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1. Introduction 
In the current era of rapid technology development, autonomous driving is a pivotal element that 

has significantly affected industry and academia. In addition, efficient autonomous systems and human-

computer interactions are indispensable. Improving the safety of pedestrians is crucial in the context of 

autonomous driving. Hence, robots and humans must be on a common platform to understand the 

environment more effectively. Traffic sign recognition and classification provide a link for human-

computer interactions in both the driver assistance system and autonomous driving. 

Traffic sign recognition systems are vital for ensuring the safety and efficacy of traffic flow. However, 

this task is associated with challenges such as illumination variation, partial occlusion, different 

viewpoints, and weather conditions, rendering it difficult for the computer to detect and recognize traffic 

signs. Numerous benchmarks have been proposed to mitigate these challenges [1], [2]. Traffic sign 

recognition can be classified into two modules: detection and classification. During detection, the 

location of the sign in the images is assimilated, whereas during classification, the sign of the system is 

determined. Although both modules are independent, they are dependent on each other in a full system. 
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 Although supervised approaches for traffic sign classification have 

demonstrated excellent performance, they are limited to classifying several 

traffic signs defined in the training dataset. This prevents them from being 

applied to different domains, i.e., different countries. Herein, we propose a 

self-supervised approach for few-shot learning-based traffic sign 

classification. A center-awareness similarity network is designed for the 

traffic sign problem and trained using an optical flow dataset. Unlike 

existing supervised traffic sign classification methods, the proposed method 

does not depend on traffic sign categories defined by the training dataset. 

It applies to any traffic signs from different countries. We construct a 

Korean traffic sign classification (KTSC) dataset, including 6000 traffic sign 

samples and 59 categories. We evaluate the proposed method with baseline 

methods using the KTSC, German traffic sign, and Belgian traffic sign 

classification datasets. Experimental results show that the proposed method 

extends the ability of existing supervised methods and can classify any traffic 

sign, regardless of region/country dependence. Furthermore, the proposed 

approach significantly outperforms baseline methods for patch similarity. 

This approach provides a flexible and robust solution for classifying traffic 

signs, allowing for accurate categorization of every traffic sign, regardless of 

regional or national differences. 
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The breakthrough of deep convolutional neural networks (CNNs) has yielded state-of-the-art results 

for traffic sign recognition. However, classical deep learning algorithms require a large amount of data 

and in some cases, the acquisition of sufficient data for performance improvement is unrealistic or 

challenging. In traffic sign recognition and detection for example, supervised approaches require training 

data, and collecting a large number of samples is not an easy task. In addition, we cannot use traffic sign 

dataset from one country and apply to another country as their distribution are different (having different 

type of signs). In these scenarios, few-shot learning algorithms are utilized to determine the data 

patterns. 

Herein, we proposed a few-shot learning-based traffic classification network that comprises a 

similarity network based on a CNN. Image patches are generated using standard geometric 

transformations. To train the similarity network, these input image patches are further subdivided into 

five smaller patches for feature extraction by overlapping the central patch with the other patches. The 

primary contribution of this study is the use of self-supervised few-shot learning for traffic sign 

classification; therefore, the proposed method does not depend on the classification of training data. It 

classifies the traffic sign provided that examples are available. The proposed method applies to any traffic 

sign dataset regardless of country, in contrast to supervised methods of classification, which depend 

significantly on the training dataset and can classify the traffic sign therein explicitly. This training data 

dependency problem is addressed in this study using a self-supervised method for traffic classification. 

The proposed method was tested on the German traffic sign (GTS) and Belgian traffic sign classification 

(BTSC) datasets, and the experimental results show the efficacy of the proposed methodology. 

The main contributions of this paper are as follows: 

• A novel self-supervised approach for traffic sign classification that does not require a traffic sign 

dataset in the training step is proposed. 

• A center-awareness similarity network is proposed for traffic sign classification. In addition, a simple 

data augmentation technique is introduced to force networks to focus on the central part of an 

input image. 

• A Korean traffic sign classification dataset is introduced and available online. 

• Experimental results using common traffic sign classification datasets show that the proposed 

method exhibits better generalization than supervised methods and significantly outperforms 

testing baseline methods. 

The remainder of this paper is organized as follows: In Section 2, we present the related work. The 

proposed methodology and our Korean traffic sign classification dataset are described in Section 3. 

Experimental results for traffic sign classification are presented in Section 4. Finally, conclusions are 

provided in Section 5. 

2. Related Works 
The advent of deep learning has revolutionized traffic sign detection and classification. Zhu et al. [3]  

proposed a deep convolution-based network to detect traffic signs. It uses region proposals to reduce the 

effective area of search. Moreover, they extended R-CNN for traffic signs and obtained state-of-the-art 

results. Sermanet et al. [4] proposed a convolution neural network with a multi-scale. They modified 

the architecture by introducing the non-linearity of rectified sigmoid followed by subtractive local 

normalization and divisive local normalization. Besides commonly used supervised approaches for traffic 

sign recognition and detection, several other approaches can be used to solve the problem. 

2.1. Out-of-distribution 
The challenge of distribution shifts in deep learning models, particularly when discrepancies exist 

between training and test data distributions, is addressed in Zhang et al. [5]. A technique is introduced 
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that determines weights for training samples, thereby decoupling features, reducing misleading 

associations, and placing emphasis on the genuine association between distinguishing attributes and their 

respective labels. Krueger et al. [6] focuses on improving model responses to extreme shifts, particularly 

when inputs encompass both anti-causal and causal factors. 

The Open Domain Generalization (OpenDG) problem, which focuses on the effective training of 

models across multiple source domains with diverse label sets for optimal performance on unfamiliar 

target domains, is presented in Shu et al. [7]. A framework named Domain-Augmented Meta-Learning 

(DAML) is introduced, wherein domains are enhanced at the feature level by employing an innovative 

Dirichlet mixup technique and at the label level through the application of distilled soft labels. 

The concept of multi-source open-set unsupervised domain adaptation (MS-OSDA) [8] builds upon 

the constraints of its single-source counterpart (SS-OSDA). An approach driven by adversarial learning 

is suggested by the authors, which establishes a communal feature environment across all domains, 

diminishing discrepancies between multiple origin domains. 

Mancini et al. [9] address challenges associated with Zero-Shot Learning (ZSL) and Domain 

Generalization (DG) by the introduction of a unique ZSL+DG scenario, in which the identification of 

unfamiliar visual concepts in unknown domains is the objective. CuMix, a pioneering method, was 

introduced by the researchers, and it is designed to emulate domain and semantic variations at test-time 

by blending visuals and attributes from different foundational domains and classes while being trained. 

Models designed to generalize to both unfamiliar classes (termed as zero-shot learning) and unseen 

domains (known as domain generalization) are the focus of Mangla et al. [10], and this concept is referred 

to as zero-shot domain generalization. 

2.2. Domain Adaptation 
Lu et al. [11] proposed the advanced unsupervised domain adaptation (UDA) by utilizing an increased 

number of classifiers without complicating the model. Through the newly proposed technique, classifiers 

are depicted using a Gaussian distribution, which permits the generation of a diverse set of classifiers 

while keeping the model’s dimensions comparable to that of two classifiers. Liang et al. [12] focused on 

improving domain adaptation by rectifying biases in classifiers during the knowledge transition from 

domains abundant in labels to those lacking them. In response, the introduced Auxiliary Target Domain-

Oriented Classifier (ATDOC) deploys a specialized classifier tailored for the target domain, enhancing 

the accuracy of pseudo-labels. 

Xu et al. [13] presented a fresh approach to Universal Domain Adaptation (UniDA) specifically for 

remote sensing image scene classification, removing the traditional boundaries between source and target 

domain label sets. Zhu et al. [14] seek to overcome the challenges posed by conventional deep-domain 

adaptation techniques by emphasizing Subdomain Adaptation, which delves into detailed nuances within 

categories spanning various domains. In pursuit of this, the Deep Subdomain Adaptation Network 

(DSAN) is unveiled, leveraging a local maximum mean discrepancy (LMMD) to synchronize pertinent 

subdomain distributions, eliminating the necessity for adversarial training. 

Hu et al. [15] present methods of Unsupervised Domain Adaptation (UDA) for identifying and 

categorizing lanes in self-driving vehicles, utilizing artificial data from virtual settings. Rectifying the 

mode collapse challenge in adversarial learning methods for unsupervised domain adaptation (UDA) was 

proposed by Chen et al. [16]. In their approach, the researchers propose a unique discriminator-free 

adversarial learning network (DALN), in which a category classifier takes on the role of a discriminator, 

guaranteeing alignment across domains and clear category differentiation. 

2.3. One- and few-shot learning 
Hu et al. [17] refine few-shot learning through a straightforward pre-train + ProtoNet method, 

highlighting the significance of external datasets and neural network design. When domain variations 

occur, adjusting with data augmentation becomes essential. Zhang et al. [18] proposed a Meta-DETR 

which is an object detection framework that uses DETR’s transformer architecture for few-shot learning. 
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It processes images directly without requiring region proposals, addressing inaccuracies in traditional 

methods. Lu et al. [19] propose an unsupervised few-shot learning method grounded in information 

theory, using self-supervision to optimize mutual information between data instances and their 

representations. They emphasize the distinct mutual information (MI) objectives of self-supervised 

versus supervised pre-training, exploring these differences through thorough experimentation. 

Lu et al. [20] propose the Contour Transformer Network (CTN), a one-shot segmentation approach 

that utilizes one labeled reference and several unlabeled images for training. By capitalizing on the 

uniformity of anatomical structures’ shape and visual patterns across images, CTN adopts a semi-

supervised method, focusing on contour progression. In medical image segmentation, the effectiveness 

of supervised neural models is constrained by the demand for a vast number of labeled samples, 

positioning one-shot learning as a viable solution when annotations are scarce [21]. Drawing inspiration 

from atlas-centric segmentation, the author presents an innovative self-supervised learning technique 

that creates volumetric image-segmentation pairs using just one labeled reference. Yang et al. [22] 

highlight the crucial importance of aligning features at the instance level for the progression of one-shot 

object detection techniques. A distinct IHR (Instance-level Hierarchical Relation) module is unveiled 

to encapsulate relationships across different levels, refining the depiction of similarities. 

2.4. CLIP-based Approach 
Radford et al. [23] introduce a new method to address the constraints of conventional computer 

vision systems that are confined to trained classes. By integrating NLP with vision, the model learns 

from text-image pairs, utilizing a vast dataset of 400 million entries. This technique enables zero-shot 

transfer across tasks, rivaling ResNet-50’s performance on ImageNet without needing its comprehensive 

training set. Gu et al. [24] refine the process of open-vocabulary object detection, allowing for object 

detection through diverse textual inputs. The introduced technique, ViLD, taps into Vision and 

Language knowledge Distillation, drawing from an established image classification framework. Using 

this foundational “teacher” model, it encodes various category narratives and visual areas, subsequently 

integrating them into a secondary “student” detection system for enhanced performance. 

Hendriksen et al. [25] target the issue of aligning product categories with their corresponding images 

in e-commerce due to frequent discrepancies between text and visuals. This approach employs four 

specialized encoders (for category, image, title, and attributes) and a pair of projection mechanisms to 

map both category and product details into a cohesive multimodal domain for optimized retrieval. Jiang 

and Ye [26] focuse on enhancing the process of Image Person Retrieval based on text descriptions 

through the IRRA strategy, utilizing techniques inspired by the CLIP model. This strategy incorporates 

a unique application of Masked Language Modeling to subtly identify connections between visual and 

textual data.  

Ge et al. [27] amplify the resilience and versatility of multi-modal frameworks, with a focus on 

rectifying the precision variance observed in CLIP’s ImageNet zero-shot assessments. By manipulating 

images and textual indicators, the certainty of predictions is gauged, highlighting predictions that might 

be off-mark. A hierarchical framework from WordNet is then harnessed to propose a label augmentation 

technique, utilizing both broad and specific category information to enhance the alignment between 

visual and textual signals. 

Sanghi et al. [28] present a technique to create 3D forms using text prompts, tackling the issue of 

scarcely matched text and shape datasets. CLIP-Forge utilizes a dual-phase training approach: initially, 

it trains an autoencoder to establish a latent representation for shapes, and subsequently, it incorporates 

a normalizing flow model that relies on features from a previously trained image encoder. In the inference 

phase, the system draws on textual attributes from an established text encoder to produce the 

corresponding 3D form. 



ISSN 2442-6571 International Journal of Advances in Intelligent Informatics 175 

 Vol. 10, No. 1, February 2024, pp. 171-185 

 

 Nguyen et al. (Self-supervised few-shot learning for real-time traffic sign classification) 

3. Method 

3.1. Preparation and Patch Transformation 
In this subsection, we present an approach for constructing a dataset using an optical flow method, 

which is then used to train a similarity network. For a specific video, we extracted two frames and used 

the optical flow method [29] to compute the corresponding points between the frames, as shown in Fig. 

1. For each pair of corresponding points, we extracted image patches whose center pixels are the 

corresponding points. Traffic sign images in the same categories also have similar appearances except for 

their backgrounds. Fig 1(a) and (b) motivate us to design a self-supervised similarity network for traffic 

sign classification that focuses on the center part of input images 

 

 

(a) (b) 

Fig. 1. Corresponding patches are extracted using optical flow images and sample traffic sign images in different 

categories. (a) Pairs of two patches are cropped that are visually similar. (b) Traffic signs in different 

categories.  

According to Meister [30], challenges in traffic sign classification include occlusion, illumination 

variations, snow, sun, rain, and blur. Therefore, the extracted patches were processed to address the 

challenges. Each patch underwent a pipeline of typical image transformations, such as rotation, 

translation, scale, elastic distortion, noise addition, and brightness and contrast changes. The brightness 

and contrast adjustment step changes the brightness and contrast by setting the image patch 𝑃𝑃 as 

P ← P. constrat + brightness   (1) 

where addition and multiplication are element-wise operations. The rotation step rotates the patch by 

rotation, whereas the translation step translates the patch in the vertical direction by translation. The 

scaling step resizes the patch by scaling, and the shearing step shears the patch in the horizontal direction 

by shearing. Elastic distortion [31] is typically used to generate feasible and label-preserving images for 

classification. Elastic distortion changes an image patch by the transformation intensity EDalpha and 

transformation smoothness EDsigma. 

Finally, Gaussian noise was added to each generated patch. We used a Gaussian function to compute 

the probability that a pixel should be added noise. Let HP and WP be the height and width of a patch 

𝑃𝑃, and c is the center pixel of P where 𝑥𝑥𝑐𝑐 = 𝑊𝑊𝑝𝑝

2
+ 1 and 𝑦𝑦𝑐𝑐 = 𝑊𝑊𝑝𝑝

2
+ 1. The probability 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑥𝑥,𝑦𝑦) that 

a pixel should be added with noise is computed as 

prob(x, y) = 1 − G(x, y),   (2) 

where 

𝐺𝐺(𝑥𝑥,𝑦𝑦) = 1
2𝜋𝜋𝜋𝜋2

𝑒𝑒 − (𝑥𝑥−𝑥𝑥𝑐𝑐)+(𝑦𝑦−𝑦𝑦𝑐𝑐)
2𝜎𝜎2

   (3) 
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To prepare training data for positive and negative examples, pairs of corresponding patches were 

extracted and subjected to the transformation pipeline with different random parameter settings. The 

pairs of transformed patches formed positive examples. Negative examples were created using extracted 

image patches far from the corresponding image patches at a distance data distance. 

3.2. Center-awareness Similarity Network 
Herein, we propose a similarity network that is biased to exploit information from the center of an 

image patch. The input patch was divided into five smaller patches which extracted the features 

independently. Among these smaller patches, one patch overlapped with other patches and was extracted 

from the center region of the original patch. This is because the center region contained more 

information to classify traffic signs. 

Fig. 2 shows the architecture of the proposed center-awareness similarity network. The architecture 

of the five weight-sharing sub-networks comprised several convolution layers, followed by a rectified 

linear unit (ReLU) layer, and a max pooling layer. The resulting ten vectors were concatenated and 

forwardly propagated through a series of fully connected layers, followed by the ReLU layer. The final 

output of the network was fed to a nonlinear activation function sigmoid to produce a similarity score 

between the input patches. The binary cross-entropy loss was used for training. 

 

Fig. 2. Architecture of the proposed center-awareness similarity network.  

The transformation pipeline for a patch to prepare a training dataset for a similarity network consists 

of six sub-components (Fig. 2). Gaussian noise addition in the proposed patch transformation forces the 

network to focus on the central part of input images. The input image is divided into five parts before 

feeding to the proposed network. This helps reduce computation costs while keeping performance. The 
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central part is reserved so that the network can exploit the information of the central region of the input 

image effectively.  

Let ŷ denote the network output for one training example, and 𝑦𝑦 the class of that training example. 

𝑦𝑦 =  1 if the example belongs to the positive class, and 𝑦𝑦 =  0 if the example belongs to the negative 

class. The binary cross-entropy loss L for this example is defined as 

𝐿𝐿(𝑦𝑦,𝑦𝑦�) = 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦(𝑦𝑦�) + (1 − 𝑦𝑦)log (1 − 𝑦𝑦�)   (4) 

The hyperparameters of the proposed network are the number of fully connected layers, the number 

of units in each fully connected layer, the number of feature maps in each layer, the number of 

convolutional layers, the size of convolution kernels, and the size of the input patch. The details of the 

parameter settings for the proposed network are also included in Fig. 2. 

We used 32×32 image patches as input to the network, as well as smaller patches with a resolution 

of 16×16 pixels. The map pooling layer and four convolutional layers comprised a 3 × 3 kernel and 128 

feature maps. A 1280-length vector was formed by concatenating ten 128-length feature vectors. 

Subsequently, the 1280-length vector was passed through three fully connected layers with 512, 256, 

and 128 units each. The final fully connected layer projected the output to a single number, which is 

the similarity score. 

3.3. KTS Dataset 
Our proposed traffic sign classification method can operate without requiring a training dataset. To 

emphasize this ability, we prepared a Korean traffic sign classification (KTSC) dataset. We installed a 

camera on a car and captured videos for several hours, as shown in Fig. 3.  

 

Fig. 3. Our system captures videos to prepare the Korean traffic sign classification dataset 

Subsequently, we manually labeled the images extracted from the videos. The KTSC dataset included 

6220 traffic sign images with 59 categories, as shown in Fig. 4 and Table 1. 

KTSC does not align with the BTSC and GTSC datasets. In other words, there are categories that 

only appear in KTSC and vice versa. For example, GTSC has 40 classes, whereas KTSC has 59 classes. 

This difference clearly shows that classes (categories) of GTSC and KTSC are not the same. In addition, 

the traffic sign that a driver to stop his/her vehicle are visually different between the two datasets. A 

round shape contains the word “stop” in GTSC, while KTSC uses a around shape that contains two 

words “정지” and “stop” (as shown in Fig. 4).  
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Fig. 4. Samples of Korean traffic sign classification dataset. KTSC does not align with the BTSC and GTSC 

datasets. There are categories that only appear in KTSC 

Fig. 5. Korean traffic sign dataset with 59 categories and 6220 images. This dataset is publicly available 

 Category  Category  Category 
0 Bicycles and pedestrians only 20 Maximum speed limit 50 40 Pass right 

1 Bicycles crossing 21 Maximum speed limit 60 41 Right curve 

2 Bus only lane 22 Maximum speed limit 70 42 Right lane decrease 

3 Bus sign 23 Maximum speed limit 80 43 Right turn 

4 Camera sign 24 Maximum speed limit 90 44 Safe speed 80 

5 Children crossing ahead 25 Minimum safe distance between vehicles 45 Slippery road 

6 Crossroad 26 Minimum speed limit 50 46 Slow 

7 Crosswalk 27 Motor vehicles only 47 Speed humps 

8 Crosswind 28 No bicycles 48 Stop 

9 End crosswalk 29 No electric car sign 49 Straight and left turn 

10 End maximum speed limit 30 No entry 50 Straight and right turn 

11 End of dual Carriageway 31 No left turn 51 T-shaped intersection 

12 Falling rocks 32 No motorcycles 52 Tow away zone 

13 Height limit 33 No overtaking 53 Traffic merge from left 

14 Intersection to left 34 No right turn 54 Traffic merge from right 

15 Intersection to right 35 No stopping or parking 55 Tunnel 

16 Left turn 36 No trucks 56 Turn left sign 

17 Maximum speed limit 100 37 No U-turn 57 Turn right sign 

18 Maximum speed limit 30 38 Pass left or right 58 U-turn 

19 Maximum speed limit 40 39 Yield   

 

Images from KTSC are captured in driving conditions. Therefore, images (in a sequence of images) 

are affected by outdoor factors, such as different illustrations, blurring, and difference viewpoints. Fig. 5 

shows the number of samples for each class. In our work, KTSC is used as a test set. Therefore, the 

imbalanced distribution can be ignored in our setting. 

The KTSC dataset is considered a testing dataset in our experiments, as will be presented in the next 

section. It is suitable for comparing our proposed method with other traffic sign classification methods 

because our proposed method assumes that the training dataset is not available. This is applicable because 

traffic signs differ based on country. Additionally, we cannot expect a training dataset to apply to all 

traffic signs of all countries. 
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Fig. 6. The number of samples for each class in KTSC 

4. Results and Conclusion 
We evaluated the proposed traffic sign classification method (CASN) and compared it with traditional 

similarity measures such as the sum of absolute differences (SAD), normalized cross-correlation (NCC), 

MC-Net [4], Transformer [32], and MatchNet [33]. In addition, to demonstrate the effect of using 

spatial Gaussian noise, we evaluated a version of the proposed method that does not involve Gaussian 

noise, namely CASN(-). We used two traffic sign datasets, the GTS and BTSC datasets. We evaluated 

the testing method by computing top-1, -2, and -3 accuracies, where the top-3 accuracy for a method 

implies that the method’s top three estimates contain the correct answer. Top-n accuracy indicates that 

the correct class is counted if it appears in top-n similarity scores. The parameter settings for the 

proposed method are presented in Table 2. 

Table 1.  Parameter setting for the image patch augmentation 

Nam
e 

contras
t 

brightnes
s 

rotatio
n 

translatio
n 

data 
distanc

e 

scalin
g 

σ EDalph
a 

EDsigm
a 

Value [1,1.1] [0,0.4] [-10,10] [-1,1] 5 [0.9,1] [11,14

] 

[1,7] [1,7] 

 

We used the KITTI optical flow dataset [34] to construct a dataset to train our similarity network. 

Based on the ground truth, we extracted image patches and created approximately 34 million pairs. The 

network was trained using a stochastic gradient descent method to optimize the cross-entropy loss. The 

network was trained for 20 epochs with the learning rate initially set to 0.004 and decreased by a factor 

of 10 on the 15th iteration. The training examples were shuffled before learning, and the batch size was 

set to 128. In our following experiments (Sections 4.2 and 4.3), we intentionally added some Korean 

traffic signs to the BTSC and GTS testing datasets to emphasize the limitation of supervised traffic sign 

classification methods. The supervised classification methods failed to operate on a testing dataset that 

had traffic sign categories that differed from those of a training dataset. 

4.1. Comparison with supervised methods 
We evaluated our proposed method using SAD, NCC, MatchNet [33], MC-Net [4], and 

Transformer [32] traffic sign classification methods using the KTSC dataset. The MC-Net and 

Transformer methods are supervised approaches and were trained on the GTS dataset. Supervised 

methods for traffic sign classification depend on traffic sign types that are defined on a training dataset, 

and these supervised methods are not designed to classify traffic signs from different domains. 

However, the proposed traffic sign classification method does not require a training dataset to be 

constructed. Therefore, it is not constrained to sign categories and applies to any type of traffic sign. 

The proposed method provides a few examples for each traffic sign to operate. However, it is significantly 
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easier to obtain a few examples of each traffic sign than to acquire tens of thousands of examples for 

training. This is the main advantage of the proposed method compared with supervised methods. 

Table 3 shows the quantitative results of the testing methods using the KTSC dataset. It is 

noteworthy that the KTSC dataset does not provide a training dataset and only contains a small set for 

evaluation. The MC-Net and Transformer trained using the BTSC dataset did not perform well on the 

new domain (KSTS). SAD, NCC, and the proposed method were operated with the KTSC dataset 

without a training dataset. MatchNet, CASN(-), and CASN performed better than MC-Net and 

Transformer because MC-Net and Transformer were trained in different datasets with different 

categories. CASN(-) can be considered an improved version of MatchNet for this specific traffic sign 

classification problem, as CASN(-) accounts for the center region of a patch. Consequently, CASN(-) 

performed better with MatchNet. Because of Gaussian noise, CASN outperformed CASN(-) in all the 

testing cases. 

Table 2.  Accuracies of the testing traffic sign classification methods using KTSC 

Top-n SAD NCC MC-Net Transformer MatchNet CASN(-) CASN 
Top 1 13.70% 15.66% 14.78% 17.52% 42.16% 45.89% 51.01% 

Top 2 17.19% 19.46% 16.92% 21.58% 48.62% 55.81% 66.39% 

Top 3 21.24% 22.83% 19.64% 24.76% 51.48% 61.35% 70.02% 

4.2. BTSC 
The BTSC dataset was prepared for traffic sign classification purposes; it is a subset of the Belgian 

traffic sign dataset and includes cropped images around annotations for 62 different classes of traffic 

signs. The BTSC dataset comprises a training set with 4591 images and a testing set with 2534 images. 

Fig. 6 shows some examples of traffic signs in the BTSC dataset. 

 

Fig. 7. Examples of traffic signs from the BTSC dataset. Important information to distinguish the traffic signs 

mainly located in the central regions 

We evaluated the performances of SAD, NCC, MatchNet, CASN(-), and CASN using the BTSC 

dataset. In these experiments, MC-Net [4] and Transformer [32] were not included because we aimed 

to evaluate the methods above in a several-shot learning approach. For each type of traffic sign, we 

selected two examples from the training set. Table 4 shows the accuracies of the testing methods using 

the BTSC dataset for one and two examples. The simple SAD method operated poorly and yielded the 

worst performance. NCC was able to tolerate linear transformations between patches and performed 

better than the SAD. When the number of examples increased, SAD and NCC performed slightly better 

than those using one example. MatchNet, based on a convolutional network, performed much better 

than NCC. 

Meanwhile, CASN(-) and CASN effectively utilized examples when the accuracies increased by more 

than 10% for the top-1, -2, and -3 cases. In addition, CASN indicated higher accuracies than CASN(-
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) by approximately 11%, 9%, and 5% for the top-1, -2, and -3 cases, respectively. Overall, CASN 

performed significantly better than SAD, NCC, MatchNet, and CASN(-). 

Table 3.  Accuracies of the testing traffic sign classification methods using BTSC 

Examples Top-n SAD NCC MatchNet CASN(-) CASN 
1 Top 1 19.85% 39.1% 47.33% 51.18% 62.47% 

1 Top 2 26.87% 48.77% 56.16% 62.62% 70.95% 

1 Top 3 31.41% 54.73% 61.22% 69.06% 74.86% 

2 Top 1 21.82% 43.72% 55.82% 62.50% 75.37% 

2 Top 2 29.4% 52.99% 68.4% 73.48% 82.32% 

2 Top 3 35.12% 59.82% 69.23% 79.16% 85.59% 

4.3. GTS 
In this subsection, we evaluated the performance of the testing methods using the GTS dataset. The 

GTS dataset comprises 39,209 color images for training and 12,630 images for testing. Each image 

belongs to one of the 43 classes. Fig. 7 shows some examples of traffic signs in the GTS dataset. 

 

Fig. 8. Examples of traffic signs from the GTS dataset. Traffic signs are with different blurring and are captured 

under different conditions of illumination 

For each type of traffic sign, we selected seven examples from the training set. Table 5 shows the 

quantitative results of the testing methods using the GTS dataset. Generally, the GTS dataset is more 

challenging than the BTSC dataset because the scale levels of traffic signs in the former are broader than 

those in the latter. Consequently, the SAD and NCC, which do not tolerate object scaling, indicated 

inferior performance (less than 12% for all the cases of different examples). 

Table 4.  Accuracies of testing traffic sign classification methods using GTS 

Examples Top-n SAD NCC MatchNet CASN(-) CASN 
1 Top 1 3.24% 4.53% 34.33% 43.56% 53.24% 

1 Top 2 6.54% 7.66% 42.19% 56.45% 65.41% 

1 Top 3 9.15% 10.9% 47.41% 65.03% 71.82% 

2 Top 1 3.61% 3.43% 35.67% 48.10% 54.32% 

2 Top 2 8.11% 7.36% 44.52% 60.38% 66.23% 

2 Top 3 11.9% 10.9% 48.17% 67.66% 72.02% 

3 Top 1 4.01% 2.94% 36.97% 51.05% 57.26% 

3 Top 2 7.86% 6.89% 45.62% 62.89% 67.66% 

3 Top 3 11.0% 10.4% 49.03% 70.11% 73.26% 

4 Top 1 4.86% 4.01% 38.66% 53.18% 60.11% 

4 Top 2 8.61% 7.18% 47.84% 64.84% 69.27% 

4 Top 3 11.4% 9.99% 51.01% 71.25% 74.56% 

 

Meanwhile, MatchNet, CASN(-), and CASN performed significantly better than SAD and NCC in 

the GTS dataset. In one example, SAD and NCC indicated average accuracies of 3.24% and 4.53%, 

respectively. CASN outperformed about 16 and 11 times, respectively, with an average accuracy of 
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53.24%. In addition, CASN using spatial Gaussian noise significantly outperformed MatchNet and 

CASN(-) for all cases. This proved the possible effects of using Gaussian noise in our proposed method, 

which was designed mainly for traffic sign classification. 

4.4. Analysis of the CASN Network 
In this subsection, we evaluated the effectiveness of the proposed similarity network. We compare 

CASN with a patch-based similarity network (PSN) trained in the same dataset and hyperparameters as 

CASN. The PSN is a simple version of CASN, in which the input patch is not divided into smaller 

patches. 

Table 6 shows the accuracy of CASN and PSN using the BTSC and GTS datasets for one example. 

In all cases, CASN significantly outperformed PSN. This demonstrates the effectiveness of the proposed 

network, which divides the input patch into smaller patches to reduce the effect of image scaling and to 

employ better information in the center of the input patch. 

Table 5.  Accuracies of CASN and PSN networks with one example 

 BTSC dataset GTS dataset 
Top PSN CASN PSN CASN 

Top 1 44.39 62.47 34.22 53.24 

Top 2 56.15 70.95 47.81 65.41 

Top 3 61.21 74.86 54.65 71.82 

4.5. Computation Time 
To measure the computation times of the proposed method, we used an experimental PC platform 

consisting of an Intel Core i77-7700 CPU 3.60 GHz × 8 and a TITAN Xp GPU card. In our proposed 

method, examples of traffic signs can be loaded and processed once offline to extract CNN features. In 

the online mode, for each input traffic sign that requires classification, the proposed method extracts 

the CNN feature for the input and computes the similarity with the computed CNN features of the 

examples. 

We repeatedly measured (i.e., 100 times) the computation time required for the proposed method to 

classify an input. Subsequently, the computation time for input was computed by averaging 100 

measurements. In our experiment, the proposed method required 0.011 milliseconds to classify a traffic 

sign. 

5. Conclusion 
We proposed a traffic sign classification method that was trained in a self-supervised manner. As the 

proposed method is based on a similarity network, it is not restricted by the limitations of supervised 

methods, where only traffic signs trained in the training dataset are applicable. Therefore, the proposed 

method is not limited to applications in a specific country. The experimental results indicated that the 

proposed method significantly outperformed popular similarity measurements and can be operated on 

the traffic signs of any country. The proposed traffic sign recognition method is constructed without 

traffic sign dataset. In other words, this method does not need domain dataset for a training step. In 

addition, the proposed method is not limited to prefixed classes. Therefore, this approach is especially 

good for applications that collecting training datasets is an obstacle. Many approaches are available for 

computing the similarity between patches, and similarity measures should be adapted to different 

applications. In the future, we will investigate similarity measures, which are based on statistics and deep 

networks, and evaluate them in several applications such as stereo matching, optical flow, and template 

matching. 
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