International Journal of Advances in Intelligent Informatics

ISSN 2442-6571

Vol. 10, No. 3, August 2024, pp. 460-470 460

I

Job scheduling reservations on cloud resources R)
Check for
updates

Ardi Pujiyanta »", Fiftin Noviyanto **

2 Department of Informatics, Universitas Ahmad Dahlan, Kec. Banguntapan, Kab. Bantul, Daerah Istimewa Yogyakarta 55191, Indonesia
" ardipujiyanta@tif.uad.ac.id; 2 fiftin.noviyanto@tif.uad.ac.id

* corresponding author

ARTICLE INFO

Article history

Received November 20, 2023
Revised January 17, 2024
Accepted March 11, 2024
Available online August 31, 2024

ABSTRACT

The current application of cloud computing focuses more on research
problems. One of the main problems in the cloud is job allocation. Jobs are
dynamically allocated to server processors. All cloud-virtualized hardware is
available to users on demand and can be dynamically upgraded. Resource
scheduling is critical in cloud research due to its large execution time and
resource costs. The differences in resource scheduling criteria and
parameters used cause various categories of Resource Scheduling
Algorithms. Resource scheduling has a goal: identifying the right resources

g;y::iocr:r;puting to scl}edule workloads on time, improving resource gtiliza..tion effecti.veness,
Idle time and, in other words, minimizing workload completion time. Mapping the
Virtual view right workloads to resources will result in good scheduling. Another goal
Waiting time of resource scheduling is to identiﬁ/_ adequate and appropriate w_orkloads.
Makespan So, it can support scheduling multiple workloads and meet various QoS

needs in cloud computing. The aim of this research is to determine the
value of waiting time, idle time, and makespan in cloud resources. The
proposed method is to sort the arrival times of jobs with the least workload
and place them in a virtual view before scheduling them on cloud resources.
Experimental results show that the proposed method has an idle time of
25.3% and FCFS is 43.1%, while for backfilling, it is 31.5%. The average
makespan reduction for FCFS is 16.73%, and for backfilling, it is 12.87%.
The average decrease in AWT for FCFS was 13.3%), and for backfilling, it
was 12.03%. The results of this research can be applied to cloud rentals
with flexible times.

1. Introduction

Cloud computing uses virtualization technology to offer services. The services provided can be in the
form of storage computing via the internet network. Task allocation is one of the main problems in the
cloud [1]—[4]. Task allocation can be done dynamically on the server processor. An unlimited collection
of resources in the cloud is used for various computing needs [5]. Distributed platforms are utilized
efficiently to get the best resource management services from cloud systems [6]. There are many
techniques for effective resource management in the cloud, such as cloud job scheduling, resource
migration, etc. Choosing the right technique will help save costs and good response time. So it benefits
cloud users [7]-[9]. The cloud provides virtualized computing hardware similar to a public utility, so it
is called Infrastructure as a Service (IaaS). Services are available to users on demand and can be improved
dynamically. The cloud computing service model refers to applications and software platforms, hence
the name Software-as-a-Service (SaaS) [10].

d. | heeps://doi.org/10.26555/ijain.v10i3.1421 @v http://ijain.org @ ijain@uad.ac.id

https://doi.org/10.26555/ijain.v10i3.1421
http://ijain.org/index.php/IJAIN/index
mailto:ijain@uad.ac.id?subject=[IJAIN]
mailto:ardipujiyanta@tif.uad.ac.id
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://crossmark.crossref.org/dialog/?doi=10.26555/ijain.v10i3.1421&domain=pdf

461 International Journal of Advances in Intelligent Informatics ISSN 2442-6571
Vol. 10, No. 3, August 2024, pp. 460-470

Scheduling is the distribution of certain work on resources to be completed efficiently. The main
objectives are (i) reducing deadlines and maximizing resource utilization, (i) optimizing the server in
executing tasks, and (iii) working on higher-priority jobs first and reducing completion time. Another
advantage of scheduling is that it increases system throughput and improves performance [11]. The
required level of service quality can be met by the minimum number of resources used and the workload
can be maintained or by minimizing the completion time of the workload (maximizing throughput)
[12]. Mapping workloads to resources is necessary for scheduling [13]. So, identifying sufficient
workloads will support the scheduling of several workloads. QoS requirements, such as CPU utilization,
availability, reliability, security, etc., will be met [14], [15].

In backfilling scheduling, two things are generally measured: the accuracy of predictions and the
measurement of scheduling performance [16]. In dynamic cloud scheduling, a backfilling algorithm is
used to divide tasks into two queues [17]. The proposed method is the Simple Backfilling Algorithm
(SBA) and DCBA in cloud computing. Both algorithms provide good performance for balanced or
moderate workloads and also provide better performance when the workload becomes heavier. This
method can also be implemented for all cloud tasks in future work [18]-[20]. The applied technique
combines FCFS with a backfilling algorithm. It works by scanning the queue in real time. The proposed
algorithm allows jobs at the back of the queue to be processed without delaying the head of the queue.
Further experimental results show that the number of initial reservations accepted by a cluster must be

below a threshold to maintain cluster performance [21].

In his research [22], the M/G/1 queuing system was used. Strategic customers must decide whether
to reserve a server first (and thus receive higher priority) or ignore the reservation. Server reservations in
advance are subject to a fee. This study characterizes customer behavior strategies, equilibrium outcomes,
and revenue maximization policies. Customers will be charged according to the amount of resources
used. The main problem CPs face is choosing the right PM so that the new VM host still meets end
user requirements. The distribution characteristics and scalability of cloud resources are taken into
consideration [23]. In this paper [24], Static Independent Task Scheduling on Virtual Servers is
proposed. Tasks are allocated to VMs by measuring the availability of each resource. Processing power,

cost, and amount of processing are used in grouping tasks.

The literature review shows that the proposed architecture and scheduling algorithm will be
influenced by factors such as idle time, waiting time, resource availability, and time horizon. So it
becomes a challenge and limitation for existing resource scheduling algorithms. The aim of the research
that will be carried out is to try to overcome the things above. The factors mentioned above focus on
mapping jobs to virtual machines for an optimal schedule. This research proposes an FCFS slot-free
method used to identify idle resources by utilizing user-submitted parameters to reduce resource
execution delays, increase makespan values, and reduce job waiting times.

2. Method

2.1. System Architecture for Cloud Computing

Fig. 1 shows our cloud service system, where the number of virtual machines (VMs) is equal to the
number of machines in the logical view. Virtual machines (VMs) are a subset of cloud resources that can
be allocated to cloud services. The proposed system consists of cloud system information (CSI), Logical
view(LV), Local scheduler (LS).

Pujiyanta and Noviyanto (Job scheduling reservations on cloud resources)

ISSN 2442-6571 International Journal of Advances in Intelligent Informatics 462
Vol. 10, No. 3, August 2024, pp. 460-470

l Report completed(9) Datacenter
_________________________________ .
@) &) Get Vi list(4) 1
Cloud User — Sort |
Submit Jobs L jobs Scheduler v |
1
1 Cloud Information 1
: Systems(CIS) :
1 Job Schedule 1
1 finished(8) Jobs(5) I
: Register V(1) :
1 1
job accepted(6) Logical Virtual machine !
: View Execution(Vi....Vm :
1 1
Lo o o o = = = = = = = - — 1

Fig. 1.Proposed job allocation flow in the cloud

Fig. 1 can be explained as follows: the number and status of Virtual Machines in a logical view are
registered in the CIS, with the initial status of the Virtual Machine being free (List resource (1)). The
user submits a reservation (2), then the work enters the task pool to be accommodated and sorted based
on priority and then submitted to the scheduler (3). In the next step, the scheduler will check the Virtual
Machine status on CIS (4), and whether a Virtual Machine status can be used. If the Virtual Machine
status is free, then schedule job (5) from the logical view. All jobs that have been scheduled in the logical
view will be sent to the user that the job is accepted (job accepted) (6) and executed (7) at a certain
timeslot and a certain Virtual Machine number in the physical view. Virtual Machines that have finished
executing in the logical view are also finished executing on the physical view. The status of the Virtual
Machine on the CIS is changed by the logical view to free, and the scheduler gets a notification from
the logical view that a job has finished executing (8). The scheduler then informs the user that the job
has finished executing (9).

The function of each component in Fig. 1 above is as follows: 1) Cloud Information Systems(CIS):
Stores a list of existing virtual machine resource information; 2) Logical view (LV): This component
functions to place a list of jobs that will be executed on the virtual machine; 3) Local scheduler (LS):

This component functions to schedule incoming jobs that will be executed on the virtual machine.

2.2. Proposed Algorithm

In this section, we present a new scheduling algorithm that maximizes resource utilization, minimum

makespan, and minimizes delay time in the cloud.

Step 1: Create Vyy = Viyy, V2, Vs, -, V} into a set of resources. Step 2: Register the number of
virtual machines on the Cloud Information System (CIS). Step 3: Sort jobs B = By, By, B3, ..., B; in
ascending order. Step 4: Read the list of available virtual machines Vyy = Vi1, Va2, Vis, -, Vj. Step 5:
Schedule ordered jobs B = By, By, Bs, ..., B; , in the logical view (the number of machines), in the
logical view is equal to the number of virtual machines created). Step 6: Inform the user that the job
was accepted and will be executed. Step 7: Schedule and execute job B = By, By, B3, ..., B; on the
available virtual machines. Step 8: Mark or delete jobs that have finished executing on the virtual
machine and tell the scheduler that the jobs have finished executing. Step 9: Inform the user that the

work has been completed

Notation Explanation, time of the earliest start time of the job (twet): the fastest execution time of
a job. Start time to execute the job (tmd): the time a job starts to be executed. Completion time to

execute the job (tasa): earliest execution time until the end of job execution. The end time to execute

Pujiyanta and Noviyanto (Job scheduling reservations on cloud resources)

463 International Journal of Advances in Intelligent Informatics ISSN 2442-6571

Vol. 10, No. 3, August 2024, pp. 460-470
I

the job (tpa): the latest execution start time. Execution time of the job (te): execution time. Relaxed

time (ts): the difference between the actual execution start time and the earliest execution start time.

Algorithm: Job scheduling algorithm

Input: Job (jobld, t4sq, tya, te, numjob)

par
Output: RIT, AWT, Makespan

Begin()

// Declaration and Initialization; Virtual logical (VL)
update(Table(Vm))

CIS€<Register Vi

Bi& Sort jobs

Read Vm

/7 Schedule ordered jobs B;

Free€<(tp, — tasa)

Note € false;

If ('Note) then

start € tyer;

finish € t,,0; + to;

flex € start - ty,,0;

while(!Note AND (t,q — tqsq)<=Free)

min € minR(start, finish);

If (min > 0) then

allocVL (Id, jobId, tyer, start, tye, te);

suk € true;

else

start € time + 1;

finish € start + t, - 1;

flex = start - tyer;

End

End while

End

RIT €Finishy,epious — Starteyrrene // calculate RIT
TotalRIT€ Y528 RIT //calculate the total RIT
Makespan € max; ¢jop i F;

WT & Startpeg-Start,ey

//job accepten Vy; € V,// execute job V; on the virtual machine

Pujiyanta and Noviyanto (Job scheduling reservations on cloud resources)

ISSN 2442-6571 International Journal of Advances in Intelligent Informatics 464

Vol. 10, No. 3, August 2024, pp. 460-470
|

Lines 2 to 9 describe the declaration and initialization of the values used in the algorithm. Lines 10
to 13, calculation of the value of the job sent by the user. In lines 14 to 19, the loop is used to search
for unused space or empty space in the virtual view. If there is free or unused space, the job will be
allocated. In lines 21 to 25, the idle time, waiting time, and makespan values will be calculated. Line 26

of the job, will be executed on the virtual machine according to the existing virtual view.

2.3. Illustration of Method

Table 1. Shows the jobs sent by the user, with the job attribute tweet being the execution start time,
ts being the flexible time, te being the time required to execute, and CN being the number of resolutions

required.
Table 1. Jobs submitted by users
Submit_Job tywet ts te CN
1 0 0 2 2
2 0 0 3 2
3 0 3 4 1
4 0 0 4 1
5 1 5 5 1
6 1 6 3 2
7 1 6 3 1
8 2 9 5 1
9 2 9 3 1
10 3 7 3 1
11 3 8 4 2

All jobs sent by users will find a place on a logical node; if there is an empty place, then the job will
be placed on a logical node; if there is no empty place, the job will be shifted according to the flexible
time required. For example, for job number 3, execution time starts from t=0 to t=3. If there is an empty
space in the slot range, the job will be placed in the logical view. If there are no empty places then the
job will be rejected. Fig. 2 shows that job number 3 is placed in slot number 2, meaning that the job is
shifted to the limit of slot number 2 for initial execution. The user will be notified that his job was

accepted and will be executed.

V410 10|30 30 30 30| 30 &0 B8O &0 30
Vi(10 10|70 70 70(%0 90 90 |100 100 100
72120 20 2060 &0 60110 110 110 110
V120 20 20|60 60 60 (110 110 110 110
VO [40 40 40 40([30 50 50 30 350
0 1 2 3 4 3 i 7 2 9 1 11

Fig. 2.Job placement in the logical view

2.4. Performance Metrics

Scheduling is a list of tasks that determines how competing tasks access one or more reusable

resources. These resources can be hardware, such as processors, communications lines, storage devices,
]

Pujiyanta and Noviyanto (Job scheduling reservations on cloud resources)

465 International Journal of Advances in Intelligent Informatics ISSN 2442-6571
Vol. 10, No. 3, August 2024, pp. 460-470

or software. Task scheduling is assigning tasks to specific resources by starting and ending task times
with certain limits. Task scheduling is an integrated part of cloud computing. The purpose of task
scheduling is to allocate resources for task implementation. Task scheduling guides resource allocation
because there are many nodes on which tasks can run. The problem is how to assign tasks to those
resources. This assignment is known as task allocation to the resources scheduled by the scheduler.

Performance metrics are used to measure certain attributes in a proposed or used scheduling algorithm.
2.4.1. Resource Idle Time (RIT)

A resource may not be usable even if a reservation request is available [25]. Delay times occur because
scheduling policies do not match the allocation of reservation requests. RIT is calculated by applying the

formula below;
RIT = Finishpyepious — Startcurrent ()

When there is a reservation request with a conflict, the following equation calculates the total

resource idle time.
Total RIT = Y58 RIT Q)

2.4.2. Makespan
Makespan: Last job completion time. Users want to shorten their application completion time [26]—
[28].

Makespan = max; ¢jop i F; 3)

Where F; indicates the completion time of job i
2.4.3. Waiting Time

Sometimes, a resource is unavailable when a reservation requires it, but the resource can be booked
at a different time [29], [30]. The difference between the expected and actual start times is the waiting
time, as shown in Equation 3.

Waiting Time (WT) = Start,eser — Start, e, @)
Total Waiting Time (TWT) is the total waiting time in a timeslot, shown by equation 4
Waiting Time (WT) = Start,eser — Start,ey (5)

The size value refers to the reservation length of a particular timeslot. So the Average Waiting Time

is shown by equation 5.

TWT

No reservasi

Average Waiting Time (AWT) = (6)

2.5. Workload

Configure the entities used in the simulation environment. Randomly generated workloads with
different job sizes from 100 to 800. The number of virtual machines used is 30. The number of data
centers is 1, with the number of hosts being 30. The scheduler is space shared, which only allows one
job to run at a certain time within the resource certain. Sets of executed jobs are independent of each
other.

Pujiyanta and Noviyanto (Job scheduling reservations on cloud resources)

ISSN 2442-6571 International Journal of Advances in Intelligent Informatics 466
Vol. 10, No. 3, August 2024, pp. 460-470

3. Results and Discussion

The device uses Java Developer, Windows 11 operating system, 11th Gen Intel(R) Core(TM) CPU
i3-1115G4 @ 3.00GHz 3.00 GHz. The backfilling approach is proposed as a comparison because this
strategy shifts reservations early, making room for new reservations to be allocated. Viewed from the
other side, the next job must wait in the waiting room queue until the previous job has finished

executing, so there is no certainty about the time the job will be executed.

Therefore, resource usage may be inefficient, and jobs may have to wait for quite a long period of
time. The leading job queue will wait if the required time is greater than the required computing resource
time. Backfilling allows jobs that have execution times shorter than the execution times of jobs at the
front of the queue to move forward and execute on idle computing resources. The delay time, waiting
time, and job waiting time matrices are used as performance comparisons to make resource use more

efficient.

Referring to table 1. So the job placement for the backfilling algorithm is shown in Fig. 3. Where
job number 4 will be rejected or not executed, because the job must be executed right away, namely in
slot number 0. Meanwhile, slot number 0 is already occupied by job number 3. Based on Fig. 2 and Fig.
3, it can be concluded that the proposed method has better job acceptance flexibility than the backfilling
algorithm.

V4 10 10|70 70 T0) 90 9.0 9_D|

V310 10]50 350 50 50 5.0 | 11.0 110 110 11.D|
V220 20 20|60 60 660|100 100 100

V1 [20 20 20160 60 6.0 |11.D 11.0 11.0 11.D|

V0|30 30 30 30|80 8O 8.0 8.0 80
0 1 2 3 4 5 6 7 8 9 10 11

Fig. 3. Backfilling algorithm job placement

Experiments are carried out to represent a realistic cloud scheduling environment, considering
different computing scenarios. The parameters to be observed are resource utilization and job waiting
time. The parameters used in the experiment are shown in Table 2. The FCFS-Slotfree method will be

compared with FCFS backfilling to measure delay time, job waiting time, and makespan.

Table 2. Job Experiment Parameters

Parameter name Parameter value
Job execution time duration Fixed
The number of resources the job requires Fixed
Execution start time Changed
Execution end time Changed

Fig. 4 shows the idle time each algorithm generates for workloads of different sizes. This shows that
the proposed algorithm shows significant improvement in idle time. If we look at the percentage, it can
be seen that the proposed algorithm produces better idle time than other algorithms. We can observe
that the average idle time for the proposed method is 25.3%, FCFS is 43.1%, and backfilling is 31.5%.
In general, it can be observed that the proposed idle time is smaller than that of FCFS and backfilling.

Pujiyanta and Noviyanto (Job scheduling reservations on cloud resources)

467 International Journal of Advances in Intelligent Informatics ISSN 2442-6571
Vol. 10, No. 3, August 2024, pp. 460-470

E—

Implementing advance reservation in the proposed scheduling system increases resource utilization by
17.8% for FCFS and 6.27% for backfilling. This is caused by fragmentation or idle time. The proposed
strategy uses FCFS-Slotfree to schedule common job deadlines that can minimize the initial idle period,
regardless of the size of the initial and final period of unemployment. The results show that FCFS-
Slotfree provides the best system utilization compared to other strategies. FCFS-Slotfree provides a
better allocation policy according to reservation requests.

600
500
400
(]
€ 300 mFCFS
}_ g
200 m Backfilling
FCFS-FreeSlot
100
0
200 300 400 500 700 800
Number ijObS

Fig. 4.1dle time results with different workloads

Fig. 5 shows the makespan produced by each algorithm for workloads of different sizes. This shows
that the proposed algorithm can reduce the average makespan value significantly. If we look at the
percentages, it can be seen that the proposed algorithm produces better makespan than other algorithms.
We can observe that the average makespan reduction for FCFS is 16.73%, while for backfilling, it is
12.87%. This is because the execution delay time value of the proposed method is smaller compared to
the FCFS and backfilling methods. The proposed method can place jobs early when they are about to
be executed.

5000
4500
4000

3500
3000
2500 BFCFS-FreeSlot
2000 BFCFS
1500 i l BackFilling
1000

500 ! e

100 200 300 400 500 600 700 800
Number of jobs

Time

Fig. 5. Makespan results with different workload traces.

Fig. 6 shows the AWT generated by each algorithm for workloads of different sizes. This shows that
the proposed algorithm shows significant improvement in AWT. If we look at the percentages, it can
be seen that the proposed algorithm produces better AWT than other algorithms. We can observe that
the average AWT reduction for FCFS is 13.3%, while for backfilling, it is 12.03%. In general, it can be
observed that there is a significant improvement in AWT in the proposed algorithm. The leading job
queue will wait if the required time exceeds the required compute node time. Backfilling allows jobs

that have an execution time smaller than the execution time of jobs in the front queue to move forward

Pujivanta and Noviyanto (Job scheduling reservations on cloud resources)

ISSN 2442-6571 International Journal of Advances in Intelligent Informatics 468

Vol. 10, No. 3, August 2024, pp. 460-470
|

and execute on idle compute nodes. In the backfilling algorithm, the next job waits in the waiting room

queue until the previous job has finished executing, so there is no certainty when the job will be executed.

1.2
1.0

0.8

0.6 BFCFS-FreeSlot

0.4 Backfilling
FCFS

| A

N

100 200 300 400 500 600 700 800
Number of jobs

Time

Fig. 6. Average waiting time results with different workloads

4. Conclusion

Job scheduling algorithms aim to provide better quality services such as delay time, wait time, cloud
wait time, etc. Job scheduling simulation has been carried out using the proposed algorithm. Based on
the simulation results, it is known that the proposed algorithm can work well. Compared with well-
known algorithms such as FCFS and backfilling, the proposed algorithm has better performance. The
algorithms were compared considering job sets of different sizes. After comparison, it can be seen that
FCFS-Slotfree produces smaller delays, waiting times, and makespan values than FCFS and backfilling.
The contribution of this research is that all work is completed in a shorter duration. This shows that in
cloud computing, the proposed algorithm shows a better scheduling policy. The implication and
potential future research direction is developing cloud scheduling with multiple sites and global

scheduling in the cloud.

Declarations

Author contribution. All authors contributed equally as the main contributor to this paper. All authors
read and approved the final paper

Funding statement. This research received a research grant from the Ministry of Research, Technology
and Higher Education (Ristekdikti) of the Republic of Indonesia with contract number 001/PFR/LPPM
UAD/V1/2023

Conflict of interest. The authors declare no conflict of interest.

Additional information. No additional information is available for this paper.

References

[1] F. Alhaidari, T. Balharith, and E. AL-Yahyan, “Comparative Analysis for Task Scheduling Algorithms on
Cloud Computing,” in 2019 International Conference on Computer and Information Sciences (ICCIS), Apr.
2019, pp. 1-6, doi: 10.1109/ICCISci.2019.8716470.

[2] M. Ibrahim er al, “A Comparative Analysis of Task Scheduling Approaches in Cloud Computing,” in 2020
20th IEEE/ACM International Symposium on Cluster, Cloud and Interner Computing (CCGRID), May
2020, pp. 681684, doi: 10.1109/CCGrid49817.2020.00-23.

[3] P. M. Rekha and M. Dakshayini, “Efficient task allocation approach using genetic algorithm for cloud
environment,” Cluster Comput., vol. 22, no. 4, pp. 1241-1251, Dec. 2019, doi: 10.1007/s10586-019-02909-
1.

Pujiyanta and Noviyanto (Job scheduling reservations on cloud resources)

https://doi.org/10.1109/ICCISci.2019.8716470
https://doi.org/10.1109/CCGrid49817.2020.00-23
https://doi.org/10.1007/s10586-019-02909-1
https://doi.org/10.1007/s10586-019-02909-1

469 International Journal of Advances in Intelligent Informatics ISSN 2442-6571
Vol. 10, No. 3, August 2024, pp. 460-470

[4] Y. Su, Z. Bai, and D. Xie, “The optimizing resource allocation and task scheduling based on cloud computing
and Ant Colony Optimization Algorithm,” J. Ambient Intell. Humaniz. Comput., pp. 1-9, Aug. 2021, doi:
10.1007/512652-021-03445-w.

[5] L. Golightly, V. Chang, Q. A. Xu, X. Gao, and B. S. C. Liu, “Adoption of cloud computing as innovation
in the organization,” Int. J. Eng. Bus. Manag., vol. 14, p. 184797902210939, Jan. 2022, doi:
10.1177/18479790221093992.

[6] K. Braiki And H. Youssef, “Resource Management in Cloud Data Centers: A Survey,” in 2019 15th
International Wireless Communications & Mobile Computing Conference (IWCMC), Jun. 2019, pp. 1007-
1012, doi: 10.1109/TWCMC.2019.8766736.

[7] M. Kumar, S. C. Sharma, A. Goel, and S. P. Singh, “A comprehensive survey for scheduling techniques in
cloud computing,” J. Netw. Comput. Appl., vol. 143, pp. 1-33, Oct. 2019, doi: 10.1016/j.jnca.2019.06.006.

[8] S.A.Murad, A.J. M. Muzahid, Z. R. M. Azmi, M. I. Hoque, and M. Kowsher, “A review on job scheduling
technique in cloud computing and priority rule based intelligent framework,” J. King Saud Univ. - Comput.
Inf. Sci., vol. 34, no. 6, pp. 2309-2331, Jun. 2022, doi: 10.1016/j.jksuci.2022.03.027.

[9] M. Usman Sana and Z. Li, “Efficiency aware scheduling techniques in cloud computing: a descriptive
literature review,” Peer/ Comput. Sci., vol. 7, p. €509, May 2021, doi: 10.7717/peerj-cs.509.

[10] S. H. H. Madni, M. S. A. Latiff, Y. Coulibaly, and S. M. Abdulhamid, “Recent advancements in resource
allocation techniques for cloud computing environment: a systematic review,” Cluster Comput., vol. 20, no.
3, pp. 2489-2533, Sep. 2017, doi: 10.1007/510586-016-0684-4.

[11] A. A. Nayak and S. Shetty, “A Systematic Analysis on Task Scheduling Algorithms for Resource Allocation
of Virtual Machines on Cloud Computing Environments,” in 2023 International Conference on Recent
Trends in Electronics and Communication (ICRTEC), Feb. 2023, pp. 1-6, doi:
10.1109/ICRTEC56977.2023.10111894.

[12] K. Pradeep, N. Gobalakrishnan, N. Manikandan, L. J. Ali, P. K., and K. . Vijayakumar, “A Review on Task
Scheduling using Optimization Algorithm in Clouds,” in 2021 5th International Conference on Trends in
Electronics and Informatics (ICOED), Jun. 2021, pp. 935-938, doi: 10.1109/ICOEI51242.2021.9452837.

[13] B. Wang, C. Wang, Y. Song, J. Cao, X. Cui, and L. Zhang, “A survey and taxonomy on workload scheduling
and resource provisioning in hybrid clouds,” Cluster Comput., vol. 23, no. 4, pp. 2809-2834, Dec. 2020,
doi: 10.1007/s10586-020-03048-8.

[14] S. Varshney, R. Sandhu, and P. K. Gupta, “QoS Based Resource Provisioning in Cloud Computing
Environment: A Technical Survey,” in Communications in Computer and Information Science, vol. 1046,
Springer, Singapore, 2019, pp. 711-723, doi: 10.1007/978-981-13-9942-8_66.

[15] S. S. Gill and R. Buyya, “Resource Provisioning Based Scheduling Framework for Execution of
Heterogeneous and Clustered Workloads in Clouds: from Fundamental to Autonomic Offering,” J. Grid
Comput., vol. 17, no. 3, pp. 385—417, Sep. 2019, doi: 10.1007/s10723-017-9424-0.

[16] M. Naghshnejad and M. Singhal, “A hybrid scheduling platform: a runtime prediction reliability aware
scheduling platform to improve HPC scheduling performance,” J. Supercomput., vol. 76, no. 1, pp. 122—
149, Jan. 2020, doi: 10.1007/s11227-019-03004-3.

[17] J. Natarajan, “Parallel Queue Scheduling in Dynamic Cloud Environment Using Backfilling Algorithm,”
Int. J. Intell. Eng. Syst., vol. 11, no. 2, pp. 39-48, Apr. 2018, doi: 10.22266/ijies2018.0430.05.

[18] E. H. Houssein, A. G. Gad, Y. M. Wazery, and P. N. Suganthan, “Task Scheduling in Cloud Computing
based on Meta-heuristics: Review, Taxonomy, Open Challenges, and Future Trends,” Swarm Evol.
Comput., vol. 62, p. 100841, Apr. 2021, doi: 10.1016/j.swevo.2021.100841.

[19] W. Khallouli and J. Huang, “Cluster resource scheduling in cloud computing: literature review and research
challenges,” /. Supercomput., vol. 78, no. 5, pp. 6898-6943, Apr. 2022, doi: 10.1007/s11227-021-04138-z.

[20] A. Arunarani, D. Manjula, and V. Sugumaran, “Task scheduling techniques in cloud computing: A literature
survey,” Futur. Gener. Comput. Syst., vol. 91, pp. 407—415, Feb. 2019, doi: 10.1016/j.future.2018.09.014.

Pujiyanta and Noviyanto (Job scheduling reservations on cloud resources)

https://doi.org/10.1007/s12652-021-03445-w
https://doi.org/10.1177/18479790221093992
https://doi.org/10.1109/IWCMC.2019.8766736
https://doi.org/10.1016/j.jnca.2019.06.006
https://doi.org/10.1016/j.jksuci.2022.03.027
https://doi.org/10.7717/peerj-cs.509
https://doi.org/10.1007/s10586-016-0684-4
https://doi.org/10.1109/ICRTEC56977.2023.10111894
https://doi.org/10.1109/ICOEI51242.2021.9452837
https://doi.org/10.1007/s10586-020-03048-8
https://doi.org/10.1007/978-981-13-9942-8_66
https://doi.org/10.1007/s10723-017-9424-0
https://doi.org/10.1007/s11227-019-03004-3
https://doi.org/10.22266/ijies2018.0430.05
https://doi.org/10.1016/j.swevo.2021.100841
https://doi.org/10.1007/s11227-021-04138-z
https://doi.org/10.1016/j.future.2018.09.014

ISSN 2442-6571 International Journal of Advances in Intelligent Informatics 470

(21]

(22]

Vol. 10, No. 3, August 2024, pp. 460-470
|

R. Istrate, A. Poenaru, and F. Pop, “Advance Reservation System for Datacenters,” in 2016 IEEE 30th
International Conference on Advanced Information Networking and Applications (AINA), Mar. 2016, vol.
2016-May, pp. 637—644, doi: 10.1109/AINA.2016.106.

J. Chamberlain, E. Simhon, and D. Starobinski, “Preemptible queues with advance reservations: Strategic
behavior and revenue management,” Eur. J. Oper. Res., vol. 293, no. 2, pp. 561-578, Sep. 2021, doi:
10.1016/j.jor.2020.12.044.

K. P. N. Jayasena and B. S. Thisarasinghe, “Optimized task scheduling on fog computing environment using
meta heuristic algorithms,” in 2019 IEEE International Conference on Smart Cloud (SmartCloud), Dec.
2019, pp. 53-58, doi: 10.1109/SmartCloud.2019.00019.

P. Mallik, A. K. Nayak, and R. Kumar Dalei, “Comparative Analysis of Various Task Scheduling Algorithms
in Cloud Environment,” in 2021 19th OITS International Conference on Information Technology (OCIT),
Dec. 2021, pp. 37-41, doi: 10.1109/0CIT53463.2021.00019.

E. Hosseini, M. Nickray, and S. Ghanbari, “Optimized task scheduling for cost-latency trade-oft in mobile
fog computing using fuzzy analytical hierarchy process,” Comput. Networks, vol. 206, p. 108752, Apr. 2022,
doi: 10.1016/j.comnet.2021.108752.

N. Chitgar, H. Jazayeriy, and M. Rabiei, “DSCTS: Dynamic Stochastic Cloud Task Scheduling,” in 2079
5th Iranian Conference on Signal Processing and Intelligent Systems (ICSPIS), Dec. 2019, pp. 1-5, doi:
10.1109/1CSPIS48872.2019.9066063.

M. T. Alam Siddique, S. Sharmin, and T. Ahammad, “Performance Analysis and Comparison Among
Different Task Scheduling Algorithms in Cloud Computing,” in 2020 2nd International Conférence on
Sustainable Technologies for Industry 4.0 (ST1), Dec. 2020, pp. 1-6, doi: 10.1109/ST150764.2020.9350466.

K. M. S. . Bandaranayake, K. P. . Jayasena, and B. T. G. S. Kumara, “An Efficient Task Scheduling
Algorithm using Total Resource Execution Time Aware Algorithm in Cloud Computing,” in 2020 IEEE
International ~ Conférence on Smart Cloud (SmartCloud), Nov. 2020, pp. 29-34, doi:
10.1109/SmartCloud49737.2020.00015.

R. K. R. Indukuri, S. V. Penmasta, M. V. R. Sundari, and G. J. Moses, “Performance Evaluation of Deadline
Aware Multi-stage Scheduling in Cloud Computing,” in 2016 IEEE 6th International Conference on
Advanced Computing (IACC), Feb. 2016, pp. 229-234, doi: 10.1109/IACC.2016.51.

P. Y. Zhang and M. C. Zhou, “Dynamic Cloud Task Scheduling Based on a Two-Stage Strategy,” /EEE
Trans. Autom. Sci. Eng., vol. 15, no. 2, pp. 772-783, 2018, doi: 10.1109/TASE.2017.2693688.

Pujiyanta and Noviyanto (Job scheduling reservations on cloud resources)

https://doi.org/10.1109/AINA.2016.106
https://doi.org/10.1016/j.ejor.2020.12.044
https://doi.org/10.1109/SmartCloud.2019.00019
https://doi.org/10.1109/OCIT53463.2021.00019
https://doi.org/10.1016/j.comnet.2021.108752
https://doi.org/10.1109/ICSPIS48872.2019.9066063
https://doi.org/10.1109/STI50764.2020.9350466
https://doi.org/10.1109/SmartCloud49737.2020.00015
https://doi.org/10.1109/IACC.2016.51
https://doi.org/10.1109/TASE.2017.2693688

	1. Introduction
	2. Method
	2.1. System Architecture for Cloud Computing
	2.2. Proposed Algorithm
	2.3. Illustration of Method
	2.4. Performance Metrics
	2.5. Workload

	3. Results and Discussion
	4. Conclusion
	Declarations
	References

