by using
Genetic Programming (GP) [12], [13], Particle Swarm Optimization (PSO) [14], evolutionary-based
algorithm [15]-[17], and hybrid PSO-SA [18]. Firefly [19], [20], PSO [21]-[24], GA [25], and DE [26]
are employed to enhance the optimization of COCOMO effort estimation. Although the previous works
succeeded in improving the utilization of the use case complexity weight by applying PSO [27] and
MUCPSO [28], these two investigations were still hampered by prematur convergence and local
optimum traps. In addition, these studies only use the PSO algorithm and do not investigate various
alternative metaheuristic algorithms.

Thus, this article extensively investigates various metaheuristic search-based models aimed at
optimizing parameter values for the use case complexity weight. The methods under scrutiny encompass
Genetic Algorithm (GA), Firefly Algorithm (FA), Reptile Search Algorithm (RSA), Particle Swarm
Optimization (PSO), and Grey Wolf Optimizer (GWO). These metaheuristic algoritms are employed
because they have more diverse characteristics as well as strengths and weaknesses to solve the particular
optimization problem in search-based software effort estimation. For example, RSA and GWO are two
algorithms based on encircling and hunting mechanisms. PSO and Firefly are algorithms based on large
flocks of animals looking for food. Meanwhile, GA is an algorithm that adopts evolutionary theory. The
experimental analysis was carried out using a publicly accessible UCP estimation dataset. The
effectiveness of diverse metaheuristic search-based models has been assessed through various
performance evaluation metrics. The findings and insights derived from these experiments can be
instrumental in constructing ensemble models for UCP estimation. Moreover, the contribution of this
presented work: our study involved a thorough exploration of five metaheuristic search-based models
using unimodal and multimodal test functions, a novel approach that had not been previously undertaken
in search-based software effort estimation field.
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2. Related Works

The examination of effort estimation in UCP research reveals three main trends: the refinement of
the UCP sizing approach, the scrutiny and simplification of UCP, and the fusion of UCP with data
mining and machine learning (MLDM) techniques.

Numerous research works have suggested the overhaul of the UCP sizing method. Braz and Vergilio
[29] adapted the use case complexity weight by applying fuzzy theory, and [28] effectively optimized this
adjusted weight. In Robiolo and Orosco [30], two new variables, namely size-transactions and entity
objects, were introduced and calculated based on the information in the use case description. The
research presented by Mohagheghi et al. [31] has revised the assessment of actor complexity and
addressed the consideration of non-functional requirements. This study made a significant contribution
to enhancing the adaptability of UCP for incremental development approaches. Anda ez al. [32],[33]
examined and simplified the UCP better to comprehend the effects of technical and environmental
complexity factors. The authors recommended fine-tuning the environmental factors according to the
organization's type to enhance estimation accuracy. In contrast, Ochodek ez al. [34], [35] omitted various
segments of the UCP in order to simplify the UCP calculation process. The researcher contended that
these sections are of negligible importance in effort estimation. In a recent development, Nhung et al.
[36] enhanced the accuracy of the modified UCP by refinement of the environment complexity factors
(ECF) and technical complexity factors (TCF) and employing a model of multiple regression for
estimation.

Recent years have witnessed the exploration of MDLM techniques to enhance the UCP’s
performance. The introduction of a log-linear regression model [37] establishes relations between UCP,
effort, and productivity factors. A hybrid model was introduced in a subsequent study referenced as in
Ochodek ez al. [34]. This model concurrently predicts the PF and effort estimation by leveraging past
projects. Similarly, Nassif ez al. [38] calculated the effort required by utilizing team productivity and
UCP with Treebost.

The overarching objective of SEE research is to reduce the disparity between the real and predicted
effort value. The rigidity weight level of the use case complexity has a notable influence on the accuracy
of the estimation, as indicated by Nassif et al. [10]. Furthermore, it is worth noting that the initial
complexity and assigned weight value may not accurately represent real-world scenarios, as suggested in
Qi et al. [39]. Fortunately, this was previously validated by Karner [7], indicating that the suggested
complexity weight is derived from the subjective assessment of individuals at Objective Systems. Karner
[7] also emphasizes the need for additional data to refine parameters, models, and weights. The initial
weight should not be considered the definitive and optimal weighting parameter. In simpler terms, it is
crucial to have flexibility in granularity to establish the most appropriate weighting system and achieve
the highest estimation performance. Three primary methodologies revolve around proposing
improvements to the complexity weight of use cases: introducing additional weight levels, discretizing
the existing scale, and calibrating in this way as outlined.

Two critical parameters for SEE were introduced in Silhavy and Silhavy [40]: the specifications of
actors and the use case. At the same time, Nhung ez al. [41] assessed TCF and ECF. To compute the
number of transactions and automatically generate the class diagrams, Qi and Boehm [42] proposed
USIM to determine the project size. Numerous studies have suggested incorporating additional
complexity weight levels to account for factors that influence the level of complexity weight. Examples
such as the nature of the application and the particular manner in which use cases are employed
constitute two determinants affecting the degree of complexity weighting. Thus, it is advisable to re-
evaluate the complexity weight by specific circumstances. As part of their proposal, Galorath and Evans
[43] introduced weight values of 10 for simple, 15 for average, and 20 for complex. In contrast,
Periyasamy and Ghode [44] proposed “most complex” as an additional degree of complexity weight to
enhance the complexity weight of the use case. Periyasamy and Ghode [44] suggested including an extra
“critical" level in their proposal. An additional "very high" level for use cases with more than 14
transactions was proposed [45], with corresponding weight assignments of 5, 10, 15, and 20. In contrast,
on the other hand, three more complexity weights were introduced by Nassif [46]: 20, 25, and 30.
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In order to reduce the existing level of complexity weights, a fuzzy approach is commonly used. This
approach aims at reducing categorization abruption by gradually and continuously classifying them. Early
attempts to discretize the established complexity weight levels were put forward by Xie ar al., Wang ez
al., and Nassif et al. [8]-[10]. Wang et al. [9] expanded the complexity weight levels from three to five.
They introduced the Extended Use Case Points (EUCP) by combining the theory of fuzzy logic and the
Bayesian Belief Network (BBN). The outcomes indicated that the proposed EUCP outperformed UCP
in the case of the two projects. Xie az al. [8] introduced the discretization degree of complexity weight
that extended use-case complexity from 3 to 4. The outcomes of their study indicated that the suggested
weight level demonstrated an increment of 5.5 person-hours, accompanied by a 15.45% margin of error,
as determined from an analysis of four authentic project datasets. Nassif ez al. [10] proposed ten levels
of complexity weight based on the count of transactions associated with each use case. Their results
showed a 22% improvement in particular projects concerning the proposed approach, assuming that ten
transactions were covered by the most extensive use case and had a complexity factor 15.

The investigation into UCP adjustment was initiated by Nassif ez al. [47] and continued by Qi et al.
[39]. In the work of Nassif ez al. [47], a six-tier use case complexity weighting system was introduced as
an alternative to the original three-tier weighting scheme outlined by Karner [7]. They used a neural
network to calibrate these six proposed complexity weight levels. In order to cope with any sudden
change in complexity levels and weights, Fuzzy Logic has been applied following successful calibration
of the weights. Unfortunately, there was no evidence of any experimental results or model validation in

this study.

On the other hand, Qi et al. [39] delved into Bayesian analysis for calibrating use case weighting. As
inputs, their study collected the weight of the use case and the empirical project data. The weighting of
a priori-based use case is used to calculate the mean and variance. Simultaneously, empirical project data
was utilized to calibrate the weights of the use case via a multiple linear regression process. In the last
phase of this calibration procedure, the outcomes of the mean and variance were harnessed to compute
the Bayesian weighted average, ultimately producing Bayesian weight estimations as the resulting output.
This approach underwent assessment through data analysis from 105 projects, which was subsequently
juxtaposed against a priori estimations, regression-based, and Karner’s UCP method. As a result, the
Bayesian approach demonstrated superior accuracy in effort estimation.

These methodologies have a broader option to enhance the complexity factor by expanding Karner’s
UCP method, which has shown positive results by using continuous and incremented classification
values. However, despite the endeavors of researchers referenced in Nhung et al. [36], Hoc er al. [48],
and Hariyanto and Wahono [49] to enhance the performance of UCP, they did not delve into the
possibilities associated with continuous complexity weight levels when optimizing functions.
Metaheuristics optimization, renowned for its ability to handle continuous function optimization, can
effectively mitigate abrupt complexity-level changes. While prior research has indeed succeeded in
enhancing the utilization of use case complexity weight through the application of PSO [27] and
MUCPSO [28], it is essential to note that these two studies have focused solely on the utilization of the
PSO algorithm. They have not explored the potential benefits of various alternative metaheuristic
algorithms.

Therefore, this study comprehensively examines various metaheuristic search-based models to
optimize the weights of use case complexity. The methods under investigation include genetic
algorithms, firefly algorithms, reptile search algorithms, particle swarm optimization, and grey wolf
optimizers.

2.1.UCP

The UCP method suggested by Karner [7] comprises seven steps, as summarized in Table 1. Firstly,
calculate UAW (unadjusted actor weighting) and UUCW (unadjusted use case weighting) by classifying
actors and use cases into three levels of complexity: Simple (1), Average (2), and Complex (3). The sum
of UAW and UUCW vyields unadjusted use case points (UUCP). Secondly, it calculates technical and
environmental complexity factors. Finally, project size and estimated effort can be determined using
these factors.
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Table 1. Use Case Points estimation parameters and formula

Parameter Formula
UAW UAW = ¥3_, W; X Actor;, where W; represents the weight factor, categorized as 1 for simple,
2 for average, and 3 for complex actors.
UUCW UUCW = ¥3_, W; X UC;, where W; represents a weight factor, classified as 5 for simple, 10 for
average, and 15 for complex use cases, respectively.
UucCP UUCP = UAW + UUCW
TCF TCF = 0.6 + (0.01 X 12, W; X G;)
ECF ECF =14+ (-0.03x Y% W, X G;)
Project Size UCP = UUCP X TCF X ECF
Estimated Effort Effort = UCP X PF, PF represents the productivity factor, and assigning a value of 20

person-hours per UCP is possible.

In addition to the original weight levels, Table 2 presents the complexity weight levels proposed by
[6] and [46].
Table 2. The original and modified use case complexity weight level

Number of Use Case Original weight level Modified weight level
Transactions
1-2 5 5.00
3 5 6.45
4 10 7.50
5 10 8.55
6 10 10.00
7 10 11.40
8 15 12.50
9 15 13.60
>10 15 15.00

2.2. Metaheuristic Algorithms
2.2.1. Grey Wolf Optimizer

The Grey Wolf Optimizer algorithm, introduced by Mirjalili ez al. [50], is inspired by grey wolves'
social structure and hunting behavior. Grey wolves in the wild operate within a hierarchical structure
consisting of alpha, beta, delta, and omega wolves, each with distinct roles in the pack. These roles are
translated into the GWO algorithm's search mechanisms to explore and exploit the solution space
effectively. The GWO algorithm begins with an initial population of grey wolves, where each wolf
represents a potential solution to the optimization problem. The algorithm iteratively updates the
positions of the wolves to converge towards an optimal solution as shown in Algorithm 1 (Fig. 1).

Generate initial grey wolf population x;(i = 1,2, ...,n)
Initialize a, A, and C
Calculate the fitness value of each wolf
X, = the best wolf
Xp = the runner up best wolf
X5 = the third best wolf
While (t < max number of iterations)
For each wolf

NO 00 N1 O\ Ul RN W N =

Update the position of the current wolf
End for
Update a, 4, and C
Compute the fitness value of all wolf
Update X, X, dan X5
t=t+1
end while
return X,

—_ =
— O

el e e e
N U W N

Fig. 1. Grey wolf optimizer pseudocode
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2.2.2. Particle Swarm Optimizer

PSO drew inspiration from the behavior of birds flocking and fish schooling in search of locations
with an ample food supply [25]. PSO begins by randomly generating a population based on swarm size
parameters. This population comprises N particles, with each particle i representing a potential solution
to the problem. Each individual particle is represented by the vector x; in the decision space and possesses
both position (x) and velocity (v) attributes, as indicated in Eq. (1) and Eq. (2).

v; = wv; + C;R; X (Pbest; — x;) + C,R, X (Gbest; — x;) )
Xiy1 = X; T V; (2)

where v; represents the current or initialized velocity of the particle, which is endowed with a random
number value falling within the interval [0, 1] at the onset of the population generation process.
Constants C; and C,, cognitive and social learning factors, remain unchanging throughout the
computation. R; and R, are stochastic variables defined within the [0, 1] range. Pbest; represents the
most optimal position attained by particle i, while Gbest; represents the overall best position achieved
by the entire ensemble particles. Lastly, x; is used to denote the present position of the particle.
Additionally, w is an inertia weight, a constant value set to 0.9. Algorithm 2 outlined the PSO in pseudo-
code format to provide a schematic representation of the algorithm (Fig. 2).

Generate initial population x;(i = 1, 2, ...,n)
Gbest = maximum fitness value of particle in population
Pbests = initial population
While t < max iterations
For each particle in the population
Update velocity
Update position
Update particle
Update pbest
End for
Updated population
Update gbest
End while
Return gbest

NO 00 N O\ L1 W W N =

—_ =
_ O

—_ =
w N

Fig. 2. Particle swarm optmization pseudocode

2.2.3. Firefly

The Firefly Algorithm (FA) [51], [52] draws inspiration from the idealized behavior of fireflies'
flashing characteristics. These flashing characteristics can be simplified into the following three rules for
ease of understanding:

o In the FA, all fireflies are considered unisex, meaning that one firefly is attracted to other fireflies
irrespective of their gender.

e In the FA, the attractiveness of a firefly is directly proportional to its brightness. Therefore,
comparing two flashing fireflies, the less bright one will move toward the brighter one. This
attractiveness is influenced by brightness, and both attractiveness and brightness decrease as the
distance between fireflies increases. If no firefly is found to be brighter than a particular firefly, it will
move randomly.

o The brightness or light intensity of a firefly is influenced or determined by the characteristics of the
objective function landscape that is being optimized.

The light intensity I(r) changes monotonically and exponentially with distance r. This relationship
can be expressed as:

[=1l,e" 3)
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where the original light intensity is Iy and the light absorption coefficient is y. The attractiveness @ of
a firefly can be defined based on the light intensity seen by neighboring fireflies. This relationship is

expressed as follows:
B = poe™™ @

where the attractiveness at ¥ = 0 is B plays a crucial role in this definition. It is important to note
that the exponent yr can be replaced with other functions, such as yr™ when m > 0. In summary,
Algorithm 3 outlined the FA in pseudo-code format to provide a schematic representation of the
algorithm (Fig. 3).

1 Initialize a population of fireflies x;(i = 1,2, ...,n)

2 v = Coefficient of light absorption

3 while (t < MaxGeneration)

4 for i = 1:n all n fireflies

5 for j = 1:i all n fireflies

6 light intensity I; at X; is calculated using f(x;)
7 if (I; > 1))

3 Move firefly i towards j in all d dimensions

9 end if

10 attractiveness varies with distance r via exp[—y7]
11 evaluate new solutions and update light intensity
12 end for j

13 end for i

14 Rank the fireflies and find the current best

15 end while

16 return the best firefly

Fig. 3. Firefly algorithm pseudocode
2.2.4. Genetic Algorithm

The Genetic algorithms first proposed by Holland [53] encompass the following fundamental
processes: 1) encoding the objective or optimization functions, 2) establishing a fitness function or
selection criteria, 3) generating a population of individuals, 4) cycling through evolution iterations, which
involve evaluating the fitness of all individuals in the population, creating a new population through
actions such as crossover, mutation, and fitness-proportionate reproduction, replacing the old
population, and iterating once more using the new population; 5) decode the outcomes acquired from
the solution to the problem. These steps can be represented schematically in the pseudo-code of genetic
algorithms, as illustrated in Algorithm 4 (Fig. 4).

1 Define an objective function f(x),x = (xy, ..., x,)7

2 Translate the solution into chromosome representations.

3 Initialize GA parameters: number of chromosomes, number of generations, mutation rate (mr), crossover
4 rate (cr), etc

5  Generate the initial population

6  While (t < number of generations)

7 Generate fresh solution through a combination of crossover and mutation
8 If cr > rand, Crossover; end if

9 If mr > rand, Mutate; end if

10 If fitness value increases, accept the new solution

11 Select the current best solution for the next generation

12 End while

13 Return the best solution

Fig. 4. Genetic algorithm pseudocode
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2.2.5. Reptile Search Optimizer

The optimization process starts with the creation of a randomly selected set of candidate solutions
that will be used to form an early population at RSA. Throughout the repetition trajectory, the search
mechanisms of RSA systematically explore potential positions in search of near-optimal solutions. In
this pursuit, each solution adjusts its positions based on the processes outlined in the RSA algorithm,
potentially replacing its positions with those from the best-obtained solution found thus far.

The search procedures are classified as two primary methods of exploration and exploitation to ensure
balance in both exploration and exploitation. Exploration is based on a strategy of high or belly walking
and exploitation based on hunting coordination or cooperation. The potential candidates use these

strategies to widen the search area when t < and seek to converge with near-optimal solutions if t > g
In the initial exploration phase, the high walking movement strategy is employed when t < E.
Subsequently, as ¢ progresses and reaches between t < Zgand t> E, the belly walking movement
strategy is adopted. During the exploitation phase, the hunting coordination strategy is put into action
when it falls within the range of t < 3 Eand t>2 E. In contrast, the hunting cooperation strategy is
deployed when t < T and t > 3 E. The RSA shall cease to operate as soon as it complies with the

applicable termination criteria. In Algorithm 5 (Fig. 5), a pseudocode is provided for the proposed RSA
algorithm.

1 Initialize RSA parameters a, f3, etc

2 Initialize reptile population x;(i = 1,2, ..., N)

3 While (t < T)

4 Calculate fitness value for all reptile

5 Find the best fitness value of all reptiles so far

6 Update Evolutionary Sense (ES)

7 For (i =1toN) do

8 For (j =1 to N) do

9 Update the 1, R, P, and values, respectively

10 If (t < E) then

11 Update reptile using a high walking procedure

12 Else if (t <27andt> E) then

13 Update reptile using belly walking procedure

14 Else if (t <3Tandt>2 E) then

15 Update reptile using hunting coordination procedure

16 Else

17 Update reptile using hunting cooperation procedure

18 End if

19 End for j

20 End for i

21 End while

22 Return best reptile (best(X))

Fig. 5. Reptile Search Optimize pseudocode

3. Method

The objective of effort estimation is to reduce the disparity in accuracy between the actual effort and
the estimated effort, as denoted in Eq. 5. Hence, Fig. 6 illustrates the proposed method of this study.
As depicted in the figure, the complexity weighting comprises two primary elements: actors and use
cases. Optimization in the use case component is performed individually using metaheuristic algorithms,
including GWO, PSO, GA, RSA, and FA. Each algorithm will search the use case complexity weight
that provide optimal result according to the allowed weight range. The results of these optimizations for
actors and use cases are combined to generate the Unadjusted Use Case Points (UUCP).
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Additionally, in conjunction with complexity factors (TCF and ECF), the actors and use cases
contribute to the calculation of software size, specifically in UCP metric units. Subsequently, the
obtained software size is multiplied by the PF (Productivity Factor) parameter to derive the estimated
effort value, expressed in person-hour units. A detailed description of methods including dataset and
evaluation techniques used is discussed specifically in section 3.1, 3.2, and 3.3.

Complexity Weights

Actor Use Case
Complexity Factors
- ‘ Technical Environmental
T Unadjusted Use Complexity Factors Complexity Factors
Wn:; :'L;isne (U;\:f? Case Weighting (TCF) (ECF)
EEhty {uucw) ——
v
Unadjusted Use Case s Size
Points (UUCP) = (Use Case Points)

Productivity Factor
{20 Person Hours)

Y
x

Estimated Effort
(person-hours)

Fig. 6. The proposed model

3.1. Experimental Design

Fig. 7 shows the complete experimental design flow. The experimental design is provided to outline
the details of the experiment at each stage. The dataset is divided into two, namely training data and test
data. Test data is only taken for one instance. This means that each project will definitely become test
data. This is in accordance with the validation method used, namely Leave one out cross validation.

Each test data consists of seven attributes or effort drivers as shown in Table 3. The UUWC value is
generated by the summation function of multiplying the use case weights with the Simple, Average, and
Complex attributes. The weight of the three use case will be determined using the five metaheuristic
algorithms. The weight that gives optimum results is then used to calculate UUCP and estimated effort.
The estimated effort is then compared with the actual results in order to calculate the accuracy
performance.

Test Dat:

Training data

Optimized

VAW UUCW TUew ——

GWO, PSO. GA.FA.RSA

Performance metrics
UucCP (AE. MAE, SA. ES.
MIBRE. MBRE)

Fig. 7. Experimental design flow
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3.2. Dataset

This research utilized historical project data derived from three actual software companies. Seventy-
one projects collected by Silhavy [54] constitute the dataset for this project. The dataset encompasses
various problem domains, including insurance, government, banking, etc. The dataset comprises a total
of thirty-eight (38) effort drivers. For this study, we utilized seven (7) effort drivers and excluded the
remainder. The comprehensive set of effort drivers encompasses simple, average, and complex use case
(UC), technical and environmental complexity factors, UAW, and actual effort. These effort drivers were
selected based on their significant influence within the UCP estimation methodology, as outlined in
Table 1. Most projects were executed utilizing programming languages such as Java and C#. Summary
statistics for the project dataset are provided in Table 3.

Table 3. Descriptive statistics for a dataset of 71 projects

Effort Driver Avg StDev Skewness Kurtosis Max Min
Simple 2.7 2.9 3.29 17.658 20 0.00
Average 15.84 5.37 0.296 0.140 30 3.00
Complex 14.29 4.45 0.191 -0.290 27 5.00
UAW 10.49 5.01 0.803 -1.264 19 6.00
TCF 0.92 0.114 -0.269 -1.019 1.12 0.71
ECF 0.86 0.117 -0.556 0.861 1.09 0.51
Actual Effort 6558.72 664.24 0.574 -0.922 7970 5775

Referring to Table 3 reveals distinct distributions among the variables under consideration. UC-
Average, UC-Complex, and TCF exhibit distribution patterns that closely resemble a normal
distribution, as evidenced by their skewness values approaching zero. Conversely, UC-Simple deviates
from a normal distribution, with its skewness significantly deviating from zero. Notably, the UC-
Complex variable demonstrates a relatively wider distribution, indicated by a kurtosis value of -0.290. At
the same time, UC-Simple displays a leptokurtosis curve, indicated by its substantially high kurtosis
value of 17.658. It is important to note that a kurtosis value below three suggests a lower susceptibility
to outliers. Only UC-Simple surpasses this threshold among the mentioned variables, indicating a higher
susceptibility to outliers. This infers that Average, Complex, UAW, TCF, ECF, and Actual Effort
variables are comparatively less prone to outlier effects. Notably, the majority of the project use cases are
of average complexity. This highlights that the Average variable has a mean and maximum value that is
broader in range compared to the Simple and Complex effort drivers.

3.3. Model Validation and Evaluation

In this study, model validation was carried out utilizing the Leave-One-Out Cross-Validation
(LOOCYV) technique. LOOCYV involves partitioning each dataset into #n-1 folds for training data and
one-fold for testing data. LOOCV was chosen due to its lower conclusion instability resulting from
random selection in training and testing data, in contrast to the potential instability experienced in k-
fold, 3-way, and 10-way techniques [55]. The comprehensive list of model performance evaluation
formulas is presented in Table 4.

Table 4. Performance measurement list

Measure Formula
Absolute error (AE) AE = |y; — §;l
Mean absolute error (MAE) MAE = lzﬂ_ AE;
o &i=1 A8
Mean balance relative error MBRE = %Z}Li ﬁiifh)
Mean inverted balance relative error MIBRE = 1yn _ AEi
n“=1 max(y;9:)
Standardized accuracy [56], [57] A, =1 (MAEPj> %100
j MAEp,
Effect size [56], [57] A= MAEp,~MAEp,
Spo
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The performance of the estimation model was assessed using a variety of measurements. In this study,
six measurement metrics were employed: absolute error (AE), mean absolute error (MAE), mean balance
relative error (MBRE), mean inverted balance relative error (MIBRE), standardized accuracy, and eftect
size. These performance metrics were chosen due to their non-biased nature, in contrast to metrics such
as mean squared error (MSE), mean absolute percentage error (MAPE), and prediction accuracy (PRED)
that have been known to exhibit bias in their results [56], [57].

Based on Table 4, y; and §; represent the actual and estimated effort for the i-th project, respectively.
MAE P denotes the Mean Absolute Error (MAE) value generated by the j-th estimation model, such as
FA+UCP, RSA+UCP, etc. Meanwhile, WEPO is obtained from the random guessing technique, and
Sp, represents the standard deviation produced by the Py model.

3.4. Problem Formulation

This section presents the mathematical formulation of the optimization problem in UCP estimation.
The objective function in UCP estimation is the minimum absolute error (MAE) between the estimated
effort and the actual effort as follows:

MAE = %Z?I:ﬂf’i =il &)
Subject to:
y; =20x UCP (6)
UCP = UUCP x TCF x ECF (7
UUCP = UAW + UUCW (®)
UUCW =3, w; X UC; )
5<UC, <749 (10)
7.5 < UC, < 12.49 (11)
125 <UC; <15 (12)

where the value of y;, TCF, ECF, and UAW taken from the data set, and w; with values of 5, 10, and
15 respectively.

4. Results and Discussion

The experimental results are described in two parts. First are the evaluation results of 12 benchmark
functions, and second are the experimental results of metaheuristic optimization on UCP. Furthermore,
the parameter settings should be determined based on the best-performing or commonly used
configurations in Table 5 to ensure a fair comparison between algorithms.

Table 5. Parameter settings of five metaheuristic algorithms

Algorithm Parameters
Grey Wolf Optimizer (GWO) [58] PopSize = 100, Tpyqx= 20
Firefly Algorithm (FA) [59] PopSize = 20, Tynax= 20, 2 = 0.5, Brpin = 0.2, 6 =1, =1
Particle Swarm Optimization (PSO) PopSize = 70, gy = 20, Wpayx = 0.9, Wpmin = 0.4, C, =2, C, =2
Genetic Algorithms (GA) PopSize = 20, Typax= 20, Cr=0.25, Mr=0.1
Reptile Search Optimizer (RSA) [60] PopSize = 30, Typgx= 20, 2 = 0.1, 3 = 0.1
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4.1. Evaluation of Classic Benchmark Functions

In order to assess the exploitation and exploration potential of optimization algorithms, 12
benchmark functions, consisting of six unimodal and six multimodal functions, are used in this study.
An overview of the benchmark functions, including their functions names, types, dimensions, ranges,
and fpni, value is given in Table 6. Additionally, their two-dimensional representations are depicted in
Fig. 8.

Table 6. The benchmark functions: F1-F6 for unimodal, and F7-F12 for multimodal

F1 Sphere Unimodal 30 [-100, 100] 0
F2 Schwefel 2.22 Unimodal 30 [-10, 10] 0
F3 Schwefel 1.2 Unimodal 30 [-100, 100] 0
F4 Schwefel 2.21 Unimodal 30 [-100, 100] 0
F5 Rosenbrock Unimodal 30 [-30, 30] 0

F6 Step Unimodal 30 [-100, 100] 0

F7 Quartic Noise Multimodal 30 [-1.25, 1.28] 0
F8 Schwefel 2.26 Multimodal 30 [-500, 500] —418.9829 X Dim

F9 Rastrigin Multimodal 30 [-5.12, 5.12] 0

F10 Ackley Multimodal 30 [-32, 32] 0

F11 Griewank Multimodal 30 [-600, 600] 0

F12 Penalized Multimodal 30 [-50, 50] 0

There are six benchmark functions, labeled with ID and function names F1-F6, which are unimodal
and are employed to assess the exploitation ability. Subsequently, six benchmark functions, denoted by
ID and function names F7-F12, are considered multimodal, featuring numerous local optima that
increase as the dimensionality grows. These functions are utilized to evaluate the exploration capability.

=200
200 =400

F1 Sphere F2 Schwefel 2.22 F3 Schwefel 1.2

BEsgg
- ow .

10

X 0.5 i 1.0

F5 Rosenbrock

F7 Quartic Noise

F9 Rastrigin F10 Ackley F11 Griewank F12 Penalized

Fig. 8. Twelve classic benchmark functions F1 to F12
B —— ]

Ardiansyah et.al (Optimization of use case point through the use of metabeuristic algorithm in estimating software effort)



ISSN 2442-6571 International Journal of Advances in Intelligent Informatics 121

Vol. 10, No. 1, February 2024, pp. 109-130
|

Table 7 provides an overview of the assessment results pertaining to four metrics: the best optimal
solution, the least favorable solution, the average solution, and the standard deviation (STD).

Table 7. Comparison of FA, GA, GWO, PSO, and RSA for 12 benchmark functions

Functions Metric FA GA GWO PSO RSA
F1 Sphere Best 5.60E+04 5.41E+04 5.83E-24 2.80E+05 0.00
Worst 8.52E+04 9.42E+04 6.28E-21 3.00E+05 8.42E-26
Mean 6.77E+04 7.67E+04 1.31E-21 2.87E+05 4,.63E-27
STD 7576.46 10078.89 1.84E-21 4572.47 1.71E-26
F2 Schwefel 2.22 Best 1.84E+02 3.13E+02 1.32E-21 5.63E+02 3.63E-57
Worst 2.27E+02 2.13E+02 6.83E-14 5.83E+02 1.00E-08
Mean 2.10E+02 2.53E+02 5.11E-15 5.76E+02 1.67E-09
STD 10.99 26.66 1.36E-14 6.59 3.73E-09
F3 Schwefel 1.2 Best 7.40E+05 5.63E+05 4.13E-24 4.15E+06 0.00E+00
Worst 1.23E+06 1.39E+06 5.80E-21 4.52E+06 7.38E-22
Mean 1.04E+06 1.09E+06 1.13E-21 4.34E+06 2.58E-23
STD 120362.33 224568.22 1.51E-21 103173.77 1.32E-22
F4 Schwefel 2.21 Best 8.21E+01 8.36E+01 1.28E-20 1.00E+02 0.00E+00
Worst 8.88E+01 9.79E+01 6.48E-15 1.00E+02 2.45E-21
Mean 8.61E+01 9.12E+01 4.65E-16 1.00E+02 1.89E-22
STD 1.99 3.97 1.32E-15 0 5.83E-22
F5 Rosenbrock Best 1.45E+08 2.07E+08 2.87E+01 2.12E+09 2.88E+01
Worst 2.63E+08 4.10E+08 2.90E+01 2.36E+09 2.90E+01
Mean 2.17E+08 2.93E+08 2.89E+01 2.23E+09 2.90E+01
STD 26225079.4 48752581 0.078 59548404 0.04
F6 Step Best 5.92E+04 5.43E+04 7.13E-01 2.82E+05 7.24E+00
Worst 8.64E+04 9.09E+04 7.50E+00 3.00E+05 7.50E+00
Mean 7.19E+04 7.34E+04 5.38E+00 2.89E+05 7.37E+00
STD 7046.94657 9133.95 2.33 4186.15 0.12
F7 Quartic Noise Best 3.08E+09 2.31E+09 1.07E+01 4.12E+10 9.32E+00
Worst 6.02E+09 7.94E+09 1.36E+01 4.65E+10 1.12E+01
Mean 4.69E+09 5.36E+09 1.25E+01 4.38E+10 1.03E+01
STD 807671301 147885086 0.75 1.21E+09 0.49
F8 Schwefel 2.26 Best 2.52E-02 2.01E+00 -8.88E-05 -2.02E+03 -3.74E-05
Worst 4.15E+00 1.52E+03 1.35E-16 1.57E+03 0.00E+00
Mean 1.44E+00 1.39E+02 -1.20E-05 3.27E+01 -2.54E-06
STD 1.27 307.87 2.46E-05 828.31 7.23E-06
F9 Rastrigin Best 3.50E+02 3.72E+02 0.00E+00 8.14E+02 0.00E+00
Worst 4.24E+02 5.35E+02 0.00E+00 8.68E+02 0.00E+00
Mean 3.86E+02 4.62E+02 0.00E+00 8.40E+02 0.00E+00
STD 19.46 44.01 0 11.26 0
F10 Ackley Best 5.80E+02 5.88E+02 2.91E+01 6.10E+02 2.91E+01
Worst 6.26E+02 6.52E+02 2.91E+01 6.29E+02 2.91E+01
Mean 6.06E+02 6.29E+02 2.91E+01 6.16E+02 2.91E+01
STD 11.65 14.17 0 6.21 0
F11 Griewank Best 6.96E+02 6.66E+03 1.64E+00 3.67E+04 3.73E+01
Worst 1.08E+04 1.30E+04 5.80E+03 4.16E+04 1.27E+04
Mean 7.41E+03 9.57E+03 2.80E+02 3.91E+04 4.07E+03
STD 2709.47 1488.27 1031.02 977.02 3213.44
F12 Penalized Best 4.85E+04 2.57E+06 2.71E+02 -2.18E+11 3.60E+00
Worst 3.99E+07 1.69E+10 2.71E+02 6.40E+10 2.71E+02
Mean 1.23E+07 2.28E+09 2.27E+02 -2.86E+10 1.94E+02
STD 11486247.2 433100633 76.47 6.63E+10 98.40

Based on Table 7, GWO performs better than any of the metaheuristics algorithms in applying to a
subset of functions with ID values F2 and F6, given that it is based on two quantitative metrics, namely
mean solution and STD, from 6 unimodal functions designed as F1 to F6. Meanwhile, RSA outperforms
all other algorithms in the F1, F3, F4, and F5 test functions.
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Subsequently, the analysis of six multimodal functions, identified as 7 through F12, reveals that the
RSA method consistently surpasses its competing counterparts. Specifically, it attains significantly
reduced mean solutions for functions F7, F8, F9, F10, and F12. RSA exhibits suboptimal performance
solely when confronted with the F11 function, wherein GWO demonstrates superior capabilities for this
specific function.

Similar benchmarking has been carried out by Yang [51], which shows that FA is superior to PSO
and GA in the Schwefel, Rosenbrock, Ackley, Rastrigin, and Griewank test functions. These results are
the same as the results obtained in this study. However, when faced with relatively new algorithms,
namely RSA and GWO, it turns out that FA's performance is inferior to both. This is due to RSA's
exploration ability, which uses two techniques: high walk and belly walk. Likewise, two other techniques
are used in the exploitation phase: hunting coordination and cooperation. These four techniques produce
great diversity. In addition, the stochastic coefficients of GWO produce dense solutions to exploit the
optimal solution area.

4.2. Evaluation of Empirical Results

This section presents the empirical findings derived from our experimental configuration,
encompassing model validation and assessment. A higher SA value signifies an estimation model's
robustness and statistical significance. A more excellent eftect size value indicates a reduced likelihood
that the predictive model was derived by random chance. To address these considerations, we pose two
research questions (RQ):

RQI: To what extent is P; superior to Py?

RQ2: To what extent do FA+UCP, GA+UCP, GWO+UCP, PSO+UCP, and RSA+UCP outperform
the Karner+UCP model?

4.2.1. RQ1: The performance of P; versus P

The five models underwent validation through the assessment of (SA) and ES (A), with the baseline
model being random guessing (Py). As provided in Table 8, all models achieved SA values superior to
random guessing, with FA+UCP achieving the highest SA value. This demonstrates that these models
were engaged in prediction rather than random guessing, as they consistently outperformed random
guessing. As a result, within the framework of this investigation, these models produced meaningful and
reliable predictions.

On the contrary, all models displayed notably superior ES measurements compared to Py. FA+UCP,
GA+UCP, GWO+UCP, PSO+UCP, and RSA+UCP demonstrated substantial effect size improvements.
Thus, we can confidently assert that the emergence of these five models was not a result of random

chance. The significance test rendered inconclusive results for all six null hypotheses, as p-values were
below the 0.05 threshold.

Table 8. The outcomes of SA, A, and Sig. are assessed relative to a baseline model of P,

Algorithm SA ES Sig.
FA+UCP 99.7337849077717 1.7306198385471399 0.00 (p < 0.05)
GA+UCP 99.70517937608656 1.729459431930611 0.00 (p < 0.05)

GWO+UCP 99.71166481163766 1.7315092038540898 0.00 (p < 0.05)
PSO+UCP 99.71243041125878 1.7279026606546029 0.00 (p < 0.05)

RSA+UCP 99.72075459687476 1.7289635371943752 4.2 p<0.05)

4.2.2. RQ2: The performance of FA+UCP, GA+UCP, GWO+UCP, PSO+UCP, and RSA+UCP

versus Karner+UCP model

The validation process of the five models was conducted using the Karner+UCP model as the
reference point. The selection of the Karner model is based on its significance as a fundamental reference
in the realm of effort estimation studies utilizing the UCP approach. Numerous prior studies, such as
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those conducted by Azzeh and Nassif [61], Silhavy ez al. [54], [62], and Nassif ez al. [37], have employed
the Karner model for comparative purposes in their investigations.

Based on Table 9, concerning the effect size, it is worth highlighting that all the models exhibited
substantially more significant effect size enhancements than the Karner+UCP model. These
enhancements exceeded the thresholds indicative of medium to significant effects, which can be
practically meaningful. Consequently, we can confidently assert that these five models did not arise by
chance since the significance test yielded rejection for all four null hypotheses.

Table 9. SA, A, and Sig. results are evaluated with the baseline model being Karner+UCP

Algorithm Standardized Accuracy A Sig.
FA+UCP 44.17589661527976 0.6380015048902027 0.00 (p < 0.05)
GA+UCP 38.891466757195836 0.5616821891487283 0.00 (p < 0.05)

GWO+UCP 38.736842824674646 0.5594490640918746 0.00 (p < 0.05)
PSO+UCP 39.97863138376142 0.5773833456833154 0.00 (p < 0.05)
RSA+UCP 41.60756357990875 0.6009088714141645 0.00 (p < 0.05)

Next, we assess the performance of all models to determine the optimum solution obtained for the
estimated UCP effort. Table 10 provides an overview of the examination results, assessed using six key
metrics: the best optimal solution, the least favorable solution, the average solution, the standard
deviation (STDev), MBRE, and MIBRE. The following sections further elaborate on these metrics to
comprehensively understand the results. In the context of UCP estimation, FA+UCP delivers the best
solution among all the algorithms. However, when considering the worst and mean solution metrics,
GA+UCP performs the worst and highest mean solution. This discovery is consistent with previous
research [28], which also demonstrated that the GA+UCP algorithm performed inadequately in UCP
effort estimation.

Table 10. Comparison of FA+UCP, GA+UCP, GWO+UCP, PSO+UCP, and RSA+UCP for UCP estimation

method
Method Best Worst Mean Median StDev MBRE MIBRE
FA+UCP 1008.4625 1008.5421 1008.4916 753.59 0.019 0.2689 0.1541
GA+UCP 1084.5897 1128.3754 1108.6966 826.87 8.3154 0.3123 0.1701
GWO+UCP 1082.8284 1123.9388 1100.0671 821.24 10.8890 0.3057 0.1680
PSO+UCP 1069.7307 1107.0869 1090.2106 771.72 8.7341 0.2821 0.1663
RSA+UCP 1054.8891 1055.4724 1054.9256 753.59 0.1368 0.2764 0.1613

Table 10 shows that the FA+UCP has performed better than the existing algorithms regarding
different key metrics, but these results need validation. In this section, a statistical analysis was carried
out to examine the characteristics of various algorithms. The Wilcoxon rank-sum test was utilized to
assess the comparative effectiveness of the algorithms employed in this investigation. The selection of
the Wilcoxon rank-sum test was based on the fact that the experimental data used for this analysis does
not need to adhere to any specific distribution and has less effect caused by outliers [63]. The Wilcoxon
test results for all algorithms are shown in Table 11. The table shows that the p-values for most
algorithms except GWO+UCP versus GA+UCP are less than 0.05. Hence, we can conclude that the
FA+UCP algorithm has significantly improved over other existing algorithms.

Table 11. The p-value results from the Wilcoxon-rank sum statistical test for each metaheuristic optimization
algorithm, along with Friedman mean rank (FMR)

FA+UCP GA+UCP GWO+UCP PSO+UCP RSA+UCP

FA+UCP 3.007E-13 2.4298E-13 0.000060 0.000196
GA+UCP 3.007E-13 0.237863 0.006960 0.002346
GWO+UCP 2.4298E-13 0.237863 0.010603 0.005171
PSO+UCP 0.000060 0.006960 0.010603 0.005062
RSA+UCP 0.000196 0.002346 0.005171 0.005062
FMR 1.73 3.94 4.10 2.76 2.66
Rank 1 4 5 3 2
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Fig. 9 presents a plot showing the actual and estimated effort values between FA+UCP and
Karner+UCP models. The x-axis represents the project instance, while the y-axis represents the value of
effort. The continuous black line represents the value of actual effort, while the dotted blue and orange
represent the estimated effort value produced by FA+UCP and Karner+UCP models. In all cases, the
models aim to produce estimated values that closely align with the actual effort values. When the dotted
blue or orange approaches and aligns with the solid black line, it indicates an accurate estimation by the
model. As evident from the results, it can be observed that FA+UCP exhibits the highest proximity to
the actual regression line, implying that the model was estimated with the highest degree of accuracy.

FA+UCP closely approximates the regression line, indicating that the model has been estimated with

the highest degree of precision.
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Fig. 9.The plot showing both the actual and estimated effort values between FA+UCP and Karner+UCP
models

In order to assess whether the optimization method is effective in finding optimum solutions for
UCP functions, further detailed analysis has been carried out. The convergence behavior comparison of
each optimization method from test data number 3 is shown in Fig. 10. The comparison reveals that
FA+UCP and PSO+UCP exhibit a faster convergence rate when compared with GWO+UCP, GA+UCP,

and RSA+UCP since the second iteration.
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Beyond convergence analysis, we also investigated diversity analysis for optimal solutions on the
benchmark algorithms with UCP estimating methods, as shown in Fig. 11. We see that the median
values of FA+UCP, PSO+UCP, and RSA+UCP are lower than those of GWO+UCP and GA+UCP.
From the interquartile perspective, all optimization-based algorithms show a similar shape size,
indicating that these models have the same spread.
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Fig. 11. Best solution diversity analysis of all models

As detailed in section 5.1, RSA and GWO consistently outperformed FA across all benchmark test
functions. However, in the evaluation of UCP estimation, FA+UCP exhibited superior performance
compared to RSA+UCP and GWO+UCP. This finding aligns with a prior study conducted by Ghatasheh
et al. [19], which employed COCOMO as the estimation method and indicated that FA outperforms
GA and PSO. The rationale behind this lies in the ability of FA+UCP to maximize the efficiency of
UCP convergence by handling smaller dimensional sizes effectively. This is critical because larger
dimensional sizes tend to result in suboptimal performance for optimization algorithms, as previously
documented by Boussaid ez al. [64], and Halim et al. [65]. Furthermore, GWO+UCP underperformed
compared to FA+UCP due to its optimal performance conditions being defined with population sizes of
50 and a maximum of 600 iterations [66]. In contrast, in our study, the parameter settings only three
dimensions and a maximum of 20 iterations.

4.3. Threats to Validity

Simple, average, and complex actors in the dataset were determined by previous researchers and are
publicly available. However, we are not aware as to how they were calculated. Thus, the accuracy of the
actors cannot be confirmed. This is a possible threat to construct validity. This study utilizes only one
dataset, which raises concerns about the generalizability of the results. Neverthless, the dataset employed
is an industrial dataset created by proficient developers. Consequently, the findings may be applicable to
software industrial practices. Furthermore, the dataset predominantly employ the waterfall development
methodology, indicating that the conclusions drawn may not be transferable to the agile methodology.

One possible threat to external validity in this study is the set of metaheuristic algorithms explored
(GA, PSO, GWO, RSA, and FA). Metaheuristic is vast and dynamic field, and any individual study can
only utilize a limited subset of the numerous known metaheuristic algorithms. For instance, this study
does not investigate Salp algorithms, which were emphasized by Tawhid and Ibrahim [67]. In practical
terms, it is not feasible to examine all conceivables algorithms. The most we can do is establish our
experimental procedure and anticipate that other researchers will implement it with a different set of
metaheuristic algorithms.
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5. Conclusion

This study suggests that the FA+UCP model exhibited outstanding results compared with GA+UCP,
PSO+UCP, GWO+UCP, and RSA+UCP. As a result, the FA+UCP model introduced in this study can
be valuable for improving the Use Case Point (UCP) estimation performance. Its high accuracy and
ability to search appropriate use case complexity weight make it a promising tool for UCP to provide
more accurate software effort estimation. Hence, the findings of this study hold practical implications
for software project managers. They can utilize the UCP estimation method which is optimized using
the Firefly algorithm. It must be borne in mind that the parameter configuration of FA+UCP in this
study, which is @ = 0.5,y = 1, was found to be weak in 12 classical test functions but excelled in
the UCP effort estimation evaluation. Therefore, further research is needed to identify the optimal
configuration for the Firefly algorithm to excel in both classical benchmark test functions and UCP
effort estimation evaluations.
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