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1. Introduction 

Genetic algorithms (GA) are frequently used to solve scheduling, shortest paths, machine learning, 
and modeling problems. Genetic algorithms are basically a search and optimization technique. The 
working mechanism of GA is based on the principles of genetics and natural selection. On the other 
hands, the must be solved problems become more complex and bigger. Consequently, it takes much 
longer times and more advance objective functions to find optimal solutions. Until now, time complexity 
analysis is still developed to get a good performance estimation of genetic algorithms [1]. Since the 
complexity may certainly affect its processing time, a novel approach should be done to improve the GA 
performance. 

This paper investigates a new method to increase the GA speed of genetic algorithms in finding the 
optimal solutions by parallelizing the processing of subpopulations. Splitting the population into 
subpopulations may prevent premature convergence since each subpopulation finds a different genetic 
combination. The proposed method employs two levels of parallelization: message passing and Single 
Instruction Multiple Threads (SIMT). On the first level, message passing is used because of its ability to 
connect more than one computer, and hence to provide, in principle, unlimited scalability. Previous 
researches, such as Liu and Wang [2], have shown the feasibility of this parallelization. On the second 
level, SIMT is used because it can generate a large number of threads and one individual can, therefore, 
be processed by one thread, as shown in Zhang and He [3]. Rapid advances in the technology of general 
purpose Graphics Processing Units (GPU) have allowed for massive numbers of threads in SIMT 
parallelization. 

The proposed coarse-grained genetic algorithm consist of several GAs, which perform concurrent 
computations on different subpopulations. These genetic algorithms communicate with each other to 
exchange their best individual information; this technique is often called migration. According to 
Skolicki and De Jong [4], migration in a coarse-grained method a definite impact to data convergence. 
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This method is relatively easier to implement compared to other methods, and furthermore, it may 
result in shorter processing time in finding the optimal solutions. 

Previous works on parallelization of genetic algorithms are plentiful. Li and Huang [5] conducted 
research on parallel genetic algorithms, analyzed occurred shortcomings and solved them with an 
adaptive migration strategy technique by adjusting the number of migrants using individual function 
similarity. Falahiazar et al. [6] made modifications on the parallel genetic algorithms for a better 
migration strategy. The technique used the max-min and a hill-climbing algorithm to structure the 
genetic algorithm migration. Hedar et al. [7] proposed gene matrix technique; a parallel genetic 
algorithm based on a distributed model to solve high-dimensional problems. Gene matrix of one 
subpopulation migrates to other subpopulations to create an individual diversity in each subpopulation. 

Umbarkar et al. [8] solved a premature convergence problem in a genetic algorithm with two 
populations. Migration is done to perform r crossovers between two individuals in the two populations. 
Processing is done by using multithreaded parallelization. Liu and Wang [2] used a parallel genetic 
algorithm to solve non-deterministic polynomial-time hard problems; generalized assignment problems. 
The developed asynchronous migration strategy allowed efficient interaction between processes, 
improved communication, and reduced computing overlap significantly. On the other hands, other 
researches emphasized their work on the diversity of the population. They modified and classified 
individuals into three-category subpopulations: “good”, “moderate” and “bad”. The probability of 
crossovers and mutations adapts itself based on a self-adaptive formula [9]. 

Wang et al. [10] implemented a hybrid parallel genetic algorithm based on two layers of parallelism: 
process and thread. Their proposed coarse-grained method uses a hardware processing master-slave 
model by integrating message-passing parallelism using Message Passing Interface (MPI) and shared-
memory parallelism using OpenMP [11]. Wahib et al. [12] parallelized genetic algorithms by using 
SIMT architecture with general purpose GPUs. They discussed the features of the GPU and the relevant 
issues when implementing parallel genetic algorithms. Johar et al. [13] conducted an analysis of genetic 
algorithms implemented in parallel both CPU and GPU using CUDA [14] architecture. The analysis 
was performed by comparing the operations performed in both implementations. 

GPU Millan et al. [15] used to improve the computation time. Hou et al. [16] built a parallel genetic 
algorithm that makes use of two parallel systems: multi-core CPU and many-core GPU. Furthermore, 
Li et al. [17] also developed a parallel genetic algorithm that runs in GPU using island model. The last 
three studies, however, did not employ message passing interface to migrate the best individuals. This 
study combines both message passing and GPU to speed up parallel genetic algorithms. Network is 
required for migration; hence CPU is used, but not to process genetic algorithm operations. GPU instead 
processes each individual in the subpopulations as [15], [16] and [17]. GPU, however, spends a lot of 
time to move individuals from host to device and vice versa; and this problem affects the resulting parallel 
genetic algorithm. Asynchronous migration technique is proposed to handle this problem. The message 
passing and GPU are combined to build a massive and scalable machine and to speed up parallel genetic 
algorithms. 

The rest of the paper is organized as follows: Section II provides a brief introduction to genetic 
algorithms and granularity in parallel computation. Section III describes the proposed parallelization 
methods. Section IV presents experimental results and their analysis, and Section V concludes the paper. 

2. Method 

2.1. Preliminaries 

2.1.1. Simple Genetic Algorithm 

The generic sequential genetic algorithm is shown in Fig. 1. In general, the most time-influential 
part of the generic algorithm is the population size, a number of individuals in one population. If the 
population size is large, then genetic algorithm takes a long time to complete its iterations up to the 
defined maximum generation. Therefore, partitioning the population into subpopulations and then do 
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parallel processing on them may speed up the computation time. Each subpopulation is processed on 
different computers connected by a network. Beside partitioning the population into subpopulations, on 
certain operations, each individual in a subpopulation can also be processed in parallel. Hence, 
parallelization can be applied to the generic sequential genetic algorithms in two levels. Section III will 
discuss this parallelization scheme in detail. 

 

Fig. 1. The generic sequential genetic algorithm. 

2.1.2. Granularity in Parallel Computing 

Granularity in parallel computing is a qualitative measure of the ratio of computation to 
communication [18]. Periods of computation are typically separated from periods of communication by 
synchronization events. There are two types of parallel program designs based on granularity: coarse-
grained and fine-grained. In the coarse-grained design, large amount of computation work is performed 
between communication events. On the other hand, fine-grained design performs relatively small 
amount of computation work between communication events. 

Parallelization with fine-grained design facilitates load balancing nicely since many communication 
events between processing keep the balance of the workload. Parallelization with coarse-grained design, 
on the other hand, depends on size of the workload being processed. If the size of the workload being 
worked on by each process can be divided equally, then load balancing can be achieved. Parallelization 
with fine-grained design is, however, vulnerable to communication overhead, which results in the overall 
speed that cannot be increased; and sometimes even decreases. The main cause is data flooding in 
communication media. Thus, the parallelization with fine-grained design is not effective when used to 
process large amount of data with slow communication media. The parallelization of genetic algorithms 
in this paper will be designed with coarse-grained model.  

2.2. Proposed Method 

2.2.1. Parallelization of Genetic Algorithms 

In this paper, we propose a method to develop parallel genetic algorithms with two levels of 
parallelization as shown in Fig. 2. This proposed method is an improvement from Ratomi [19]. The first 
level exploits the fact that the population can be partitioned into loosely dependent subpopulations, 
while the second level exploits the fact that individuals in a subpopulation are independent of each other 
and moreover perform similar computation. 

On the first level, the population is divided into subpopulations by the number of available computing 
nodes. This level uses of message-passing hardware with master-slave parallelism: node 0 (master) 
broadcasts the size of the subpopulation to all slave nodes. Each slave node generates its own 

Algorithm 1 (The generic sequential genetic algorithm) 

Phase 1: Initialization: 

      Step 1.1: Set parameters: Pc, Pm, popsize, and maxgen. 

      Step 1.2: Generate popsize individuals randomly to build the initial population and  

                      evaluate their fitness values. gen = 0. 

Phase 2: Main Loop. Repeat the following steps until gen > maxgen: 

      Step 2.1: Select popsize individuals from the current population using Roulette Wheel  

                      Selection to generate mating pool. 

      Step 2.2: Repeat the following operations until a new population with popsize individuals  

                      is generated: Select two individuals from the mating pool randomly without  

                      replacement to perform crossover with probability Pc, and perform mutation for  

                      every gene of the offspring with probability Pm. Then insert the mutant into  

                      a new population. 

      Step 2.3: Evaluate the fitness value for every new individual in the new population. 

      Step 2.4: Replace the current population with the new population. gen = gen + 1.  

Phase 3: Submit the final popsize individuals as the result of the genetic algorithm.  
End 
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subpopulation. Subpopulations are processed using coarse-grained method: a slave node only establishes 
communication to exchange its best individuals, which is transferred through the network. At the end, 
the master node gathers all final subpopulations from all slave nodes and produces the final result. In 
this study, the first level is implemented using MPI. Fig. 3 shows the proposed generic parallel genetic 
algorithm. Each computing node runs the whole algorithm (from Phase 1 to the End) in parallel; this 
corresponds to “Level I” in Fig. 2. 

 

Fig. 2. The general parallelization design. 

 

Fig. 3. The generic parallel genetic algorithm. 

On the second level, parallelization will be performed in the processing of each individual (cf. “Level 
II” in Fig. 2). However, not all of genetic operations is parallelized. Looping in each generation is 
performed sequentially. The parts that are parallelized are genetic algorithm operations that have no 
individual dependency, namely selection, crossover, mutation, individual evaluation, and updating the 
population’s individuals. These correspond to Phase 2, Steps 2.1 until 2.4 in Fig. 3. Steps 2.1 until 2.4 
in Phase 2 are all similar data updating operations that are performed lockstep for all individuals in the 
subpopulation. Hence, these steps are further parallelized as a thread in each computing node’s GPU. 

 
 

Algorithm 2 (The generic parallel genetic algorithm)  

Phase 1: Initialization: 

      Step 1.1: Receive spopsize from node 0. 

      Step 1.2: Set parameters: Pc, Pm, and maxgen. 

      Step 1.3: Generate spopsize individuals randomly to build the initial subpopulation and 

                      evaluate their fitness values and elitism. gen = 0. 

Phase 2: Main Loop. Repeat the following steps until gen > maxgen: 

      Step 2.1: Generate the mating pool from the current subpopulation using Tournament  

                      Selection.  

      Step 2.2: Repeat the following operations until a new subpopulation with spopsize  

                      individuals is generated: Select two individuals from the mating pool randomly  

                      without replacement to perform crossover with probability Pc, and perform  

                      mutation for every gene of the offspring with probability Pm. Then insert the  

                      mutant into a new subpopulation. 

      Step 2.3: Evaluate the fitness value for every new individual in the new subpopulation. 

      Step 2.4: Replace the current subpopulation with the new subpopulation. gen = gen + 1.  

      Step 2.5: Perform elitism and migration. 

Phase 3: Submit the final spopsize individuals to node 0.  

End 



ISSN 2442-6571 International Journal of Advances in Intelligent Informatics 5 
 Vol. 4, No. 1, March 2018, pp. 1-10 

 Rathomi and Pulungan (A coarse-grained parallelization of genetic algorithms) 

Since modern general-purpose GPUs have a large number of threads, this allows for speedy computation 
of a subpopulation having a large number of individuals. 

Threads’ IDs in the GPU are used as indices of the individuals. Hence, threads are generated as many 
as the number of individuals in the subpopulation. Unbiased tournament is used in the selection method 
because this selection method can be easily executed in parallel. Random permutation values are 
generated only at the beginning of the execution of algorithm, and each thread builds its own mating 
pool based on these random permutation values. In the crossover operation, each thread selects parents 
(namely two individuals) randomly from the mating pool, and then based on Pc, the thread performs 
crossover for these individuals. Afterward, each thread obtains offsprings produced by the crossover 
operation, and based on Pm, applies mutation operations on these offsprings. Subsequently, all mutated  
offsprings are simultaneously evaluated to obtain fitness values, and then individuals in the old 
subpopulation are simultaneously replaced by new individuals. After previous sequence of operations is 
completed, elitism operation is executed sequentially to obtain the best individual. The best individual 
obtained is then copied to host CPU. Subsequently, MPI sends this individual to other nodes . All of 
these steps are repeated until the predefined maximum generation is reached. 

Memory allocation for data required in the genetic algorithm operations is carried out in the host as 
well as in the GPU device. Although genetic algorithm operations are only performed on the device, 
these data also need to be copied to the host so that the best individual can be delivered by MPI. At the 
end of the genetic algorithm operations, all individuals at each node can be combined. 

2.2.2. Distribution of Population 

The distribution of population also influences the speed of parallel genetic algorithm because the 
speed of algorithm depends on the speed of the computing node processing the most individuals. The 
population is distributed, as far as possible, in equal size in order to achieve load-balanced nodes, and 
the processing speed of each node is then relatively equal. The value distributed to each node is the size 
of the node’s subpopulation that has been calculated in the master node. Each node then generates its 
own subpopulation. If the size of the population is less than the number of nodes, each node processes 
only one individual. If the size of the population is more than the number of nodes, population is divided 
equally by rounding it up 

2.2.3. Individual Migration Strategy 

In this research, the migration process is integrated into elitism process, which derives the best 
individual resulted from individual comparison in elitism memory. Individual migration among the slave 
nodes is performed in one direction with a ring topology. The best individual in slave node i is sent to 
slave node i+1, and so on until the last node sends its best individual to the first node. Two transfer 
modes are available during the migration process: asynchronous and synchronous modes. In synchronous 
mode, migration is carried out by directly sending out the best individual to another computing node. 
On the other hand, in the asynchronous method,  migration is carried out  by first copying it to a buffer. 
Individual’s migration in the asynchronous mode is performed by a separate thread, and the individual 
that is sent and received is accessed through the buffer. 

Fig. 4 depicts the working boundaries of threads in migration and elitism processes in asynchronous 
mode. Genetic algorithm operations and individual migration work concurrently via a global shared 
buffer that stores the best individuals. In order to avoid collisions in accessing the buffer, the buffer is 
built with a handler, namely a status flag. If a migration thread wishes to send an individual, then it first 
checks the status flag of the sender buffer; whether it is free or in use. If the status is in use, then the 
migration thread must wait until the buffer’s status is free. Similar to elitism process in the genetic 
algorithm operation, if the corresponding thread wishes to copy the individual from the receiver buffer, 
then it must first check the status of the buffer whether it is free or in use. If the status is in use, then 
the thread must wait until the status of the receiver buffer is free. 

There is no migration on the second level, because the threads in the GPU work with Single 
Instruction Multiple Threads model, and therefore there is no communication between the threads. 
Communication only occurs between the host CPU and device GPU, namely to copy the best individual 
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produced by elitism in the device memory to the elitism memory on the host, which then is migrated 
using MPI. 

 

Fig. 4. The working boundaries of migration threads and genetic algorithm operations threads in asynchronous 

mode where communication proceeds via a shared buffer. 

3. Results and Discussion 

Experiments are conducted in computers with an Intel Core-i5 (4 CPU), 4 GB RAM, Linux 
operating system Ubuntu LTS 14:04. The computer is connected by a network using Ethernet LAN, 
each with an NVidia GeForce GT 420 GPU. In the experiments, the parameters of the genetic algorithm 
use  crossover probability 0.9, mutation probability 0.05, and population size 100 individuals [20]. The 
number of copies for selection with unbiased tournament is 5 individuals. Experiments have been 
conducted in sequential and parallel implementations; for parallel one, we have used 5 and 10 computer 
nodes. 

The datasets used in the experiments are related to Job Shop Scheduling Problem (JSSP) and are 
derived from OR-Library [21]. The library contains 82 cases, among which the experiments only make 
use of 10, namely ft10 (10x10), ft20 (20x5), la02 (10x5), 1a06 (15x5), la21 (15x10), la29 (20x10), la31 
(30x10), la36 (15x15), orb01 (10x10), and orb04 (10x10). The numbers in brackets in the name of each 
case indicate the size of the case. For example, ft10 (10x10) is a problem named ft10 with 10 products, 
and to make one product, it must pass through 10 stages of work. 

Three series of experiments are carried out in this study. The first series is intended to investigate 
the effect of parallelization on the accuracy of the results of the genetic algorithm. Two tools are used 
for this, namely the standard deviation (STD) and the Average Relative Percentage of Error (ARPE). 
Standard deviation is used to measure the variability of the objective values produced by the genetic 
algorithm, which in this experiment corresponds to the variability of the obtained makespan for each 
JSSP case. A makespan is the total length of the time required to complete all tasks in a JSSP case. Given 
a JSSP case study, it is run n times with different initializations for each parallelization methods. Each 
run produces a makespan. Based on the obtained makespans, their standard deviation is defined in (1). 

ὛὝὈ
В Ӷ

ȟ   (1) 

where xi is the i-th makespan and ὼ is the average value of all makespans. ARPE, on the other hand, 
is used to quantify the error obtained by the genetic algorithm searching in this study compared to the 
best makespan ever obtained in the previous researches for each JSSP case study. Let xo be the makespan 
produced by running the current implementation, and xb be the best makespan ever obtained by earlier 
researches, then ARPE is defined in (2). 
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The second and third series are conducted to investigate the effect of parallelization on the 
computation time and the transformation of the objective values, respectively. In the second series, the 
computation times of the implementation of the proposed parallelization method on many scenarios and 
case studies are compared to those of sequential implementation. In the third series, the transformation 
of the objective values in each generation of a particular JSSP case study for different parallelization 
methods is studied. 

3.1. Accuracy 

In the first series of experiments we investigate the effect of parallelization on the accuracy of the 
results of the genetic algorithm. Table 1 and Table 2 show the results of the first series of experiments. 

Table 1.  Standard Deviation Comparison 

No. Case Sequential 
Parallel sync. migration Parallel async. migration 

5 nodes 10 nodes 5 nodes 10 nodes 

1 ft10 (10x10)  0.516 0.000 0.316 0.483 0.422 
2 ft20 (20x5)  8.260 7.367 6.736 1.989 9.055 

3 la02 (10x5)  0.000 9.698 9.698 15.830 18.490 

4 1a06 (15x5)  0.000 0.000 0.000 0.000 0.000 

5 la21 (15x10)  2.530 3.162 2.898 3.098 3.098 
6 la29 (20x10)  0.000 0.000 0.000 0.000 0.000 

7 la31 (30x10)  14.200 4.111 4.909 23.510 10.630 

8 la36 (15x15)  1.581 1.265 1.449 0.949 1.449 

9 orb01 (10x10)  0.000 0.000 0.000 0.000 0.000 
10 orb04 (10x10)  0.000 0.000 0.000 0.000 0.000 

 

Table 1 presents the standard deviations of the obtained makespans for all 10 JSSP cases under 
sequential and parallel implementations. For each JSSP case, 20 executions of the genetic algorithm have 
been run with different initialization values. Each of these executions produces a certain makespan as a 
solution. The standard deviations of all produced makespans for each JSSP case basically measure the 
variability of the results. Table 1 indicates that the standard deviations of the results of sequential and 
parallel implementations are close to each other and their difference is not significant. Even the highest 
standard deviation is still relatively small, namely for the la36 case, with parallel genetic algorithm using 
asynchronous migration model that shows the standard deviation value of 23.51. This suggests that 
genetic algorithms with sequential and parallel implementations converge to a solution. The only 
anomaly is case la02; but even in this case, the obtained makespans are not really divergent. 

In this series of experiments, we also investigate the distance between the obtained makespans to 
makespans already known in previous researches; Table 2 shows the results. Columns with heading “x” 
contain the smallest makespan ever obtained for each case in various settings. Negative ARPE values 
occur in cases la06 and la31; this means that the makespans obtained in this research for these two cases 
are smaller than the makespans ever obtained in earlier researches. For case la31, the parallel 
implementation can even achieve smaller makespan than that of the standard genetic algorithm.  

However, most of ARPE values in Table 2 are greater than 0 because they do not reach the makespans 
already known, unlike the Hybrid PGA (the fifth and sixth columns) that obtained ARPE values less 
than 1 [20]. This is because JSSP coding used in this research is a direct encoding. Direct encoding 
depends on the order of jobs in a given problem, so the set of possible combinations formed is small. In 
contrast, previous studies mostly used indirect encoding, whose set of possible combinations is more 
than that of direct one. Our purpose in using direct encoding is that we are more interested in observing 
the impact of migration in the parallel genetic algorithm on the structure of chromosomes permutation 
migrated. This is because direct encoding is highly dependent on the structure of chromosomes 
permutation. If the migration process damages the structure of chromosomes permutation, it will 
certainly result in larger ARPE values and the search results will not satisfy the given genetic algorithm 
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case. In general, the performance of the searching for optimal values using genetic algorithms that run 
in sequential and parallel is similar. Therefore, the proposed parallel genetic algorithm is not worse at 
finding the smallest makespan on the JSSP cases used in this study than the standard genetic algorithm. 

Table 2.  ARPE Comparison 

Case 

Known 

make- 

span 

Sequential 
Hybrid 

PGA 

Parallel sync. migration Parallel async. migration 

5 nodes 10 nodes 5 nodes 10 nodes 

x arpe x arpe x arpe x arpe x arpe x arpe 

ft10 930 1,133 2.183 930 0.00 1,134 2.194 1,133 2.183 1,133 2.183 1,133 2.183 

ft20 1,165 1,495 2.833 1,165 0.00 1,495 2.833 1,495 2.833 1,495 2.833 1,495 2.833 

la02 660 758 1.485 662 0.30 758 1.485 758 1.485 758 1.485 758 1.485 
la06 945 927 -0.190 945 0.00 927 -0.190 927 -0.190 927 -0.190 927 -0.190 

la21 1,046 1,229 1.750 1,048 0.19 1,229 1.750 1,229 1.750 1,229 1.750 1,229 1.750 

la29 1,153 1,420 2.316 1,153 0.00 1,420 2.316 1,420 2.316 1,420 2.316 1,420 2.316 

la31 1,888 1,829 -0.310 1,890 0.11 1,784 -0.550 1,784 -0.550 1,784 -0.550 1,784 -0.550 
la36 1,268 1,491 1.759 1,272 0.32 1,491 1.760 1,491 1.759 1,491 1.759 1,491 1.759 

orb01 1,059 1,279 2.080 1,055 0.28 1,279 2.080 1,279 2.080 1,279 2.080 1,279 2.080 

orb04 1,005 1,037 0.318 600 0.50 1,037 0.318 1,037 0.318 1,037 0.318 1,037 0.318 
 

3.2. Computation Times 

In this series of experiments, we observe the computation times of the implementation of the 
proposed parallelization method on many scenarios and case studies and compare them to those of 
sequential implementation. For this purpose, the computation time of each scenario is obtained by 
running the corresponding implementation for 10,000 generations. Table 3 shows the resulting 
computation times. Note that the columns “S(n)” derived speedup when using n nodes. 

Table 3.  Computation Time Comparison 

Case Sequential 
Hybrid 

PGA  

Parallel sync. migration Parallel async. migration 

5 nodes S(5) 10 nodes S(10) 5 nodes S(5) 10 nodes S(10) 

ft10 7.2074 11.20 9.4300 0.76 6.3377 1.14 9.8424 0.73 5.6769 1.27 

ft20 7.1077 10.54 10.0318 0.71 6.6469 1.07 9.9139 0.72 5.9356 1.20 
la02 3.6237 8.87 5.4549 0.66 3.8780 0.93 1.7461 2.08 1.6172 2.24 

la06 5.2901 13.30 7.4948 0.71 5.2459 1.01 7.4625 0.71 4.6139 1.15 

la21 10.5859 10.20 13.3214 0.79 9.0921 1.16 12.3286 0.86 8.1389 1.30 

la29 14.5084 - 17.7133 0.82 11.9485 1.21 16.6437 0.87 10.8637 1.34 
la31 21.8751 - 27.5067 0.80 18.1841 1.20 26.1276 0.84 16.8045 1.30 

la36 16.1710 - 19.4508 0.83 13.0613 1.24 18.2899 0.88 12.0839 1.34 

orb01 7.1614 - 9.2501 0.77 6.3660 1.12 8.4875 0.84 5.6760 1.26 

orb04 7.2171 11.98 9.3505 0.77 6.3579 1.14 8.5109 0.85 5.6900 1.27 

 Average 6.609 Average 0.76 Average 1.14 Average 0.94 Average 1.37 
 

Table 3 shows that speed increase is obtained only when the genetic algorithm is executed in parallel 
using 10 nodes. Genetic algorithms running using 5 parallel nodes is not faster than genetic algorithms 
executed sequentially. The main cause of the lack of speed increase is due to the ineffective use of the 
GPU memory. The size of data processed in the high-speed memory is relatively small, since most of 
the data is processed using memory of slower access speed. Table 3 also shows that genetic algorithms 
running in parallel with asynchronous migration are faster than synchronous migration. The use of 
buffers and assignments of different threads to handle the migration process and the operation of genetic 
algorithms can reduce the waiting time required for sending and receiving the best individual through 
the network. Only one case is solved longer by the parallel implementation using 10 nodes (with 
synchronous migration) than the sequential one, namely case la02. This is because the time required to 
initialize MPI on the first test is longer than the time required to initialize MPI on subsequent tests.  

However, speedups obtained in this research are more stable than previous studies [20]. As can be 
observed in Table 3, using Hybrid PGA (the third column) only six cases end up with speedups in 
processing time, although they amounted to an average of 6.6. In this research, speedups are obtained 
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in all of the parallel, although most of them have speedup less than 2. This is because JSSP direct 
encoding used in this research are simpler than indirect encoding. Moreover, the migration technique 
of asynchronous model in this research is easily implemented than Liu and Wang [2]. This research uses 
only buffer to save the individual to be sent and received, and consequently the technique can reduce 
the migration processing time. 

3.3. Transformation of Objective Values 

In this series of experiments, we investigate the transformation of the objective values in each 
generation of a particular JSSP case study for different parallelization methods. Comparison of the 
objective values transformation is carried out to observe and compare the speed of convergence of the 
genetic algorithm, sequential and parallel. The selected JSSP case study is la31 and the transformation 
is observed for the first 1,000 generations in finding the smallest makespan. Fig. 5(a) shows the 
transformation of the objective values of the sequential and parallel implementations with synchronous 
migration. The parallel genetic algorithm, both with 5 nodes and 10 nodes, converges faster than the 
sequential one. At the first 100 generations, the objective values obtained by the parallel genetic 
algorithm decrease more steeply than the sequential genetic algorithm. The performance of parallel 
genetic algorithm that uses 5 nodes or 10 nodes with synchronous migration model is relatively the 
same.  

Parallel genetic algorithm with asynchronous migration model also converges faster than the 
sequential one as shown by Fig. 5(b). However, the parallel genetic algorithm with asynchronous 
migration model takes longer to converge than with synchronous migration model. In the first 1,000 
generations, the objective value obtained by the parallel genetic algorithm with asynchronous migration 
model is still higher, above 1,850, compared to the parallel genetic algorithm with synchronous 
migration model, which only reaches 1,810. 

 

                   (a) Synchronous migration                                            (b) Asynchronous migration 

Fig. 5. Transformation of objective values in 1,000 generations. 

4. Conclusion 

Parallelization of genetic algorithms using coarse-grained method can be done by combining two 
models of processing hardware: MPI and GPU. Based on the standard deviation and ARPE obtained 
from the experiments, the precision of the results obtained by the parallel genetic algorithm and 
sequential genetic algorithm is relatively the same, with the biggest standard deviation difference of 
approximately 9.31. The computation time in finding a solution using parallel genetic algorithm is not 
yet optimal when compared to sequential genetic algorithm. Nevertheless, the proposed parallel 
implementation reach the convergence result faster than the sequential one. Furthermore, parallel 
genetic algorithm with asynchronous migration model is faster than the synchronous migration model.  

In the future, we would like to investigate the use of GPU memory processing techniques to reduce 
data transfer time to improve the performance of the parallel genetic algorithm. For the migration 
process, it is also worth looking into a client-server software that is lighter to carry out the message-
passing operations. Thus, the data transmission process can be efficiently shortened. 
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