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1. Introduction 
Fault diagnosis and classification play important roles in the maintenance of chemical plants [1], [2]. 

To establish an effective fault diagnosis system, the faulty equipment, processes, and systems must be 

studied and analyzed initially. Then, based on prior information and the relationship between input and 

output, a mathematical model or a qualitative empirical model is established as the foundation for fault 

diagnosis. Finally, the system's failure is determined by evaluating measurable variables or estimated 

variables that are not directly measurable. If the system's output deviates from the expected range or if 

the system's state changes and exceeds the predetermined range, faults can be detected promptly.  
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 The traditional fault diagnosis models cannot achieve good fault diagnosis 

accuracy when a new unseen fault class appears in the test set, but there is 

no training sample of this fault in the training set. Therefore, studying the 

unseen cause-effect problem of fault symptoms is extremely challenging. 

As various faults often occur in a chemical plant, it is necessary to perform 

fault causal-effect diagnosis to find the root cause of the fault. However, 

only some fault causal-effect data are always available to construct a reliable 

causal-effect diagnosis model. Another worst thing is that measurement 

noise often contaminates the collected data. The above problems are very 

common in industrial operations. However, past-developed data-driven 

approaches rarely include causal-effect relationships between variables, 

particularly in the zero-shot of causal-effect relationships. This would cause 

incorrect inference of seen faults and make it impossible to predict unseen 

faults. This study effectively combines zero-shot learning, conditional 

variational autoencoders (CVAE), and the signed directed graph (SDG) to 

solve the above problems. Specifically, the learning approach that 

determines the cause-effect of all the faults using SDG with physics 

knowledge to obtain the fault description. SDG is used to determine the 

attributes of the seen and unseen faults. Instead of the seen fault label space, 

attributes can easily create an unseen fault space from a seen fault space. 

After having the corresponding attribute spaces of the failure cause, some 

failure causes are learned in advance by a CVAE model from the available 

fault data. The advantage of the CVAE is that process variables are mapped 

into the latent space for dimension reduction and measurement noise 

deduction; the latent data can more accurately represent the actual behavior 

of the process. Then, with the extended space spanned by unseen attributes, 

the migration capabilities can predict the unseen causes of failure and infer 

the causes of the unseen failures. Finally, the feasibility of the proposed 

method is verified by the data collected from chemical reaction processes.  
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They are techniques for ensuring normal operational production by quickly identifying the causes of 

accidents and providing real-time operational guidance. By doing so, they can prevent further 

deterioration to the process during accidents and improve plant reliability, safety, and economy [3]. The 

techniques for fault diagnosis can commonly be categorized into data-driven (DD) and model-based 

methods, as depicted in Fig. 1 [4]. 

 

Fig. 1.  Classification of common fault diagnosis methods [5] 

DD methods primarily rely on a large amount of data to establish the relationship between parameters 

and faults. Previous developed DD methods include principal component analysis [6], [7], qualitative 

trend analysis [8], and other approaches [9]. On the other hand, the model-based methods utilize 

domain knowledge and yield qualitative rather than quantitative results. The core of the expert systems 

[10] is based on the application of expert knowledge. Meanwhile, Bayesian networks (BN) [11], [12] 

first-principle models [13], directed graphs [14], and dynamic uncertain causality graphs [15], [16], 

employs graph theory to visually depict the relationships between various parameters and faults. 

Maintaining the Integrity of the Specifications 

However, chemical processes are typically characterized by nonlinearity and high dimensionality, 

making them highly complex. Therefore, constructing a reliable model to describe all the characteristics 

of such a process system is challenging. In order to enhance the ability to diagnose various faults in 

complex chemical production processes, researchers have proposed numerous DD methods for 

monitoring and diagnose faults [6], [17]. Since the emergence of neural networks [18], [19] in 2006, 

many deep learning models capable of solving highly nonlinear problems have been developed. These 

models establish latent variable representations by mapping data to low-dimensional spaces. Examples 

of such models include the encoder (AE) [20], stacked denoising autoencoder (SDAE) [21],[22] 

variational autoencoder (VAE) [23], [24] and supervised variational autoencoder (S-VAE). These models 

rely on a substantial amount of uniformly distributed and representative data, thereby exhibiting 

relatively high reliability. However, in cases where there is limited or no failure data available for the 

target failure during the operational process, the collected data may not be sufficiently representative to 
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ensure the validity of the modeling. Since many faults can lead to severe damage and substantial losses, 

it is rare for factories to operate under various fault states and collect samples for training fault diagnosis 

systems [19]. Additionally, transitioning from normal operating conditions to fault conditions is time-

consuming and poses challenges in obtaining an adequate number of fault samples using DD methods 

[13]. 

For fault classification, Mishra et al. [25] utilize conditional variational autoencoders (CVAE) to 

generate samples from given attributes and employ the generated samples for classifying unknown 

categories. CVAE is a conditional directed graphical model where input observations modulate the prior 

on latent variables that generate the outputs, in order to model the distribution of high-dimensional 

output space as a generative model conditioned on the input observation. It aims at extracting latent 

representations or features in a latent space using deep neural networks [26], [27]. However, this method 

of data generation may introduce deviations from the real situation. Another prominent industrial 

scenario analysis method is fault tree analysis [28], [29] which constructs a diagnostic system based on 

knowledge of the fault process. It has proven successful in understanding the causes of system failures, 

identifying effective risk reduction strategies, and estimating failure occurrence rates [30]. However, fault 

tree analysis only incorporates physical knowledge and does not effectively leverage actual field operation 

data and conditions. Furthermore, the fault diagnosis analysis using fault tree analysis tends to be time-

consuming. To address the challenge of fault classification of the unseen faults, one viable approach is 

to transfer knowledge acquired from easily obtained or historical faults (training faults) to those that are 

difficult or costly to collect (target faults) [31], [32]. Hugo et al. [33] first proposed zero-shot learning 

in 2008, aiming to solve the classification problem where there is not enough label data to distinguish 

all categories. The purpose of zero-shot learning is to solve the problem of being unable to model unseen 

fault data [34], [35]. 

In previous research on zero-shot learning, the focus was primarily on mapping between images and 

attributes [36]. However, when applied to fault diagnosis tasks, there are no images available to obtain 

various fault attributes. Visual properties are not applicable to industrial sensor signals, necessitating the 

need for more effective auxiliary information in zero-shot fault diagnosis tasks. In 2021, Zhao et al. [17] 

proposed a direct approach where the fault description is utilized as the attribute for fault detection. For 

example, it could be a specific feed amount change or a certain temperature change at a particular 

position. The method involves extracting features from the data and training the attribute learner. 

However, performing this process in two stages may lead to a situation where individual training 

performs well, but the combined result is unsatisfactory. Mou et al. [37] introduce a comprehensive 

zero-shot fault diagnosis model known as Distributional Semantic Embedding and Cross-Modal 

Reconstruction VAE (DSECMR-VAE). This model considers fault samples and fault attribute semantic 

vectors as distinct modalities and employs two Variational Autoencoders (VAEs) to reconstruct these 

inputs. Li et al.[38] delved into this area by exploring a federated zero-shot fault diagnosis framework, 

which introduces a novel paradigm for semantic knowledge sharing. The carefully designed network 

structure and aggregation strategy within the framework create a synergy between zero-shot modeling 

and federated aggregation processes, yielding mutual benefits. While the aforementioned methods 

employ fault descriptions as attributes, the primary objective of this study extends beyond fault type 

diagnosis. Our aim is to not only identify the fault type, but also to deduce its underlying root cause. To 

address this, we incorporate signed fault directed graphs (SDG) constructed using physical knowledge 

[39]. An SDG serves as a visual representation of the causal relationships within processes, depicting 

process variables as nodes on the graph and causal connections as directed arcs. These arcs, indicating 

the cause-effect relationship, can point in either the same or opposite directions. A solid line signifies a 

positive effect, while a dotted line denotes a negative effect. Within the SDG model for fault diagnostics, 

the nodes are quantifiable process variables. Any deviation in these variables is attributed to abnormal 

factors, leading to a shift in the subsequent node. It's important to note that various nodes may originate 

from distinct sources of faults. In this context, all nodes representing causes are considered root nodes 

[40]. SDGs reveal the intrinsic causal relationships among variables in complex systems. The SDG model 

solely focuses on the qualitative relationship of the system. In actual industrial systems, the qualitative 

relationship between variables happens to be the only constant property, which gives SDG an advantage 
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over other fault diagnosis methods. Consequently, the fault attribute value is defined by the logical 

relationship in the SDG, allowing the diagnosis process to encompass the causal relationship among 

variables in the system, facilitating further speculation on the fault's source. SDGs can be constructed 

with only physical knowledge or a small amount of data to directly identify the root cause of the fault. 

However, it does require significant time for interpretation after receiving the data. 

This study utilizes a SDG that incorporates physical knowledge to depict the path of fault 

propagation, fault location, and fault cause. To integrate it with the data-driven approach, the CVAE is 

employed to mitigate the influence of measurements. This enables the training process, from data to 

attributes, to be completed in a single step. Additionally, zero-shot learning is incorporated, where 

known fault data is used to pre-learn the causes of specific faults. Subsequently, a transfer learning 

technique is employed to infer the causal relationship between fault variables that have not previously 

occurred when encountering unknown fault data. This approach allows for speculation on the root cause 

of the failure. 

Considering the limited availability of fault samples and the challenges associated with fault 

propagation, this study introduces a zero-sample fault causal root analysis method. The main 

contributions of this study are as follows: 

• Establishment of a binary attribute table using the SDG, which reveals the impact, location, and 

source of faults. 

• Utilization of the CVAE to map process variables into a latent variable space, reducing 

dimensionality and eliminating measurement noise while accurately representing process behavior. 

• Training the CVAE-SDG model using known fault causality attributes and measured data, and 

applying it to infer unknown fault causality for unknown fault paths. 

2. Method 
In order to effectively describe the fault attributes of various faults to provide information on each 

path, the attributes can be used to express the causal relationship between process variables in the SDG. 

SDG can show the impact of the failure, the location of the failure and the cause of the failure, etc. Take 

the simple process in Fig. 2 as example,  
1 2 3 4 5, , , ,x x x x x

 in Fig. 2 represent different process variables.  

 

Fig. 2. Process flow chart 

They include the valve opening, flow rate, liquid level, etc. Fig. 3 is the SDG of the simple process. 

The connecting lines represent the causal relationship between them. It shows that 
1x
 directly affects 

2x
, 

1 2 3 4 5, , , ,x x x x x
 which in turn affects 

3x
. In addition, there are mutual influences between 

2x
 and 

4x
 and between 

3x
 and 

5x
 due to the return flow and the control loop. The presence or absence of the 

path can be represented by the attribute with the attribute value of 1 or 0. 1 represents presence and 0 

represents absence. The joint attributes 
1 2 6, , ,a a a

 forms the path which starts with a source. In this 
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way, a fault path with source 
1x
 can be defined and defined as a label 

1y
 with the joint attributes 

1 2 6, , ,a a a
. Likewise, all paths are defined in the same way. Each attribute is a dimension in the vector 

space, expressed as 
1 2[ , , , ] C

Ca a a= ∈a  
, where 

C
 is the number of attributes, and the measured 

process variables are represented by 
1 2[ , , , ]Dx x x=x 

, where D is the number of process variables. In 

this study, all defined paths will be divided into paths of known fault data and unknown fault data 

according to whether there is historically collected process variable data. 

 

Fig. 3. The SDG in Fig. 2 

The goal of this research is to use the 

J
 types fault paths of known training samples to diagnose 

and identify the 
I

 types fault paths of unknown training samples. The set of known fault paths is 

denoted as 

{ }1 , , JS s s= 
, where 

js
 is the fault path with samples. The set of unknown fault paths is 

denoted as

{ }1 , , IT t t= 
, where 

it
is the unknown fault path. 

T
 and 

S
 are disjoint to each other, i.e., 

T S∩ = ∅
. The sample set of 

S
 is denoted by 

{ },S N D S N×ℑ = ∈ ∈X y 
, where 

1 2, , ,S S S S
N =  X x x x

 is the data collected for training, including 

N
 training samples and 

D
 process 

variables. 
1 2 3 4 5, , , ,x x x x x

 in Fig. 2 is the measured process variable. And 

[ ]1 2, , ,S
Ny y y=y 

 is the 

label of each sample corresponding to the fault path. For all 
L

 types faults (

L I J= +
), the attribute 

matrix can be expressed as 

[ ] [ ]1 2, , , , L C
L S T

×= = ∈A a a a A A 
. All elements in 

A
 are 1 or 0, which 

shows whether the attribute exists in a certain fault path. The task of this research is to use the training 

data

SX
 of known faults and the corresponding labels 

Sy
 to build a model 

f
, so that the loss of known 

faults is as small as possible, as shown in Eq.(1). 

𝑦𝑦𝑠𝑠 = 𝑓𝑓(𝑋𝑋𝑠𝑠) 𝑎𝑎𝑎𝑎𝑎𝑎min CLoss (y 𝑠𝑠 , 𝑦𝑦�𝑠𝑠)   (1) 

where 

CLoss
 represents the loss of fault classification, and 

Sy
 is the label predicted by the training 

data model. When 

f
 is used on the measured variable of unknown fault, its formula is as follows Eq.(2). 

𝑦𝑦�𝑇𝑇 = 𝑓𝑓(𝑿𝑿𝑇𝑇)   (2) 

where 

1 2, , ,T T T T
M =  X x x x

 is the measured variable of 
M

 target faults, and 

ˆ Ty
 is the label 

predicted by the target fault model. There is a direct correspondence between the fault path label 

y
 and 

the attribute matrix 
A

 in SDG. Therefore, 
A

 can be used to replace 

Sy
 in Eq.(1). Then Eq.(1) and 

Eq.(2) can be rewritten as 

𝑨𝑨 = 𝑓𝑓(𝑿𝑿𝑠𝑠) 𝑎𝑎𝑎𝑎𝑎𝑎min𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 (𝐴𝐴𝑆𝑆, 𝐴̂𝐴𝑆𝑆)   (3) 

𝑨𝑨�𝑇𝑇 = 𝑓𝑓(𝑿𝑿𝑇𝑇)   (4) 

Furthermore, 

SA
 and 

TA
 will substitute 

Sy
 for model training, since attribute descriptions are 

class-level rather than sample-level, which can be easily obtained with physical manipulation knowledge. 
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In order to establish the model relationship from 

SX
 to 

A
 in Eq.(3) with the form of probability, 

the objective function can be defined as maximizing the conditional probability distribution of process 

variables 

,n jx
 to the attributes 

.n ja
 as: 

𝑚𝑚𝑚𝑚𝑚𝑚∏ ∏ 𝑝𝑝(𝑎𝑎𝑛𝑛.𝑗𝑗|𝑋𝑋𝑛𝑛,𝑗𝑗)𝑁𝑁
𝑛𝑛=1

𝐽𝐽
𝑗𝑗=1    (5) 

where the subscript 

j
 refers to the corresponding fault type; 

J
 denotes the total number of seen 

fault types. The subscript 

n
 refers to the sample point and 

N
 denotes the total number of samples in 

fault type 

j
. For the simplification in expressing the following derivations, only one fault sample is 

considered from now onwards, the subscripts of the variables and the attributes are tentatively ignored. 

As the observation variables are collected in the noise-contaminated space, the inference of latent 

variables (
z

) at the lower noise level and lower-dimensional feature space corresponding to those 

observations are necessary. The latent variables can be considered as the important features between the 

process variables and the fault attributes. Thus, the conditional probability distribution in Eq. (5)can be 

expressed as 

𝑝𝑝(𝒂𝒂|𝒙𝒙) = ∫𝑝𝑝(𝒂𝒂|𝒙𝒙, 𝒛𝒛)𝑝𝑝(𝒛𝒛|𝒙𝒙)𝑑𝑑𝑑𝑑   (6) 

The goal is to maximize the probability distribution of 

( )|p a x
, which is equivalent to the 

integration of 

( ) ( )| , |p pa x z z x
 over the latent variable 

z
. To accomplish the intractable objective in 

Eq.(6), a variational inference posterior distribution 

( )|q z x
 is introduced to approximate the prior 

distribution 

( )|p z x
. By using the Bayesian theorem, the variational lower bound can be derived as: 

𝐼𝐼𝐼𝐼 𝑝𝑝(𝑎𝑎|𝑥𝑥) ≥ 𝐸𝐸𝑧𝑧∼𝑞𝑞(𝑧𝑧|𝑥𝑥)[𝐼𝐼𝐼𝐼 𝑝𝑝(𝒂𝒂|𝒛𝒛)] − 𝑘𝑘𝑘𝑘(𝑞𝑞(𝐳𝐳|𝐱𝐱)||𝑝𝑝(𝐳𝐳|𝐱𝐱))    

= 𝐿𝐿(𝐚𝐚|𝐱𝐱)   (7) 

The variational lower bound 

( )|L a x
consists of the conditional likelihood 

( ) ( )~ ln |qE p  z z|x a z
 and 

the KL divergence term 

( ) ( )( )| || |kl q pz x z x
 as Eq.(7). In other words, when maximizing 

( )|L a x
, 

it is equivalent to maximizing 

( )|p a x
. Fig. 4 shows the model structure of the CVAE. It is established 

based on Eq.(7). The 

( )|q z x
 represents the encoder and 

( )|p a z
 represents the decoder. The CVAE 

model takes the input data 

S
nx

 into a multi-layer neural network structure, which is the encoder, to 

convert the data into a latent variable by nonlinear mapping. Then predict 

S
ja
 through the decoder and 

optimize the model parameters in the CVAE using the variational lower bound 

( )|L a x
. 

This study presents a fault inference method that combines attribute transfer and zero-shot learning. 

It aims to learn knowledge from easily obtained or known fault causal data and apply it to new faults. 

Despite the difference in the fault propagation paths, both normal and abnormal productions typically 

follow the same production flow, even with the same production line. Therefore, there might be shared 

information among the data. Usually, fault labels are represented using one-hot encoding. For instance, 

Fig. 5 (left) shows two observed fault paths (star markers) in a two dimensional plane. However, the 

labels do not have any interpretable meaning towards the fault cause or fault propagation paths. 

Especially, the unknown faults (triangle markers in Fig. 5 (left)) have no way to be determined with 

those one-hot labels as they are unseen and physically unexplainable. Therefore, each paths can be 

characterized by a group of fault attribute description with possible extension in dimensional space by 
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incorporating physical knowledge. As in Fig. 5 (right), the two observed fault paths (star markers) are 

positioned on the two dimensional attribute plane with the attribute 
1a
 and 

2a
. 

 

Fig. 4.  Schematic diagram of fault causal diagnosis structure (top half: training phase/bottom half: testing 

phase) 

As a solution for zero-shot learning, third attribute 
3a
 can be added to the attribute set as an 

expansion of the dimension of potential fault path (triangle markers) with physical basis. On other words, 

to facilitate attribute transfer and zero-shot learning, describing the fault paths with the attributes not 

only can assign the fault categories with physical meaning, the expansion of attribute number can prepare 

the model for classifying the unseen fault with meaningful explanation (zero-shot learning). Although 

expanding the attribute number can increase the number of possible fault path category, with the 

assistance of physical knowledge, categories that align with the underlying physical meaning are retained. 

This allows for correspondence with unseen fault data when it arises. 

 

Fig. 5.  Schematic diagram of entering attribute space from label space 

In the framework of this zero-shot learning fault causality analysis and diagnosis method, it will be 

divided into training and testing stages. In the training stage in the upper half of Fig. 4, the seen fault 

data 

SX
 is first divided into training and testing data. The training data are sent into the encoder of 

CVAE and their features are extracted to the latent variable space. Then the latent features are decoded 

for predicting fault attribute 

SA
. With the variational lower bound as Eq.(7), the CVAE is trained. In 

the testing stage as the lower half of Fig. 4, the unseen fault samples 

TX
 are used as the input of the 

above model to obtain the fault attribute 

TA
. In the above steps, the part of extracting features and 
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predicting attributes is presented in the structure of CVAE. CVAE is a classification model extended 

from VAE, but it still has the characteristics of VAE. VAEs can infer continuous latent variables (LV) 

and generate reconstructed observations with complex posterior and conditional distributions. In VAE, 

complex nonlinearities are considered and deep neural networks are used to approximate the 

corresponding posterior distribution. LV in industrial systems includes those variables that contribute 

to the process system, usually including features of the uncertainties such as unmeasured disturbance 

changes, measured disturbance changes, etc. [18]. Therefore, by extending CVAE from VAE, the model 

can be expressed in a probabilistic manner, and the training process of extracting features from samples 

corresponding to attributes can be completed in one step. Finally, attribute 
A

 corresponds to each fault 

path and finds the root cause of the fault, that is, the right half of Fig. 4, which is achieved by looking 

into the SDG of the fault attribute. 

Summarizing the entire design process above, the research steps can be organized and presented as 

follows : 

• Based on the background physics knowledge related to chemical industry, establish the logical 

symbol relationship in SDG and the corresponding fault path. Then draw an attribute description 

table from the fault path including the seen fault and the unseen fault. 

• Collect seen fault data in the past, and maximize the objective function (Eq.(7)) to train the CVAE 

model with the training samples. Get the model parameters after the training is complete and 

predict the attributes (top half of Fig. 4). 

• Substitute the unseen fault data into CVAE to obtain the output attributes (the lower half of Fig. 

4) 

• Infer the causal relationship of the fault according to the SDG, and explain the source of the fault 

(right half of Fig. 4) 

3. Results and Discussion 
The following analysis will utilize simulation data from two jacketed continuous stirred tank reactors 

in series. The purpose is to compare and evaluate the effectiveness of the method proposed in this study 

with previous zero-sample research articles. Fig. 6 illustrates the schematic diagram of the simulation 

used in this study. 

 

Fig. 6. Schematic diagram of simulation for continuous stirred tank reactor 

Eq.(8) represents the equation for generating the simulated data, comprising a total of 13 variables 

(as listed in Table 1). 

𝑓𝑓1𝐶𝐶𝐴𝐴1 − 𝑓𝑓1𝐶𝐶𝐴𝐴2 − 𝑉𝑉𝑉𝑉0𝑒𝑒 −
𝐸𝐸
𝑅𝑅𝑅𝑅2

 𝐶𝐶𝐴𝐴22 = 0    

𝑓𝑓1𝜌𝜌𝐶𝐶𝜌𝜌𝑇𝑇1 − 𝑈𝑈𝑈𝑈(𝑇𝑇2 − 𝑇𝑇𝐶𝐶2) − 𝑓𝑓1𝜌𝜌𝐶𝐶𝜌𝜌𝑇𝑇2 − 𝑉𝑉𝑉𝑉0𝑒𝑒 −
𝐸𝐸
𝑅𝑅𝑅𝑅2

 𝐶𝐶𝐴𝐴22 Δ𝐻𝐻𝑟𝑟 = 0    

𝑓𝑓𝑐𝑐1𝜌𝜌𝑐𝑐𝐶𝐶𝜌𝜌𝜌𝜌𝑇𝑇𝑐𝑐1 + 𝑈𝑈𝑈𝑈(𝑇𝑇2 − 𝑇𝑇𝐶𝐶2) − 𝑓𝑓𝑐𝑐1𝜌𝜌𝑐𝑐𝐶𝐶𝜌𝜌𝜌𝜌𝑇𝑇𝑐𝑐2 = 0    

𝑓𝑓1𝐶𝐶𝐴𝐴2 − 𝑓𝑓1𝐶𝐶𝐴𝐴3 − 𝑉𝑉𝑉𝑉0𝑒𝑒 −
𝐸𝐸
𝑅𝑅𝑅𝑅2

 𝐶𝐶𝐴𝐴32 = 0    
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𝑓𝑓1𝜌𝜌𝐶𝐶𝜌𝜌𝑇𝑇2 − 𝑈𝑈𝑈𝑈(𝑇𝑇3 − 𝑇𝑇𝐶𝐶4) − 𝑓𝑓1𝜌𝜌𝐶𝐶𝜌𝜌𝑇𝑇3 − 𝑉𝑉𝑉𝑉0𝑒𝑒 −
𝐸𝐸
𝑅𝑅𝑅𝑅2

 𝐶𝐶𝐴𝐴32 Δ𝐻𝐻𝑟𝑟 = 0    

𝑓𝑓𝑐𝑐2𝜌𝜌𝑐𝑐𝐶𝐶𝜌𝜌𝜌𝜌𝑇𝑇𝑐𝑐3 + 𝑈𝑈𝑈𝑈(𝑇𝑇3 − 𝑇𝑇𝐶𝐶4) − 𝑓𝑓𝑐𝑐2𝜌𝜌𝑐𝑐𝐶𝐶𝜌𝜌𝜌𝜌𝑇𝑇𝑐𝑐4 = 0   (8) 

Table 1.  Variable description of the simulation 

Variable Description 

1cf  Reaction tank 1 jacket cold water flow rate 

1cT  Reaction tank 1 jacket cold water inlet temperature 

1T  Reaction tank 1 inlet temperature 

1AC  Concentration in reaction tank 1 

1f  Reaction tank 1 inlet flow rate 

3cT  Reaction tank 2 jacket cold water inlet temperature 

2cf  Reaction tank 2 jacket cold water flow rate 

2cT  Reaction tank 1 jacket cold water outlet temperature 

2T  Reaction tank 1 outlet temperature/reaction tank 2 inlet temperature 

2AC  Reaction tank 1 outlet concentration/reaction tank 2 inlet concentration 

3T  Reaction tank 2 outlet temperature 

3AC  Reaction tank 2 outlet concentration 

4cT  Reaction tank 2 jacket cold water outlet temperature 

 

Among these variables, the first 7 are defined as the fault source, and their relationships are 

represented by the SDG based on physical knowledge (Fig. 7). 

 

Fig. 7.  SDG of the simulation program 

In this case, a total of 28 fault paths are generated, depending on the size of the fault source. The 

attributes are established based on the presence or absence of line segments connecting variables within 

the SDG. Fig. 7 displays the SDG with 19 distinct attribute categories, and their corresponding 

descriptions are provided in Table 2. 

Table 2.  SDG attribute description table 

 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16 a17 a18 a19 
y1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

y2 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

y3 1 0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 0 0 0 

    

y27 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 

y28 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 1 
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A total of 4,500 data records were generated for this case study, with 500 records assigned to three 

unseen fault paths (types 7, 8, and 9). Fig. 8 displays 100 data points for the 9th, 10th, and 11th types 

of fault paths, (including variables in Table 1) including the values of the 13 variables. From the data 

points, one can never determine the fault path category by visualization. Additionally, it is not possible 

to distinguish between known and unknown fault paths from Fig. 8 alone. 

 

Fig. 8. Type 9, 10, and 11 fault path data (type 9 is unseen fault) 

To explain the expansion of unseen fault attributes, Fig. 8 is used to map the changes in three specific 

attributes (a12, a17, and a18) that occur within the fault attributes (as depicted in Fig. 9). This 

observation aligns with the pattern observed in Fig. 5. Initially, with only two attributes (a17 and a18), 

the attribute points in the dimensional space lie on a plane. However, upon introducing a12, they move 

outside the plane, thereby increasing the potential fault paths. With the aid of physical knowledge, the 

position of another unseen fault path (Category 9) can be identified. This illustrates that utilizing 

attributes instead of labels effectively expands the space for unseen faults, facilitating the attribute transfer 

and enabling inference of unseen fault paths. 

 

Fig. 9. Attribute spaces of the 9th, 10th, and 11th types of fault paths 

Utilize Eq. (7) to train the CVAE model with both the encoder and decoder comprising three hidden 

layers. The activation function is set to tanh, and each layer consists of 180 neurons. The training process 

will run for 800 epochs. Subsequently, the trained model will be tested using both the training data and 

unseen fault data for evaluation. The accuracy of the training and test data is calculated separately. In the 
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testing phase, the trained model parameters are applied to the unseen fault data to calculate the accuracy 

of the unknown paths. In the method proposed by Zhao et al. [13] in 2021, the supervised principal 

component analysis method is initially employed to extract attribute-related features. Then, the attribute 

learner is trained using three different machine learning algorithms: linear support vector machine 

(LSVM), nonlinear random forest (RF), and probabilistic naive Bayesian (NB). Among these algorithms, 

RF and NB demonstrate superior test results. Consequently, the simulated data is trained using RF and 

NB in combination with the SDG for comparison studies. The accuracy of RF and NB, as well as the 

results obtained using the CVAE in this study, are presented in Table 3. 

Table 3.  Comparison of accuracy test results 

Method Training path Test path Unseen path 

NB 0.51 0.515 0.784 

RF 1.0 0.984 0.49 

CVAE 0.839 0.84 0.966 

 

Based on the resuls in Table 3, it is obvious that the results obtained using the NB algorithm are not 

as favorable as those obtained using the CVAE model structure. When employing the RF algorithm, 

accurate prediction of fault paths with known fault data is achieved, but it struggles to effectively predict 

fault paths without any fault data. This indicates that the RF algorithm lacks good generalization 

capability. This limitation may arise from the two-step process of feature extraction and attribute 

training, which could result in suboptimal cooperation between the extracted features and attributes, 

leading to less-than-ideal prediction outcomes. In contrast, the CVAE exhibits not only favorable results 

in training and testing but also excellent performance in predicting unknown fault paths. This outcome 

directly up-raised the effectiveness of the proposed method.  

By obtaining the attribute description table from the SDG path relationship, it becomes possible to 

predict the attributes and thereby determine the corresponding fault path and the source of the error. 

This enables the diagnosis of unknown fault roots, thereby achieving the intended objective. In essence, 

the method proposed in this study enables the diagnosis of previously unobserved faults. This capability 

is invaluable in promptly identifying and addressing unforeseen faults, thereby averting potential dangers 

or substantial financial losses that may arise from the malfunction of a chemical plant. 

However, it's worth noting that the current model and simulation data utilized in this research are 

static, whereas real-world data collected in industrial settings is dynamic. As a result, future 

enhancements to the existing model structure should focus on incorporating dynamic elements, ensuring 

it is better suited for real-world factory scenarios. This refinement would enable early fault detection, 

ultimately leading to a reduction in plant losses. 

4. Conclusion 
To address causal diagnosis of unseen faults in factories, this study proposes utilizing SDG to establish 

fault attributes, thereby creating a framework for unseen faults. Subsequently, a CVAE model is 

constructed to capture the relationship between known fault data and attributes, and attribute migration 

is employed for application to unseen faults. Through testing on a case study involving two CSTRs 

connected in series, the effectiveness of this model in enhancing the accuracy of zero-sample fault 

diagnosis tasks is demonstrated. It effectively mitigates deviations in zero-sample fault diagnosis results, 

confirming the model's superiority. In terms of process safety and risk engineering, the proposed zero-

sample fault diagnosis model stands out for its capacity to perform fault diagnosis without relying on 

fault samples, rendering it highly practical for industrial processes, particularly within the context of 

Industry 4.0. Our upcoming research will pivot towards transitioning the model from a static to a 

dynamic framework. Additionally, we plan to broaden our test examples by incorporating the Tennessee 

Eastman process for larger-scale verification. 
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