
International Journal of Advances in Intelligent Informatics ISSN 2442-6571

Vol. 4, No. 1, March 2018, pp. 1-10 1

 https://doi.org/10.26555/ijain.v4i1.137 http://ijain.org ijain@uad.ac.id

A coarse-grained parallelization of genetic algorithms

Muhamad Radzi Rathomi a,b,1, Reza Pulungan a,2,*

a Department of Computer Science and Electronics, Universitas Gadjah Mada, Yogyakarta, Indonesia
b Department of Informatics, Universitas Maritim Raja Ali Haji, Tanjungpinang, Indonesia
1 radzi@umrah.ac.id; 2 pulungan@ugm.ac.id

* corresponding author

1. Introduction

Genetic algorithms (GA) are frequently used to solve scheduling, shortest paths, machine learning,
and modeling problems. Genetic algorithms are basically a search and optimization technique. The
working mechanism of GA is based on the principles of genetics and natural selection. On the other
hands, the must be solved problems become more complex and bigger. Consequently, it takes much
longer times and more advance objective functions to find optimal solutions. Until now, time complexity
analysis is still developed to get a good performance estimation of genetic algorithms [1]. Since the
complexity may certainly affect its processing time, a novel approach should be done to improve the GA
performance.

This paper investigates a new method to increase the GA speed of genetic algorithms in finding the
optimal solutions by parallelizing the processing of subpopulations. Splitting the population into
subpopulations may prevent premature convergence since each subpopulation finds a different genetic
combination. The proposed method employs two levels of parallelization: message passing and Single
Instruction Multiple Threads (SIMT). On the first level, message passing is used because of its ability to
connect more than one computer, and hence to provide, in principle, unlimited scalability. Previous
researches, such as Liu and Wang [2], have shown the feasibility of this parallelization. On the second
level, SIMT is used because it can generate a large number of threads and one individual can, therefore,
be processed by one thread, as shown in Zhang and He [3]. Rapid advances in the technology of general
purpose Graphics Processing Units (GPU) have allowed for massive numbers of threads in SIMT
parallelization.

The proposed coarse-grained genetic algorithm consist of several GAs, which perform concurrent
computations on different subpopulations. These genetic algorithms communicate with each other to
exchange their best individual information; this technique is often called migration. According to
Skolicki and De Jong [4], migration in a coarse-grained method a definite impact to data convergence.

ARTICL E INFO

ABSTRACT

Article history

Received December 26, 2017

Revised February 15, 2018

Accepted February 22, 2018

 Genetic algorithms are frequently used to solve optimization problems.
However, the problems become increasingly complex and time consuming.
One solution to speed up the genetic algorithm processing is to use
parallelization. The proposed parallelization method is coarse-grained and
employs two levels of parallelization: message passing with MPI and Single
Instruction Multiple Threads with GPU. Experimental results show that
the accuracy of the proposed approach is similar to the sequential genetic
algorithm. Parallelization with coarse-grained method, however, can
improve the processing and convergence speed of genetic algorithms.

This is an open access article under the CC–BY-SA license.

Keywords

Genetic algorithms

Parallelization

Coarse-grained

MPI

GPU

https://doi.org/10.26555/ijain.v4i1.137
https://doi.org/10.26555/ijain.v4i1.137
http://ijain.org/index.php/IJAIN/index
mailto:ijain@uad.ac.id?subject=[IJAIN]
mailto:pulungan@ugm.ac.id
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://crossmark.crossref.org/dialog/?doi=10.26555/ijain.v4i1.137&domain=pdf

2 International Journal of Advances in Intelligent Informatics ISSN 2442-6571

 Vol. 4, No. 1, March 2018, pp. 1-10

 Rathomi and Pulungan (A coarse-grained parallelization of genetic algorithms)

This method is relatively easier to implement compared to other methods, and furthermore, it may
result in shorter processing time in finding the optimal solutions.

Previous works on parallelization of genetic algorithms are plentiful. Li and Huang [5] conducted
research on parallel genetic algorithms, analyzed occurred shortcomings and solved them with an
adaptive migration strategy technique by adjusting the number of migrants using individual function
similarity. Falahiazar et al. [6] made modifications on the parallel genetic algorithms for a better
migration strategy. The technique used the max-min and a hill-climbing algorithm to structure the
genetic algorithm migration. Hedar et al. [7] proposed gene matrix technique; a parallel genetic
algorithm based on a distributed model to solve high-dimensional problems. Gene matrix of one
subpopulation migrates to other subpopulations to create an individual diversity in each subpopulation.

Umbarkar et al. [8] solved a premature convergence problem in a genetic algorithm with two
populations. Migration is done to perform r crossovers between two individuals in the two populations.
Processing is done by using multithreaded parallelization. Liu and Wang [2] used a parallel genetic
algorithm to solve non-deterministic polynomial-time hard problems; generalized assignment problems.
The developed asynchronous migration strategy allowed efficient interaction between processes,
improved communication, and reduced computing overlap significantly. On the other hands, other
researches emphasized their work on the diversity of the population. They modified and classified
individuals into three-category subpopulations: “good”, “moderate” and “bad”. The probability of
crossovers and mutations adapts itself based on a self-adaptive formula [9].

Wang et al. [10] implemented a hybrid parallel genetic algorithm based on two layers of parallelism:
process and thread. Their proposed coarse-grained method uses a hardware processing master-slave
model by integrating message-passing parallelism using Message Passing Interface (MPI) and shared-
memory parallelism using OpenMP [11]. Wahib et al. [12] parallelized genetic algorithms by using
SIMT architecture with general purpose GPUs. They discussed the features of the GPU and the relevant
issues when implementing parallel genetic algorithms. Johar et al. [13] conducted an analysis of genetic
algorithms implemented in parallel both CPU and GPU using CUDA [14] architecture. The analysis
was performed by comparing the operations performed in both implementations.

GPU Millan et al. [15] used to improve the computation time. Hou et al. [16] built a parallel genetic
algorithm that makes use of two parallel systems: multi-core CPU and many-core GPU. Furthermore,
Li et al. [17] also developed a parallel genetic algorithm that runs in GPU using island model. The last
three studies, however, did not employ message passing interface to migrate the best individuals. This
study combines both message passing and GPU to speed up parallel genetic algorithms. Network is
required for migration; hence CPU is used, but not to process genetic algorithm operations. GPU instead
processes each individual in the subpopulations as [15], [16] and [17]. GPU, however, spends a lot of
time to move individuals from host to device and vice versa; and this problem affects the resulting parallel
genetic algorithm. Asynchronous migration technique is proposed to handle this problem. The message
passing and GPU are combined to build a massive and scalable machine and to speed up parallel genetic
algorithms.

The rest of the paper is organized as follows: Section II provides a brief introduction to genetic
algorithms and granularity in parallel computation. Section III describes the proposed parallelization
methods. Section IV presents experimental results and their analysis, and Section V concludes the paper.

2. Method

2.1. Preliminaries

2.1.1. Simple Genetic Algorithm

The generic sequential genetic algorithm is shown in Fig. 1. In general, the most time-influential
part of the generic algorithm is the population size, a number of individuals in one population. If the
population size is large, then genetic algorithm takes a long time to complete its iterations up to the
defined maximum generation. Therefore, partitioning the population into subpopulations and then do

ISSN 2442-6571 International Journal of Advances in Intelligent Informatics 3
 Vol. 4, No. 1, March 2018, pp. 1-10

 Rathomi and Pulungan (A coarse-grained parallelization of genetic algorithms)

parallel processing on them may speed up the computation time. Each subpopulation is processed on
different computers connected by a network. Beside partitioning the population into subpopulations, on
certain operations, each individual in a subpopulation can also be processed in parallel. Hence,
parallelization can be applied to the generic sequential genetic algorithms in two levels. Section III will
discuss this parallelization scheme in detail.

Fig. 1. The generic sequential genetic algorithm.

2.1.2. Granularity in Parallel Computing

Granularity in parallel computing is a qualitative measure of the ratio of computation to
communication [18]. Periods of computation are typically separated from periods of communication by
synchronization events. There are two types of parallel program designs based on granularity: coarse-
grained and fine-grained. In the coarse-grained design, large amount of computation work is performed
between communication events. On the other hand, fine-grained design performs relatively small
amount of computation work between communication events.

Parallelization with fine-grained design facilitates load balancing nicely since many communication
events between processing keep the balance of the workload. Parallelization with coarse-grained design,
on the other hand, depends on size of the workload being processed. If the size of the workload being
worked on by each process can be divided equally, then load balancing can be achieved. Parallelization
with fine-grained design is, however, vulnerable to communication overhead, which results in the overall
speed that cannot be increased; and sometimes even decreases. The main cause is data flooding in
communication media. Thus, the parallelization with fine-grained design is not effective when used to
process large amount of data with slow communication media. The parallelization of genetic algorithms
in this paper will be designed with coarse-grained model.

2.2. Proposed Method

2.2.1. Parallelization of Genetic Algorithms

In this paper, we propose a method to develop parallel genetic algorithms with two levels of
parallelization as shown in Fig. 2. This proposed method is an improvement from Ratomi [19]. The first
level exploits the fact that the population can be partitioned into loosely dependent subpopulations,
while the second level exploits the fact that individuals in a subpopulation are independent of each other
and moreover perform similar computation.

On the first level, the population is divided into subpopulations by the number of available computing
nodes. This level uses of message-passing hardware with master-slave parallelism: node 0 (master)
broadcasts the size of the subpopulation to all slave nodes. Each slave node generates its own

Algorithm 1 (The generic sequential genetic algorithm)

Phase 1: Initialization:

 Step 1.1: Set parameters: Pc, Pm, popsize, and maxgen.

 Step 1.2: Generate popsize individuals randomly to build the initial population and

 evaluate their fitness values. gen = 0.

Phase 2: Main Loop. Repeat the following steps until gen > maxgen:

 Step 2.1: Select popsize individuals from the current population using Roulette Wheel

 Selection to generate mating pool.

 Step 2.2: Repeat the following operations until a new population with popsize individuals

 is generated: Select two individuals from the mating pool randomly without

 replacement to perform crossover with probability Pc, and perform mutation for

 every gene of the offspring with probability Pm. Then insert the mutant into

 a new population.

 Step 2.3: Evaluate the fitness value for every new individual in the new population.

 Step 2.4: Replace the current population with the new population. gen = gen + 1.

Phase 3: Submit the final popsize individuals as the result of the genetic algorithm.
End

4 International Journal of Advances in Intelligent Informatics ISSN 2442-6571

 Vol. 4, No. 1, March 2018, pp. 1-10

 Rathomi and Pulungan (A coarse-grained parallelization of genetic algorithms)

subpopulation. Subpopulations are processed using coarse-grained method: a slave node only establishes
communication to exchange its best individuals, which is transferred through the network. At the end,
the master node gathers all final subpopulations from all slave nodes and produces the final result. In
this study, the first level is implemented using MPI. Fig. 3 shows the proposed generic parallel genetic
algorithm. Each computing node runs the whole algorithm (from Phase 1 to the End) in parallel; this
corresponds to “Level I” in Fig. 2.

Fig. 2. The general parallelization design.

Fig. 3. The generic parallel genetic algorithm.

On the second level, parallelization will be performed in the processing of each individual (cf. “Level
II” in Fig. 2). However, not all of genetic operations is parallelized. Looping in each generation is
performed sequentially. The parts that are parallelized are genetic algorithm operations that have no
individual dependency, namely selection, crossover, mutation, individual evaluation, and updating the
population’s individuals. These correspond to Phase 2, Steps 2.1 until 2.4 in Fig. 3. Steps 2.1 until 2.4
in Phase 2 are all similar data updating operations that are performed lockstep for all individuals in the
subpopulation. Hence, these steps are further parallelized as a thread in each computing node’s GPU.

Algorithm 2 (The generic parallel genetic algorithm)

Phase 1: Initialization:

 Step 1.1: Receive spopsize from node 0.

 Step 1.2: Set parameters: Pc, Pm, and maxgen.

 Step 1.3: Generate spopsize individuals randomly to build the initial subpopulation and

 evaluate their fitness values and elitism. gen = 0.

Phase 2: Main Loop. Repeat the following steps until gen > maxgen:

 Step 2.1: Generate the mating pool from the current subpopulation using Tournament

 Selection.

 Step 2.2: Repeat the following operations until a new subpopulation with spopsize

 individuals is generated: Select two individuals from the mating pool randomly

 without replacement to perform crossover with probability Pc, and perform

 mutation for every gene of the offspring with probability Pm. Then insert the

 mutant into a new subpopulation.

 Step 2.3: Evaluate the fitness value for every new individual in the new subpopulation.

 Step 2.4: Replace the current subpopulation with the new subpopulation. gen = gen + 1.

 Step 2.5: Perform elitism and migration.

Phase 3: Submit the final spopsize individuals to node 0.

End

ISSN 2442-6571 International Journal of Advances in Intelligent Informatics 5
 Vol. 4, No. 1, March 2018, pp. 1-10

 Rathomi and Pulungan (A coarse-grained parallelization of genetic algorithms)

Since modern general-purpose GPUs have a large number of threads, this allows for speedy computation
of a subpopulation having a large number of individuals.

Threads’ IDs in the GPU are used as indices of the individuals. Hence, threads are generated as many
as the number of individuals in the subpopulation. Unbiased tournament is used in the selection method
because this selection method can be easily executed in parallel. Random permutation values are
generated only at the beginning of the execution of algorithm, and each thread builds its own mating
pool based on these random permutation values. In the crossover operation, each thread selects parents
(namely two individuals) randomly from the mating pool, and then based on Pc, the thread performs
crossover for these individuals. Afterward, each thread obtains offsprings produced by the crossover
operation, and based on Pm, applies mutation operations on these offsprings. Subsequently, all mutated
offsprings are simultaneously evaluated to obtain fitness values, and then individuals in the old
subpopulation are simultaneously replaced by new individuals. After previous sequence of operations is
completed, elitism operation is executed sequentially to obtain the best individual. The best individual
obtained is then copied to host CPU. Subsequently, MPI sends this individual to other nodes . All of
these steps are repeated until the predefined maximum generation is reached.

Memory allocation for data required in the genetic algorithm operations is carried out in the host as
well as in the GPU device. Although genetic algorithm operations are only performed on the device,
these data also need to be copied to the host so that the best individual can be delivered by MPI. At the
end of the genetic algorithm operations, all individuals at each node can be combined.

2.2.2. Distribution of Population

The distribution of population also influences the speed of parallel genetic algorithm because the
speed of algorithm depends on the speed of the computing node processing the most individuals. The
population is distributed, as far as possible, in equal size in order to achieve load-balanced nodes, and
the processing speed of each node is then relatively equal. The value distributed to each node is the size
of the node’s subpopulation that has been calculated in the master node. Each node then generates its
own subpopulation. If the size of the population is less than the number of nodes, each node processes
only one individual. If the size of the population is more than the number of nodes, population is divided
equally by rounding it up

2.2.3. Individual Migration Strategy

In this research, the migration process is integrated into elitism process, which derives the best
individual resulted from individual comparison in elitism memory. Individual migration among the slave
nodes is performed in one direction with a ring topology. The best individual in slave node i is sent to
slave node i+1, and so on until the last node sends its best individual to the first node. Two transfer
modes are available during the migration process: asynchronous and synchronous modes. In synchronous
mode, migration is carried out by directly sending out the best individual to another computing node.
On the other hand, in the asynchronous method, migration is carried out by first copying it to a buffer.
Individual’s migration in the asynchronous mode is performed by a separate thread, and the individual
that is sent and received is accessed through the buffer.

Fig. 4 depicts the working boundaries of threads in migration and elitism processes in asynchronous
mode. Genetic algorithm operations and individual migration work concurrently via a global shared
buffer that stores the best individuals. In order to avoid collisions in accessing the buffer, the buffer is
built with a handler, namely a status flag. If a migration thread wishes to send an individual, then it first
checks the status flag of the sender buffer; whether it is free or in use. If the status is in use, then the
migration thread must wait until the buffer’s status is free. Similar to elitism process in the genetic
algorithm operation, if the corresponding thread wishes to copy the individual from the receiver buffer,
then it must first check the status of the buffer whether it is free or in use. If the status is in use, then
the thread must wait until the status of the receiver buffer is free.

There is no migration on the second level, because the threads in the GPU work with Single
Instruction Multiple Threads model, and therefore there is no communication between the threads.
Communication only occurs between the host CPU and device GPU, namely to copy the best individual

6 International Journal of Advances in Intelligent Informatics ISSN 2442-6571

 Vol. 4, No. 1, March 2018, pp. 1-10

 Rathomi and Pulungan (A coarse-grained parallelization of genetic algorithms)

produced by elitism in the device memory to the elitism memory on the host, which then is migrated
using MPI.

Fig. 4. The working boundaries of migration threads and genetic algorithm operations threads in asynchronous

mode where communication proceeds via a shared buffer.

3. Results and Discussion

Experiments are conducted in computers with an Intel Core-i5 (4 CPU), 4 GB RAM, Linux
operating system Ubuntu LTS 14:04. The computer is connected by a network using Ethernet LAN,
each with an NVidia GeForce GT 420 GPU. In the experiments, the parameters of the genetic algorithm
use crossover probability 0.9, mutation probability 0.05, and population size 100 individuals [20]. The
number of copies for selection with unbiased tournament is 5 individuals. Experiments have been
conducted in sequential and parallel implementations; for parallel one, we have used 5 and 10 computer
nodes.

The datasets used in the experiments are related to Job Shop Scheduling Problem (JSSP) and are
derived from OR-Library [21]. The library contains 82 cases, among which the experiments only make
use of 10, namely ft10 (10x10), ft20 (20x5), la02 (10x5), 1a06 (15x5), la21 (15x10), la29 (20x10), la31
(30x10), la36 (15x15), orb01 (10x10), and orb04 (10x10). The numbers in brackets in the name of each
case indicate the size of the case. For example, ft10 (10x10) is a problem named ft10 with 10 products,
and to make one product, it must pass through 10 stages of work.

Three series of experiments are carried out in this study. The first series is intended to investigate
the effect of parallelization on the accuracy of the results of the genetic algorithm. Two tools are used
for this, namely the standard deviation (STD) and the Average Relative Percentage of Error (ARPE).
Standard deviation is used to measure the variability of the objective values produced by the genetic
algorithm, which in this experiment corresponds to the variability of the obtained makespan for each
JSSP case. A makespan is the total length of the time required to complete all tasks in a JSSP case. Given
a JSSP case study, it is run n times with different initializations for each parallelization methods. Each
run produces a makespan. Based on the obtained makespans, their standard deviation is defined in (1).

ὛὝὈ
В Ӷ

ȟ (1)

where xi is the i-th makespan and ὼ is the average value of all makespans. ARPE, on the other hand,
is used to quantify the error obtained by the genetic algorithm searching in this study compared to the
best makespan ever obtained in the previous researches for each JSSP case study. Let xo be the makespan
produced by running the current implementation, and xb be the best makespan ever obtained by earlier
researches, then ARPE is defined in (2).

ISSN 2442-6571 International Journal of Advances in Intelligent Informatics 7
 Vol. 4, No. 1, March 2018, pp. 1-10

 Rathomi and Pulungan (A coarse-grained parallelization of genetic algorithms)

ὃὙὖὉ
Ⱦ

ρππȢ (2)

The second and third series are conducted to investigate the effect of parallelization on the
computation time and the transformation of the objective values, respectively. In the second series, the
computation times of the implementation of the proposed parallelization method on many scenarios and
case studies are compared to those of sequential implementation. In the third series, the transformation
of the objective values in each generation of a particular JSSP case study for different parallelization
methods is studied.

3.1. Accuracy

In the first series of experiments we investigate the effect of parallelization on the accuracy of the
results of the genetic algorithm. Table 1 and Table 2 show the results of the first series of experiments.

Table 1. Standard Deviation Comparison

No. Case Sequential
Parallel sync. migration Parallel async. migration

5 nodes 10 nodes 5 nodes 10 nodes

1 ft10 (10x10) 0.516 0.000 0.316 0.483 0.422
2 ft20 (20x5) 8.260 7.367 6.736 1.989 9.055

3 la02 (10x5) 0.000 9.698 9.698 15.830 18.490

4 1a06 (15x5) 0.000 0.000 0.000 0.000 0.000

5 la21 (15x10) 2.530 3.162 2.898 3.098 3.098
6 la29 (20x10) 0.000 0.000 0.000 0.000 0.000

7 la31 (30x10) 14.200 4.111 4.909 23.510 10.630

8 la36 (15x15) 1.581 1.265 1.449 0.949 1.449

9 orb01 (10x10) 0.000 0.000 0.000 0.000 0.000
10 orb04 (10x10) 0.000 0.000 0.000 0.000 0.000

Table 1 presents the standard deviations of the obtained makespans for all 10 JSSP cases under
sequential and parallel implementations. For each JSSP case, 20 executions of the genetic algorithm have
been run with different initialization values. Each of these executions produces a certain makespan as a
solution. The standard deviations of all produced makespans for each JSSP case basically measure the
variability of the results. Table 1 indicates that the standard deviations of the results of sequential and
parallel implementations are close to each other and their difference is not significant. Even the highest
standard deviation is still relatively small, namely for the la36 case, with parallel genetic algorithm using
asynchronous migration model that shows the standard deviation value of 23.51. This suggests that
genetic algorithms with sequential and parallel implementations converge to a solution. The only
anomaly is case la02; but even in this case, the obtained makespans are not really divergent.

In this series of experiments, we also investigate the distance between the obtained makespans to
makespans already known in previous researches; Table 2 shows the results. Columns with heading “x”
contain the smallest makespan ever obtained for each case in various settings. Negative ARPE values
occur in cases la06 and la31; this means that the makespans obtained in this research for these two cases
are smaller than the makespans ever obtained in earlier researches. For case la31, the parallel
implementation can even achieve smaller makespan than that of the standard genetic algorithm.

However, most of ARPE values in Table 2 are greater than 0 because they do not reach the makespans
already known, unlike the Hybrid PGA (the fifth and sixth columns) that obtained ARPE values less
than 1 [20]. This is because JSSP coding used in this research is a direct encoding. Direct encoding
depends on the order of jobs in a given problem, so the set of possible combinations formed is small. In
contrast, previous studies mostly used indirect encoding, whose set of possible combinations is more
than that of direct one. Our purpose in using direct encoding is that we are more interested in observing
the impact of migration in the parallel genetic algorithm on the structure of chromosomes permutation
migrated. This is because direct encoding is highly dependent on the structure of chromosomes
permutation. If the migration process damages the structure of chromosomes permutation, it will
certainly result in larger ARPE values and the search results will not satisfy the given genetic algorithm

8 International Journal of Advances in Intelligent Informatics ISSN 2442-6571

 Vol. 4, No. 1, March 2018, pp. 1-10

 Rathomi and Pulungan (A coarse-grained parallelization of genetic algorithms)

case. In general, the performance of the searching for optimal values using genetic algorithms that run
in sequential and parallel is similar. Therefore, the proposed parallel genetic algorithm is not worse at
finding the smallest makespan on the JSSP cases used in this study than the standard genetic algorithm.

Table 2. ARPE Comparison

Case

Known

make-

span

Sequential
Hybrid

PGA

Parallel sync. migration Parallel async. migration

5 nodes 10 nodes 5 nodes 10 nodes

x arpe x arpe x arpe x arpe x arpe x arpe

ft10 930 1,133 2.183 930 0.00 1,134 2.194 1,133 2.183 1,133 2.183 1,133 2.183

ft20 1,165 1,495 2.833 1,165 0.00 1,495 2.833 1,495 2.833 1,495 2.833 1,495 2.833

la02 660 758 1.485 662 0.30 758 1.485 758 1.485 758 1.485 758 1.485
la06 945 927 -0.190 945 0.00 927 -0.190 927 -0.190 927 -0.190 927 -0.190

la21 1,046 1,229 1.750 1,048 0.19 1,229 1.750 1,229 1.750 1,229 1.750 1,229 1.750

la29 1,153 1,420 2.316 1,153 0.00 1,420 2.316 1,420 2.316 1,420 2.316 1,420 2.316

la31 1,888 1,829 -0.310 1,890 0.11 1,784 -0.550 1,784 -0.550 1,784 -0.550 1,784 -0.550
la36 1,268 1,491 1.759 1,272 0.32 1,491 1.760 1,491 1.759 1,491 1.759 1,491 1.759

orb01 1,059 1,279 2.080 1,055 0.28 1,279 2.080 1,279 2.080 1,279 2.080 1,279 2.080

orb04 1,005 1,037 0.318 600 0.50 1,037 0.318 1,037 0.318 1,037 0.318 1,037 0.318

3.2. Computation Times

In this series of experiments, we observe the computation times of the implementation of the
proposed parallelization method on many scenarios and case studies and compare them to those of
sequential implementation. For this purpose, the computation time of each scenario is obtained by
running the corresponding implementation for 10,000 generations. Table 3 shows the resulting
computation times. Note that the columns “S(n)” derived speedup when using n nodes.

Table 3. Computation Time Comparison

Case Sequential
Hybrid

PGA

Parallel sync. migration Parallel async. migration

5 nodes S(5) 10 nodes S(10) 5 nodes S(5) 10 nodes S(10)

ft10 7.2074 11.20 9.4300 0.76 6.3377 1.14 9.8424 0.73 5.6769 1.27

ft20 7.1077 10.54 10.0318 0.71 6.6469 1.07 9.9139 0.72 5.9356 1.20
la02 3.6237 8.87 5.4549 0.66 3.8780 0.93 1.7461 2.08 1.6172 2.24

la06 5.2901 13.30 7.4948 0.71 5.2459 1.01 7.4625 0.71 4.6139 1.15

la21 10.5859 10.20 13.3214 0.79 9.0921 1.16 12.3286 0.86 8.1389 1.30

la29 14.5084 - 17.7133 0.82 11.9485 1.21 16.6437 0.87 10.8637 1.34
la31 21.8751 - 27.5067 0.80 18.1841 1.20 26.1276 0.84 16.8045 1.30

la36 16.1710 - 19.4508 0.83 13.0613 1.24 18.2899 0.88 12.0839 1.34

orb01 7.1614 - 9.2501 0.77 6.3660 1.12 8.4875 0.84 5.6760 1.26

orb04 7.2171 11.98 9.3505 0.77 6.3579 1.14 8.5109 0.85 5.6900 1.27

 Average 6.609 Average 0.76 Average 1.14 Average 0.94 Average 1.37

Table 3 shows that speed increase is obtained only when the genetic algorithm is executed in parallel
using 10 nodes. Genetic algorithms running using 5 parallel nodes is not faster than genetic algorithms
executed sequentially. The main cause of the lack of speed increase is due to the ineffective use of the
GPU memory. The size of data processed in the high-speed memory is relatively small, since most of
the data is processed using memory of slower access speed. Table 3 also shows that genetic algorithms
running in parallel with asynchronous migration are faster than synchronous migration. The use of
buffers and assignments of different threads to handle the migration process and the operation of genetic
algorithms can reduce the waiting time required for sending and receiving the best individual through
the network. Only one case is solved longer by the parallel implementation using 10 nodes (with
synchronous migration) than the sequential one, namely case la02. This is because the time required to
initialize MPI on the first test is longer than the time required to initialize MPI on subsequent tests.

However, speedups obtained in this research are more stable than previous studies [20]. As can be
observed in Table 3, using Hybrid PGA (the third column) only six cases end up with speedups in
processing time, although they amounted to an average of 6.6. In this research, speedups are obtained

ISSN 2442-6571 International Journal of Advances in Intelligent Informatics 9
 Vol. 4, No. 1, March 2018, pp. 1-10

 Rathomi and Pulungan (A coarse-grained parallelization of genetic algorithms)

in all of the parallel, although most of them have speedup less than 2. This is because JSSP direct
encoding used in this research are simpler than indirect encoding. Moreover, the migration technique
of asynchronous model in this research is easily implemented than Liu and Wang [2]. This research uses
only buffer to save the individual to be sent and received, and consequently the technique can reduce
the migration processing time.

3.3. Transformation of Objective Values

In this series of experiments, we investigate the transformation of the objective values in each
generation of a particular JSSP case study for different parallelization methods. Comparison of the
objective values transformation is carried out to observe and compare the speed of convergence of the
genetic algorithm, sequential and parallel. The selected JSSP case study is la31 and the transformation
is observed for the first 1,000 generations in finding the smallest makespan. Fig. 5(a) shows the
transformation of the objective values of the sequential and parallel implementations with synchronous
migration. The parallel genetic algorithm, both with 5 nodes and 10 nodes, converges faster than the
sequential one. At the first 100 generations, the objective values obtained by the parallel genetic
algorithm decrease more steeply than the sequential genetic algorithm. The performance of parallel
genetic algorithm that uses 5 nodes or 10 nodes with synchronous migration model is relatively the
same.

Parallel genetic algorithm with asynchronous migration model also converges faster than the
sequential one as shown by Fig. 5(b). However, the parallel genetic algorithm with asynchronous
migration model takes longer to converge than with synchronous migration model. In the first 1,000
generations, the objective value obtained by the parallel genetic algorithm with asynchronous migration
model is still higher, above 1,850, compared to the parallel genetic algorithm with synchronous
migration model, which only reaches 1,810.

 (a) Synchronous migration (b) Asynchronous migration

Fig. 5. Transformation of objective values in 1,000 generations.

4. Conclusion

Parallelization of genetic algorithms using coarse-grained method can be done by combining two
models of processing hardware: MPI and GPU. Based on the standard deviation and ARPE obtained
from the experiments, the precision of the results obtained by the parallel genetic algorithm and
sequential genetic algorithm is relatively the same, with the biggest standard deviation difference of
approximately 9.31. The computation time in finding a solution using parallel genetic algorithm is not
yet optimal when compared to sequential genetic algorithm. Nevertheless, the proposed parallel
implementation reach the convergence result faster than the sequential one. Furthermore, parallel
genetic algorithm with asynchronous migration model is faster than the synchronous migration model.

In the future, we would like to investigate the use of GPU memory processing techniques to reduce
data transfer time to improve the performance of the parallel genetic algorithm. For the migration
process, it is also worth looking into a client-server software that is lighter to carry out the message-
passing operations. Thus, the data transmission process can be efficiently shortened.

1800

1850

1900

1950

2000

2050

2100

2150

2200

2250

1

5
1

1
01

1
51

2
01

2
51

3
01

3
51

4
01

4
51

5
01

5
51

6
01

6
51

7
01

7
51

8
01

8
51

9
01

9
51

O
b
je

ct
iv

e	
V

a
lu

e

Generation

Sequential

Par.	5	nodes

Par.	10	nodes

1800

1850

1900

1950

2000

2050

2100

2150

2200

2250

1

5
1

1
01

1
51

2
01

2
51

3
01

3
51

4
01

4
51

5
01

5
51

6
01

6
51

7
01

7
51

8
01

8
51

9
01

9
51

O
b
je

ct
iv

e	
V

a
lu

e

Generation

Sequential

Par.	5	nodes

Par.	10	nodes

10 International Journal of Advances in Intelligent Informatics ISSN 2442-6571

 Vol. 4, No. 1, March 2018, pp. 1-10

 Rathomi and Pulungan (A coarse-grained parallelization of genetic algorithms)

References

[1] P. S. Oliveto and C. Witt, “Improved time complexity analysis of the simple genetic algorithm,” Theoretical
Comput. Sci., vol. 605, pp. 21-41, 2015, doi: https://doi.org/ 10.1016/j.tcs.2015.01.002.

[2] Y. Y. Liu and S. Wang, “A scalable parallel genetic algorithm for the generalized assignment problem,”
Parallel Computing, vol. 46, pp. 98–119, 2015, doi: https://doi.org/10.1016/j.parco.2014.04.008.

[3] S. Zhang and Z. He, “Implementation of parallel genetic algorithm based on CUDA,” in Advances in
Computation and Intelligence (ISICA 2009). Springer Berlin Heidelberg, 2009, pp. 24–30, doi:
http://dx.doi.org/10.1007/978-3-642-04843-2_4.

[4] Z. Skolicki and K. De Jong, “The influence of migration sizes and intervals on island models,” in Proceedings
of the 7th Annual Conference on Genetic and Evolutionary Computation (GECCO’05). ACM, 2005, pp.
1295–1302, doi: http://doi.acm.org/10.1145/1068009.1068219.

[5] W. Li and Y. Huang, “A distributed parallel genetic algorithm oriented adaptive migration strategy,” in
Natural Computation (ICNC), 8th International Conference on, 2012, pp. 592–595, doi:
https://doi.org/10.1109/ICNC.2012.6234584.

[6] L. Falahiazar, M. Teshnehlab, and A. Falahiazar, “Parallel genetic algorithm based on a new migration
strategy,” in Recent Advances in Computing and Software Systems (RACSS), International Conference on, 2012,
pp. 37–41, doi: https://doi.org/10.1109/RACSS.2012.6212694.

[7] A.-R. Hedar, A. Abdelsamee, A. Fouad, and S. T. Amin, “Advanced parallel genetic algorithm with gene
matrix for global optimization,” Advanced Machine Learning Technologies and Applications (AMLTA 2012),
Springer Berlin Heidelberg, 2012, pp. 295–303, doi: http://dx.doi.org/10.1007/ 978-3-642-35326-0_30.

[8] A. J. Umbarkar, M. S. Joshi, and W.-C. Hong, “Multithreaded parallel dual population genetic algorithm
(MPDPGA) for unconstrained function optimizations on multi-core system,” Appl. Math. Comput., vol.
243, pp. 936–949, 2014, doi: http://dx.doi.org/10.1016/j.amc.2014.06.033.

[9] F. Lu, Y. Ge, and L. Gao, “A novel genetic algorithm with multiple sub-population parallel search
mechanism,” in Natural Computation (ICNC), 2010 Sixth International Conference on, vol. 5, 2010, pp.
2249–2253, doi: https://doi.org/10.1109/ICNC.2010.5584437.

[10] Z. R. Wang, T. Ju, D. W. Cui, and X. H. Hei, “A study of hybrid parallel genetic algorithm model,” in
Natural Computation (ICNC), 7th International Conference on, vol. 2, 2011, pp. 1038–1042, doi:
https://doi.org/10.1109/ICNC.2011.6022186.

[11] OpenMP, “The OpenMP API specification for parallel programming,” 2017, available at:
http://openmp.org/.

[12] M. Wahib, A. Munawar, M. Munetomo, and K. Akama, “Optimization of parallel genetic algorithms for
nVidia GPUs,” in Evolutionary Computation (CEC), 2011 IEEE Congress on, 2011, pp. 803–811, doi:
https://doi.org/10.1109/CEC.2011.5949701.

[13] F. M. Johar, F. A. Azmin, M. K. Suaidi, A. S. Shibghatullah, B. H. Ahmad, S. N. Salleh, M. Z. A. A. Aziz,
and M. M. Shukor, “A review of genetic algorithms and parallel genetic algorithms on graphics processing
unit (GPU),” in Control System, Computing and Engineering (ICCSCE), 2013 IEEE International Conference
on, 2013, pp. 264–269, doi: https://doi.org/10.1109/ICCSCE.2013.6719971.

[14] NVidia, “CUDA parallel computing platform,” 2017, available at: https://developer.nvidia.com/cuda-zone.

[15] J. O. C. Millan, V. H. A. Calvo, R. M. P. Chaves, “Quadratic assignment problem (QAP) on GPU through
a master-slave PGA,” Vision Electronica, 2016, vol. 10, issue 2, pp. 220-231, 2016, available at:
https://dialnet.unirioja.es/descarga/articulo/6081873.pdf.

[16] N. Hou, F. He, Y. Zhou, Y. Chen, X. Yan, “A parallel genetic algorithm with dispersion correction for
HW/SW partitioning on multi-core CPU and many-core GPU”, IEEE Access, vol. 6, pp. 883-898, 2018,
doi: https://doi.org/10.1109/ACCESS.2017.2776295.

[17] C. Li, C. Lin, J. Liu, “Parallel genetic algorithm on the graphics processing units using island model and
simulated annealing”, Advances in Mechanical Engineering, 2017, vol. 9, issue 7, 2017, doi:
https://doi.org/10.1177/1687814017707413.

[18] B. Barney, Introduction to Parallel Computing. Lawrence Livermore National Laboratory, 2017, available
at: https://computing.llnl.gov/tutorials/parallel_comp/.

[19] M. R. Rathomi, “Peningkatan kecepatan pemrosesan algoritma genetika dengan paralelisasi menggunakan
metode coarse-grained,” Master’s thesis, Universitas Gadjah Mada, Indonesia, 2015, available at:
https://goo.gl/Bsi7s5.

[20] R. Yusof, M. Khalid, G. T. Hui, S. M. Yusof, and M. F. Othman, “Solving job shop scheduling problem
using a hybrid parallel micro genetic algorithm,” Applied Soft Computing, vol. 11, no. 8, pp. 5782–5792,
2011, doi: https://doi.org/10.1016/j.asoc.2011.01.046.

[21] D. C. Mattfeld and R. J. Vaessens, “OR-library: a set of 82 JSP test instances,” 2017, available at:
http://people.brunel.ac.uk/~mastjjb/jeb/info.html.

https://doi.org/%2010.1016/j.tcs.2015.01.002
https://doi.org/10.1016/j.parco.2014.04.008
http://dx.doi.org/10.1007/978-3-642-04843-2_4
http://doi.acm.org/10.1145/1068009.1068219
https://doi.org/10.1109/ICNC.2012.6234584
https://doi.org/10.1109/RACSS.2012.6212694
http://dx.doi.org/10.1007/%20978-3-642-35326-0_30
http://dx.doi.org/10.1016/j.amc.2014.06.033
https://doi.org/10.1109/ICNC.2010.5584437
https://doi.org/10.1109/ICNC.2011.6022186
http://openmp.org/
https://doi.org/10.1109/CEC.2011.5949701
https://doi.org/10.1109/ICCSCE.2013.6719971
https://developer.nvidia.com/cuda-zone
https://dialnet.unirioja.es/descarga/articulo/6081873.pdf
https://doi.org/10.1109/ACCESS.2017.2776295
https://doi.org/10.1177/1687814017707413
https://computing.llnl.gov/tutorials/parallel_comp/
https://goo.gl/Bsi7s5
https://doi.org/10.1016/j.asoc.2011.01.046
http://people.brunel.ac.uk/~mastjjb/jeb/info.html

