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1. Introduction 
Autonomous driving is one of the internationally recognized future development directions and 

focuses of attention. At present, many countries have taken autonomous driving technology as a key 

development direction in the transportation field and have made strategic arrangements. High-level 

autonomous driving has gradually evolved from the technology research stage to the product 

implementation stage. However, with the occurrence of numerous accidents, public concerns about 

safety have been increasing. This is also one of the difficulties that impede the development of 

autonomous driving [1]–[3]. A comprehensive analysis of various accident cases shows that misjudgment 

of the surrounding environment is the main cause of the disaster. Due to the uncertainty of the driving 

scene, there may be a large deviation in the judgment of the image recognition algorithm for the 

unknown external environment. Among the many image recognition algorithms used in autonomous 

driving, semantic segmentation is the most important means of environmental understanding. It enables 

pixel-level image classification and separates different objects so that machines can understand their 

semantics. It is especially important for autonomous driving systems to accurately grasp information 

about the surrounding environment [4], [5]. The improvement of the semantic segmentation model 

detection effect is irreplaceable for reducing hidden dangers and ensuring the safety of autonomous 

driving. 
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 One of the major reasons for the explosion of autonomous driving in recent 

years is the great development of computer vision. As one of the most 

fundamental and challenging problems in autonomous driving, 

environment understanding has been widely studied. It determines whether 

the entire in-vehicle system can effectively identify vehicles' surrounding 

objects and correctly plan paths. Semantic segmentation is the most 

important means of environment understanding among the many image 

recognition algorithms used in autonomous driving. However, the success 

of semantic segmentation models is highly dependent on human expertise 

in data preparation and hyperparameter optimization, and the tedious 

training process is repeated over and over for each new scene. Automated 

machine learning (AutoML) is a research area for this problem that aims 

to automate the development of end-to-end ML models. In this paper, we 

propose an automatic learning method for semantic segmentation based on 

reinforcement learning (RL), which can realize the automatic selection of 

training data and guide automatic training of semantic segmentation. The 

results show that our scheme converges faster and has higher accuracy than 

researchers manually training semantic segmentation models while 

requiring no human involvement.  
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In the field of autonomous driving, autonomous driving in rail transit is currently the most used. 

Compared with road traffic, rail transit trains have independent tracks and the scene is relatively simple. 

However, unpredictable abandoned objects, people, trains, etc. may also appear [6], [7]. Once an accident 

occurs, the social impact is extremely severe. This requires the train to be able to realize perception and 

understanding of the environment in the track ahead, which also needs to rely on semantic segmentation 

and other image recognition algorithms.  

The mainstream semantic segmentation process roughly includes the following steps [8]–[11]: first, 

data collection and labeling are performed for the scene to be segmented, then the segmentation network 

is trained by labeled data, and after a certain period of training, the network parameters are updated to 

make it converge. Finally, the converged model is used for inference. It is worth noting that the accuracy 

of the model after convergence may not always makes people satisfied, especially when it is  migrated to 

a completely new scene. Therefore, the model training process in most cases also requires researchers to 

continuously analyze the model training effect and adjust the model parameters based on experience 

until the model meets the requirements. 

Based on the above process, academia and industry generally agree that there are two major problems 

in the current semantic segmentation technology: (1) Collection and cleaning of training data. Data 

determines the upper limit of machine learning, and high-quality training data is crucial for the training 

of semantic segmentation networks. However, the collection of data is often a time-consuming and 

laborious work. Meanwhile, the collected data inevitably have duplication, broken and errors. How to 

efficiently deal with these problematic data is one of the difficulties in improving data quality. (2) 

Automated training of the model. The current model evaluation, parameter adjustment, and model re-

training all rely on the expertise of professionals. There is a lack of an objective and convenient automated 

training method that enables those with little relevant knowledge to train high-quality models. 

In response to the above problems, we have conduct multifaceted researches and found that this 

problem is similar to those studied by Automated Machine Learning (AutoML). AutoML is the 

intersection of the two disciplines of automation and machine learning. It generally refers to an 

implementation that automates one or more stages of the process of machine learning without manual 

participation [12], [13]. In order to use machine learning techniques and achieve good performance, 

researchers usually need to be deeply involved in the entire process of model building. However, with 

the widespread application of deep learning and increasingly complex neural networks being proposed, 

even experts require significant resources and time to create well-performing models. The purpose of 

AutoML is to free people from these machine learning applications, get rid of the above-mentioned 

tedious model design and optimization process, and achieve true machine learning. The most critical 

and time-consuming step of machine learning is model training, which usually involves optimization 

methods. 

Optimization methods focus on optimizing the hyperparameters used for training. Popular methods 

include Grid Search (GS) [14], Random Search (RS) [15] and Bayesian Optimization (BO) [16], [17]. 

GS divides the search space into regular intervals and selects the best execution point after evaluating all 

points, while RS selects the best point from a set of randomly selected points, and BO builds a 

probabilistic model mapping from hyperparameters to the validation probabilistic model mapping from 

hyperparameters to evaluation metrics on the set, which well balances exploration and exploitation.In 

addition, Gradient-based Optimization (GO) [18]–[20] uses gradient information to optimize 

hyperparameters and significantly improve the efficiency of HPO. Maclaurin [21] et al. proposed the 

reversible-dynamics memory-tape method, which efficiently handles thousands of hyperparameters 

through gradient information. To further improve efficiency, Pedregosa [22] used approximate gradient 

information instead of real gradients to optimize continuous hyperparameters. Chandra [23] proposed a 

final gradient-based optimizer that not only optimizes regular hyperparameters (such as learning rate) 

but also optimizes  hyperparameters of the optimizer (such as moment coefficients of the Adam optimizer 

[24]). 
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 Over the past few years, a large number of algorithms and systems have emerged and verified the 

feasibility of using automated machine learning methods. Thus we hope to adopt the idea of automated 

machine learning to solve the challenges faced by the environment understanding. 

Automated learning for semantic segmentation is necessary and has achieved many results. Zhang 

[25] pointed out that manually designing and tuning parameters of semantic segmentation networks 

requires a lot of expert work, and it is difficult to find a balance between speed and performance for some 

real-time applications such as autonomous driving. Therefore, he proposed a customizable architecture 

search method to automatically generate lightweight networks with specific constraints. This is the first 

attempt in the direction of automatic network architecture generation for semantic segmentation. 

Nekrasov [26] pointed out that since manually designing networks is tedious and difficult to handle, 

automated design of neural network architectures for specific tasks is a very promising route. He used 

an RNN controller to cyclically output network structure and operations of each layer for semantic 

segmentation, with specialized modifications for compact semantic segmentation and the inclusion of 

auxiliary units to speed up search and training. Liu [27] proposed a network-level search space containing 

many popular designs and developed a formulation allowing gradient-based architectural search. Kim 

[28] applied NASNet, an AutoML reinforcement learning algorithm, to Deep U-Net network to 

improve image semantic segmentation performance. Chen [29] proposed a decoupled, fine-grained delay 

regularization method to address the problem of crashing semantic segmentation models designed 

automatically using NAS and better achieves a balance between high accuracy and low delay. Yang et al. 

[30] introduced automated semantic segmentation to the medical field by proposing a composite 

structure for dense labeling in which a custom 3D fully convolutional network explores spatial intensity 

concurrency of the initial labeling, and RNN encodes spatial orderliness to counteract boundary 

ambiguity, resulting in significant refinement. It allows simultaneous segmentation of multiple 

anatomical structures with clinical significance, such as fetus. It can be seen that automated learning of 

semantic segmentation is becoming a very important and practical research direction. 

In this paper, our contribution is to propose an automated learning method for semantic 

segmentation for understanding autonomous driving environments. It innovatively uses RL to automate 

data selection, which avoids the huge cost of data collection and cleaning by researchers. Meanwhile, 

this method can be combined with generic semantic segmentation models. The agent judges training 

degree of the model and adjusts training set accordingly to guide automatic training of the model. 

The focus of this study is to design AutoML methods for semantic segmentation of autonomous 

driving, aiming to solve difficulties in acquiring training data and automating model training. The 

structure is as follows: Section 2 we present our proposed automated learning method for semantic 

segmentation in detail; Section 3 presents experiments and results analysis; Section 4 concludes our 

paper. 

2. Method 

2.1. Method Framework 
The main modules include automatic data collection and identification on the vehicle side, server-

side model training, model evaluation, training set adjustment and retraining, and final model 

deployment and update. The framework supports end-to-end AutoML that maps vehicle driving scenes 

to semantic segmentation results. Reinforcement learning algorithm is used as key classifiers for data 

collection and dataset adjustment throughout the pipeline. The reinforcement learning agent is able to 

select training data based on the level of model training, eliminate worthless data, focus on increasing 

proportion of incorrectly segmented data, and guide the model to perform automatic training to achieve 

higher accuracy. 

In this scenario, we define external environment as the image set which has been segmented using 

trained model. The agent interacts with environment (this segmented dataset) and selects images that 

are valuable for re-training. In each round of semantic segmentation model training, since parameters of 
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the model are not the same, the filtered valuable images should be different. The agent has the ability 

to explore the dynamic filtering criteria self-learningly and adaptively. 

2.2. Model Composition 
The interaction of an agent with the environment is modeled using a markov decision process. This 

model consists of a quintet M=(S,A,p,r,γ). S is the state space and s
t

∈S denotes the state of the agent 

at moment t; A is the action space and a
t

∈A denotes the action taken by the agent at moment t; 

p(s
t+1

|s
t

,a
t

)∈(0,1)is the state transfer probability of the agent taking action a
t

 in state s
t

 to state s
t+1

; 

the reward function r
t+1

  denotes the reward obtained by taking action a
t

 in state s
t

; γ∈[0,1] is the 

discount factor. When in any state s
t

∈S, performing an action at∈A will cause the environment to 

enter a new state s
t+1

 with transfer probability p(s
t+1

|s
t

,a
t

) and give a reward rt+1

. 

Considering complex state space of data selection, the reinforcement learning model used in this 

paper is DQN [31], [32]. DQN uses a neural network to replace Q-Table, where the network inputs 

states and each possible action has a separate output unit giving its predicted value. All feasible action 

values under the state can be given through a forward pass calculation. It avoids the dimension explosion 

brought by using Q-Table. 

For simplicity, we make a streaming assumption that unlabeled data arrives as a stream. As each piece 

of data arrives, the agent must decide the action to take, i.e. whether that data is retained for retraining. 

The state s
t

 includes the candidate data being considered for retention or deletion and the data left after 

processing at time steps 1,⋯,t − 1. The vector space 𝑆𝑆 is defined as an 𝑁𝑁-dimensional space, and the 

vector ϕ(st) is used to represent the state at moment t. Each dimension stores the data x retained after 

selection by the agent, where the 1,⋯,N − 1 dimensions represent the data retained after previous 

processing and the Nth dimension represents the candidate data being processed. In particular, 

considering that reinforcement learning receives information from segmented images, as shown in Fig. 

1, each image contains a small amount of information, but the storage cost of preserving the images is 

high. Therefore, we add a preprocessing module to quantify value of segmented images. For each 

segmented image, the mechanism first performs an initial scoring with a score scale of 1 to 100. The 

worse the segmentation, the higher the score, representing that the image is more valuable for model 

training. It converts stored images into more intuitive scores, which will make it easier for machines to 

perform calculations. 

 
 

Fig. 1. Semantic segmentation of images 

Correspondingly, the action space 𝐴𝐴 is a set consisting of 𝑁𝑁 kinds of actions, that is, 𝐴𝐴 =<
a1,a2,⋯,aN>, which correspond to the replacement of 1 to N−1 dimensional data with candidate data and 

whether to discard it. 

In state iteration, each time the agent performs an action, the environment needs to return 

corresponding reward value to evaluate execution of action. It is clear that incorrectly segmented images 
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are more valuable for subsequent training than correctly segmented images, so the model should be 

encouraged to retain more of the poorly segmented data. The reward is defined as: 

𝑟𝑟 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑁𝑁−𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖
�𝑚𝑚𝑚𝑚𝑚𝑚(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑁𝑁,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖)

   (1) 

where scoreN refers to the 𝑁𝑁𝑡𝑡ℎ
  dimension score of st , which is the score of the candidate data being 

processed, and score𝑖𝑖 represents the score of the original data replaced by current candidate data. 

In this method, we further design two neural networks (current 𝑄𝑄 network and target 𝑄𝑄 network) 

containing three convolutional layers and a fully connected layer to approximate value function. The 

input layer of this neural network has N nodes corresponding to the N-dimensional data scores in the 

state space, which represent the information of N images obtained from the environment. Three 

convolutional layers are hidden layers with forty nodes, and the output layer is connected behind them 

to output the N-dimensional images that are retained in the final state. These are selected images with 

poor segmentation, and the overall constitutes a reinforcement learning controller network. We design 

neural network 𝐿𝐿2 loss function based on 𝑇𝑇𝑇𝑇 error: 

𝐿𝐿(𝜃𝜃) = 𝐸𝐸𝑠𝑠,𝑎𝑎,𝑟𝑟 ��𝐸𝐸𝑠𝑠�[𝑦𝑦|𝑠𝑠,𝑎𝑎] − 𝑄𝑄(𝑠𝑠,𝑎𝑎;𝜃𝜃)�
2
�   (2) 

L(θ)=Es,a,r,s' ��y-Q(s,a;θ)�2� -Es,a,r[vs'[y]]   (3) 

where θ refers to the set of parameters included in the neural network, y=r+γ max
a'

Q(s',a';θ), 

Es,a,r[vs'[y]] is the expectation of variance of y. 

Meanwhile, to make the network training more stable, we introduce an independent target network 

parameterized by θ-
. The structure, input and output of this network are exactly the same as the original 

network to obtain a stable TD target. Its network parameter θ-
 is updated to the parameter θ of the 

DQN at intervals c. Thus the loss function is expressed as: 

𝐿𝐿(θ) = 𝐸𝐸𝑠𝑠,𝑎𝑎,𝑟𝑟,𝑠𝑠′ ��𝑟𝑟 + 𝛾𝛾𝑚𝑚𝑚𝑚𝑚𝑚
𝑎𝑎′

𝑄𝑄(𝑠𝑠′,𝑎𝑎′;𝜃𝜃−) − 𝑄𝑄(𝑠𝑠,𝑎𝑎;𝜃𝜃)�
2

�   (4) 

Its gradient is: 

∇θL(θ)=Es,a,r,s' �(r+ γmax
a'

Q(s',a';θ-) -Q(s,a;θ))∇θi
Q(s,a;θ)�   (5) 

2.3. Training of Reinforcement Learning Models 
In our proposed reinforcement learning model, the value function is approximated by a neural 

network, so what we have to do is to train the neural network. 

In each round of training, the state s
0

, the experience replay pool D, the current Q-network and the 

target Q-network are first initialized. At each step, the agent uses the ε-Greedy method to make current 

replacement action a
t

 according to the current state. The ε-Greedy method selects the action with the 

greatest value based on the prediction of the current 𝑄𝑄 network with probability 1−ε, i.e. 

at=arg max
aϵA

Q(s,a;θ), while randomly selecting an action a
t

 from other actions as the current action with 

probability ε.  

After executing the action a
t

, the instant reward r
t

 is obtained, and  the agent transfers to the state 

st+1

. The agent past interaction experience et=(st,at,rt,st+1

) will be stored in the experience replay pool 
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Dt={e
1

,⋯et}. At the same time, a batch of experiences {e1,⋯ej} is randomly selected from Dt and the target 

𝑄𝑄 value yj is calculated (when the MDP is not terminated) as follows: 

𝑦𝑦𝑗𝑗 = 𝑟𝑟𝑗𝑗 + 𝛾𝛾𝑚𝑚𝑚𝑚𝑚𝑚
𝑎𝑎′

𝑄𝑄�(𝑠𝑠′,𝑎𝑎′;𝜃𝜃−)   (6) 

Gradient descent is used to update the 𝑄𝑄 network parameters, and the loss function is as described 

above. The current 𝑄𝑄 network copies its own network parameters θ to the target 𝑄𝑄 network θ-
 after 

each c rounds of training. During the process of training, with the iteration and update of network, it 

gradually approaches the real value function. 

2.4.  Enable Data Selection and Guide Model Training 
On the basis of the completed training model, the model is used to perform data selection. In each 

round of selection, first, the state is initialized by segmented images and the 𝑁𝑁-dimensional state vector 

is obtained. Then the images to be selected are continuously input, and the model gives rewards for 

different replacement strategies according to the 𝑄𝑄-network in this state, selects the behavior with the 

highest reward as the current decision, and updates state vector after decision. The MDP transfers to 

the next state, and so on until the MDP transfers to the termination state.We get the final remaining 

images with higher value. This constitutes a complete MDP process. After going through all data 

selection process, the system aggregates all segmented images retained by the MDP, and retrieves original 

training data for the next targeted training of the semantic segmentation model. 

3. Results and Discussion 
In this section, training of reinforcement learning models, evaluation of reinforcement learning 

model and performance evaluation of automated learning methods for semantic segmentation are 

performed. 

3.1. Experiment Preparation 
This paper uses the camera data provided in the MRSI dataset [33] as a test scene to simulate 

scenarios that may occur in autonomous driving. The MRSI dataset uses various sensing devices 

mounted on the vehicle to record track scenes under different lighting and weather conditions, including 

straight lines, curves, and turnouts during day, dusk, night, and rain. After data cleaning, MRSI has a 

total of 5046 images for semantic segmentation. 

There is no restriction on the choice of semantic segmentation network in this method, and this 

paper uses BiSeNet [34], [35] as an example, which is a lightweight real-time semantic segmentation 

model with a high level of comprehensive accuracy and speed. 

3.2. Reinforcement Learning Model Evaluation 

3.2.1. Training Effect 
The training data is the segmented images output by BiSeNet. In the training, one round is taken 

from the initial state of MDP to the termination state. The reinforcement learning model is evaluated 

every 20 epochs of training. Five randomly selected data selection tasks are tested in each evaluation, and 

the total reward of their outputs is calculated as the result of this model evaluation. Obviously, a higher 

total reward indicates that more valuable training data are selected. The experimental results obtained 

using 30,000 rounds of data selection training based on reinforcement learning are given in Fig. 2, where 

the horizontal axis indicate the number of training rounds and the vertical axis indicate the cumulative 

reward value of each round. This result demonstrates that reinforcement learning-based data selection 

methods can effectively learn how to handle image selection tasks. At the beginning, the model effect 

improves rapidly, and then gradually becomes flat. This indicates that the selection strategy is 
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continuously optimized during the training process and the model performance gradually becomes 

better. 

 

Fig. 2. Iterative process of reward for reinforcement learning model 

3.2.2. Display of Data Selection 
We use the trained reinforcement learning model for data selection. Fig. 3 shows a complete MDP 

process. After 8 Steps, the poorer images are finally selected for subsequent training.From Fig. 3, we can 

see that the final images filtered by agent from numbers 1 to 18 are 6, 7, 10, 12, 13, 14, 15, 16, 17, which 

are obviously the worst segmented images. 

 

Fig. 3. An example of data selection based on reinforcement learning 
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3.3. Automated Semantic Segmentation Learning Model 
In addition to the above data selection model training process, our proposed automated systems 

adaptively controling the training of semantic segmentation model is more important. In order to 

visualize the effect of the automatic control system clearly, our model is compared with the original 

BiSeNet model in terms of loss, iou and validation set accuracy. 

In order to ensure that the initial training parameters are consistent, the semantic segmentation 

network is first partially trained in the comparative experiments (corresponding to the overlapping part 

of two lines in Fig. 4(a), and then both continue training on this basis separately. As shown in Fig. 4(a), 

it can be seen that the proposed model in this paper has a significant improvement in convergence speed 

compared with the original BiSeNet, and the model reaches convergence state in only 15 epoches from 

the beginning of their respective training, while the original model is far from convergence at this time. 

In contrast, the rate of convergence is increased by an average of 46\%. Meanwhile, as shown in Fig. 

4(b) and Fig. 4(c), our model outperforms the original model in terms of iou and validation set accuracy 

as well(0.91% and 0.83%). This shows that our model can greatly improve  model training speed while 

taking into account the accuracy, and can free researchers from the tedious training. The method 

proposed in this article can realize automated training of autonomous driving semantic segmentation 

models, effectively improve the model convergence speed, and have higher accuracy. 

  

(a) Loss (b) Iou 

 

(c) Validation accuracy 

Fig. 4. Model effect comparison 
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4. Conclusion 
In order to solve problems of difficulty in acquiring training data for semantic segmentation and 

manual model training, this paper proposes an automated learning method for semantic segmentation 

for autonomous driving environment understanding, and validates it in experiments. Our experimental 

results demonstrate that: (1) The reinforcement learning mechanisms to achieve data selection has good 

performance. The agent can continuously optimize selection strategy and finally achieve accurate data 

selection; (2) We realize data selection and guide automatic training of semantic segmentation by training 

the agent. Compared with the traditional method, using this method to train the semantic segmentation 

model has a faster convergence speed and higher model accuracy. At the same time, we noticed that 

although our model can effectively learn from training data, the effect may not be excellent when 

generalized to unseen data, which may lead to a decrease in accuracy when encountering unknown 

scenarios. In the future, We will work to improve this. 

Declarations 
Author contribution. The experimental ideas and method design were completed by the first author 

Wang Yang, Chen Yihao completed the data collection and processing, and Yuan Hao was responsible 

for writing the first draft of the paper. 

Funding statement. There are no funding institutions 

Conflict of interest. The authors declare no conflict of interest. 

Additional information. No additional information is available for this paper. 

Data and Software Availability Statements 
The [MRSI] data used to support the findings of this study are available at 

https://zenodo.org/record/5732905.  

References 
[1] M. Campbell, M. Egerstedt, J. P. How, and R. M. Murray, “Autonomous driving in urban environments: 

approaches, lessons and challenges,” Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., vol. 368, no. 1928, pp. 

4649–4672, Oct. 2010, doi: 10.1098/rsta.2010.0110. 

[2] L. Mora, X. Wu, and A. Panori, “Mind the gap: Developments in autonomous driving research and the 

sustainability challenge,” J. Clean. Prod., vol. 275, p. 124087, Dec. 2020, doi: 10.1016/j.jclepro.2020.124087. 

[3] S. Liu, L. Liu, J. Tang, B. Yu, Y. Wang, and W. Shi, “Edge Computing for Autonomous Driving: 

Opportunities and Challenges,” Proc. IEEE, vol. 107, no. 8, pp. 1697–1716, Aug. 2019, doi: 

10.1109/JPROC.2019.2915983. 

[4] D. Feng et al., “Deep Multi-Modal Object Detection and Semantic Segmentation for Autonomous Driving: 

Datasets, Methods, and Challenges,” IEEE Trans. Intell. Transp. Syst., vol. 22, no. 3, pp. 1341–1360, Mar. 

2021, doi: 10.1109/TITS.2020.2972974. 

[5] K. Zheng and H. A. H. Naji, “Road Scene Segmentation Based on Deep Learning,” IEEE Access, vol. 8, 

pp. 140964–140971, 2020, doi: 10.1109/ACCESS.2020.3009782. 

[6] J. Zhao, J. Liu, L. Yang, B. Ai, and S. Ni, “Future 5G-oriented system for urban rail transit: Opportunities 

and challenges,” China Commun., vol. 18, no. 2, pp. 1–12, Feb. 2021, doi: 10.23919/JCC.2021.02.001. 

[7] P. Singh, M. A. Dulebenets, J. Pasha, E. D. R. S. Gonzalez, Y.-Y. Lau, and R. Kampmann, “Deployment 

of Autonomous Trains in Rail Transportation: Current Trends and Existing Challenges,” IEEE Access, vol. 

9, pp. 91427–91461, 2021, doi: 10.1109/ACCESS.2021.3091550. 

[8] M. Siam, S. Elkerdawy, M. Jagersand, and S. Yogamani, “Deep semantic segmentation for automated 

driving: Taxonomy, roadmap and challenges,” in 2017 IEEE 20th International Conference on Intelligent 

Transportation Systems (ITSC), Oct. 2017, vol. 2018-March, pp. 1–8, doi: 10.1109/ITSC.2017.8317714. 

[9] S. Hao, Y. Zhou, and Y. Guo, “A Brief Survey on Semantic Segmentation with Deep Learning,” 

Neurocomputing, vol. 406, pp. 302–321, Sep. 2020, doi: 10.1016/j.neucom.2019.11.118. 

https://zenodo.org/record/5732905
https://doi.org/10.1098/rsta.2010.0110
https://doi.org/10.1016/j.jclepro.2020.124087
https://doi.org/10.1109/JPROC.2019.2915983
https://doi.org/10.1109/TITS.2020.2972974
https://doi.org/10.1109/ACCESS.2020.3009782
ttps://doi.org/10.23919/JCC.2021.02.001
https://doi.org/10.1109/ACCESS.2021.3091550
https://doi.org/10.1109/ITSC.2017.8317714
https://doi.org/10.1016/j.neucom.2019.11.118


157 International Journal of Advances in Intelligent Informatics   ISSN 2442-6571 

 Vol. 10, No. 1, February 2024, pp. 148-158 

 

 

 Wang et al. (An automated learning method of semantic segmentation for train autonomous driving environment understanding) 

[10] F. Lateef and Y. Ruichek, “Survey on semantic segmentation using deep learning techniques,” 

Neurocomputing, vol. 338, pp. 321–348, Apr. 2019, doi: 10.1016/j.neucom.2019.02.003. 

[11] S. Chennupati, G. Sistu, S. Yogamani, and S. Rawashdeh, “AuxNet: Auxiliary Tasks Enhanced Semantic 

Segmentation for Automated Driving,” in Proceedings of the 14th International Joint Conference on 

Computer Vision, Imaging and Computer Graphics Theory and Applications, 2019, vol. 5, pp. 645–652, 

doi: 10.5220/0007684106450652. 

[12] Q. Yao et al., “Taking Human out of Learning Applications: A Survey on Automated Machine Learning,” 

in arxiv Artificial Intelligence, p.20, Oct. 2018. [Online]. Available at: https://arxiv.org/abs/1810.13306v4. 

[13] X. He, K. Zhao, and X. Chu, “AutoML: A survey of the state-of-the-art,” Knowledge-Based Syst., vol. 212, 

p. 106622, Jan. 2021, doi: 10.1016/j.knosys.2020.106622. 

[14] J. Y. Hesterman, L. Caucci, M. A. Kupinski, H. H. Barrett, and L. R. Furenlid, “Maximum-Likelihood 

Estimation With a Contracting-Grid Search Algorithm,” IEEE Trans. Nucl. Sci., vol. 57, no. 3, pp. 1077–

1084, Jun. 2010, doi: 10.1109/TNS.2010.2045898. 

[15] J. Bergstra and Y. Bengio, “Random search for hyper-parameter optimization,” J. Mach. Learn. Res., vol. 

13, pp. 281–305, 2012, [Online]. Available at: 

https://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf. 

[16] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. de Freitas, “Taking the Human Out of the Loop: 

A Review of Bayesian Optimization,” Proc. IEEE, vol. 104, no. 1, pp. 148–175, Jan. 2016, doi: 

10.1109/JPROC.2015.2494218. 

[17] T. Yu and H. Zhu, “Hyper-Parameter Optimization: A Review of Algorithms and Applications,” in arxiv 

Machine Learning, p. 56, Mar. 2020. [Online]. Available: https://arxiv.org/abs/2003.05689v1. 

[18] Y. Bengio, “Gradient-Based Optimization of Hyperparameters,” Neural Comput., vol. 12, no. 8, pp. 1889–

1900, Aug. 2000, doi: 10.1162/089976600300015187. 

[19] J. Domke, “Generic methods for optimization-based modeling,” J. Mach. Learn. Res., vol. 22, pp. 318–326, 

2012, [Online]. Available at: https://proceedings.mlr.press/v22/domke12/domke12.pdf. 

[20] L. Franceschi, M. Donini, P. Frasconi, and M. Pontil, “Forward and Reverse Gradient-Based 

Hyperparameter Optimization.” PMLR, pp. 1165–1173, Jul. 17, 2017. [Online]. Available at: 

https://proceedings.mlr.press/v70/franceschi17a.html. 

[21] D. Maclaurin, D. Duvenaud, and R. P. Adams, “Gradient-based Hyperparameter Optimization through 

Reversible Learning,” 2015, vol. 37, p. 10, [Online]. Available at: http://arxiv.org/abs/1502.03492. 

[22] F. Pedregosa, “Hyperparameter optimization with approximate gradient.” PMLR, pp. 737–746, Jun. 11, 

2016. [Online]. Available at: https://proceedings.mlr.press/v48/pedregosa16.html. 

[23] K. Chandra, A. Xie, J. Ragan-Kelley, and E. Meijer, “Gradient Descent: The Ultimate Optimizer,” Adv. 

Neural Inf. Process. Syst., vol. 35, p. 12, Sep. 2019. Available at: https://arxiv.org/abs/1909.13371v2. 

[24] D. P. Kingma and J. L. Ba, “Adam: A Method for Stochastic Optimization,” 3rd International Conference 

on Learning Representations, ICLR 2015 - Conference Track Proceedings. International Conference on 

Learning Representations, ICLR, pp. 1–15, Dec. 22, 2014. [Online]. Available at: 

https://arxiv.org/abs/1412.6980. 

[25] Y. Zhang, Z. Qiu, J. Liu, T. Yao, D. Liu, and T. Mei, “Customizable Architecture Search for Semantic 

Segmentation,” in 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Jun. 

2019, vol. 2019-June, pp. 11633–11642, doi: 10.1109/CVPR.2019.01191. 

[26] V. Nekrasov, H. Chen, C. Shen, and I. Reid, “Fast Neural Architecture Search of Compact Semantic 

Segmentation Models via Auxiliary Cells,” in 2019 IEEE/CVF Conference on Computer Vision and Pattern 

Recognition (CVPR), Jun. 2019, vol. 2019-June, pp. 9118–9127, doi: 10.1109/CVPR.2019.00934. 

[27] C. Liu et al., “Auto-DeepLab: Hierarchical Neural Architecture Search for Semantic Image Segmentation,” 

in 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Jun. 2019, vol. 2019-

June, pp. 82–92, doi: 10.1109/CVPR.2019.00017. 

https://doi.org/10.1016/j.neucom.2019.02.003
https://doi.org/10.5220/0007684106450652
https://arxiv.org/abs/1810.13306v4
https://doi.org/10.1016/j.knosys.2020.106622
https://doi.org/10.1109/TNS.2010.2045898
https://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf
https://doi.org/10.1109/JPROC.2015.2494218
https://arxiv.org/abs/2003.05689v1
https://doi.org/10.1162/089976600300015187
https://proceedings.mlr.press/v22/domke12/domke12.pdf
https://proceedings.mlr.press/v70/franceschi17a.html
http://arxiv.org/abs/1502.03492
https://proceedings.mlr.press/v48/pedregosa16.html
https://arxiv.org/abs/1909.13371v2
https://arxiv.org/abs/1412.6980
https://doi.org/10.1109/CVPR.2019.01191
https://doi.org/10.1109/CVPR.2019.00934
https://doi.org/10.1109/CVPR.2019.00017


ISSN 2442-6571 International Journal of Advances in Intelligent Informatics 158 

 Vol. 10, No. 1, February 2024, pp. 148-158 

 

 Wang et al. (An automated learning method of semantic segmentation for train autonomous driving environment understanding) 

[28] H. S. Kim, K. Y. Yoo, and L. H. Kim, “Improved performance of image semantic segmentation using 

NASNet,” Korean Chem. Eng. Res., vol. 57, no. 2, pp. 274–282, 2019, [Online]. Available at: 

https://www.cheric.org/research/tech/periodicals/view.php?seq=1716510. 

[29] W. Chen, X. Gong, X. Liu, Q. Zhang, Y. Li, and Z. Wang, “FasterSeg: Searching for Faster Real-time 

Semantic Segmentation,” 8th Int. Conf. Learn. Represent. ICLR 2020, Dec. 2019. [Online]. Available at: 

https://arxiv.org/abs/1912.10917v2. 

[30] X. Yang et al., “Towards Automated Semantic Segmentation in Prenatal Volumetric Ultrasound,” IEEE 

Trans. Med. Imaging, vol. 38, no. 1, pp. 180–193, Jan. 2019, doi: 10.1109/TMI.2018.2858779. 

[31] V. Mnih et al., “Playing Atari with Deep Reinforcement Learning,” arxiv Mach. Learn., pp. 1–9, Dec. 2013, 

Accessed: Nov. 14, 2023. [Online]. Available at: https://arxiv.org/abs/1312.5602v1. 

[32] V. Mnih et al., “Human-level control through deep reinforcement learning,” Nature, vol. 518, no. 7540, pp. 

529–533, Feb. 2015, doi: 10.1038/nature14236. 

[33] Y. Chen, N. Zhu, Q. Wu, C. Wu, W. Niu, and Y. Wang, “MRSI: A multimodal proximity remote sensing 

data set for environment perception in rail transit,” Int. J. Intell. Syst., vol. 37, no. 9, pp. 5530–5556, Sep. 

2022, doi: 10.1002/int.22801. 

[34] C. Yu, J. Wang, C. Peng, C. Gao, G. Yu, and N. Sang, “BiSeNet: Bilateral Segmentation Network for Real-

Time Semantic Segmentation,” in Lecture Notes in Computer Science (including subseries Lecture Notes 

in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 11217 LNCS, Springer Verlag, 2018, pp. 

334–349, doi: 10.1007/978-3-030-01261-8_20. 

[35] C. Yu, C. Gao, J. Wang, G. Yu, C. Shen, and N. Sang, “BiSeNet V2: Bilateral Network with Guided 

Aggregation for Real-Time Semantic Segmentation,” Int. J. Comput. Vis., vol. 129, no. 11, pp. 3051–3068, 

Nov. 2021, doi: 10.1007/s11263-021-01515-2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

https://www.cheric.org/research/tech/periodicals/view.php?seq=1716510
https://arxiv.org/abs/1912.10917v2
https://doi.org/10.1109/TMI.2018.2858779
https://arxiv.org/abs/1312.5602v1
https://doi.org/10.1038/nature14236
https://doi.org/10.1002/int.22801
https://doi.org/10.1007/978-3-030-01261-8_20
https://doi.org/10.1007/s11263-021-01515-2

	1. Introduction
	2. Method
	2.1. Method Framework
	2.2. Model Composition

	2.3. Training of Reinforcement Learning Models
	2.4.  Enable Data Selection and Guide Model Training
	3. Results and Discussion
	3.1. Experiment Preparation
	3.2. Reinforcement Learning Model Evaluation
	3.2.1. Training Effect
	3.2.2. Display of Data Selection
	3.3. Automated Semantic Segmentation Learning Model

	4. Conclusion
	Declarations
	Data and Software Availability Statements
	References


