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1. Introduction 

News articles are intended for certain groups of people based on their interest towards some issues. 
The news classification could affect whether that the news reach its targeted reader or not. The problem 
is that there are many news with more than one category. For example, the news of a government officer, 
who is suspected of using illegal drugs can be categorized as both politics and crime label. Therefore, 
instead of using single label classifier, multi-label classifier is needed to do the text classification task 
[1]-[3].  

Problem transformation and also algorithm adaptation can be used in multi-label classification [4] 
[5]. Problem transformation approach breaks multi-label problem into several single label classification 
problems. On the other hands, algorithm adaptation approach will classify the data using specifically 
crafted algorithm for solving one undivided task of multi-label classification problem. Calibrated Label 
Ranking (CLR) [6] and Binary Relevance (BR) [7] were used as experiment features to solve the multi-
label classification in this experiment as CLR may gave the best result [8][5] and BR was effective to 
solve error propagation problem in hierarchical classification [8]. 

Implementation of hierarchical classification method may improve the performance of the multi-
label text classification model. This method was previously used to build multi-label classifier where the 
classes are organized in a hierarchy [1][9][10][11]. The best performance was achieved when hierarchical 
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multi-label classifier was built using Calibrated Label Ranking method and trained with Naïve Bayes 
algorithm [8]. Naive Bayes has promising performance despite its simplicity [8][12]. 

Another problem in hierarchical classification is error propagation. This phenomenon occurs when 
the top level classifiers falsely classified a news to its labels [1]. False positive error at the top level would 
give direct impact to hierarchical multi-label classifier’s precision, while the false negative error would 
affect its recall. Reducing false classification on the top level could improve classifier’s overall performance 
[8][1]. In order to use text document as training and testing data, documents need to be represented as 
vector of numbers. This experiment proposed to combine lexical and semantic approach when 
representing data as vectors, as there are hints that this combination could improve the classifier’s 
performance [13]-[15].  

This paper implemented several methods that potentially improve performance of the hierarchical 
multi-label classification top-level classifier. First method  trains the multi-label classifier using deep 
learning algorithm, as Convolutional Neural Network (CNN) gave a promising result in text classification 
[16]-[18]. Second method uses distributed semantic model to represent documents, due to its ability to 
encode semantic features of words in their dimensions [19][20]. The final approach combines lexical 
and semantic representation by using word term frequency as word vector multiplier to build document 
representation. In this experiment, approach toward the lexical method was to calculate each feature’s 
term frequency [21], while distributed semantic model was used to provide features’ weight from 
semantic representation side. Distributed semantic model that was used in this experiment is word2vec 
[22][23]. Weight obtained by calculating term’s frequency will be multiplied by the average of the 
feature’s word vector found in the word2vec model. Result of the multiplication will be used as input 
features to build the classifier. 

2. Method 

Fig. 1 shows the architecture of the experiment. Three steps of standard preprocessing method were 
implemented towards the raw news articles. They are case folding, tokenization, and removing stop 
words from the training data. After preprocessing, the news were represented as numbers.  

 
Fig. 1.  Experiment's architecture 

There are two approaches that are used in this experiment, which are lexical and semantic approaches. 
In lexical approach, we calculated terms’ frequency, while the semantic approach utilized pre-trained 
word embedding to determine words’ weight. In this experiment, models will be build using shallow 
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learning and deep learning method. Naïve Bayes algorithm [24] was used as shallow learning model, 
while CNN [16] was used to represent the deep learning approach. Model built in this experiment were 
evaluated by calculating its F1-score [25][1].  

First phase of the experiment aims to determine whether shallow learning or deep learning model 
give better performance by comparing both model’s F1-score. Each algorithm will be trained using 2 
sets of datasets. Model with better performance will be implemented to replace previous level-1 classifier 
in the hierarchical multi-label classifier. After new top-level classifier is embedded to the hierarchical 
multi-label classifier, overall performance will be evaluated using F1-measure for hierarchical multi-label 
classifier. Summary of the factors used in this experiment can be observed in Table 1. 

Table 1.  Experiment factors 

Factors Experiment variable 
Multilabel classification handling Calibrated Label Ranking, Binary Relevance 

Classification algorithm Naïve Bayes, CNN 

Hierarchical structure type Tree  

Weighting method TF-IDF (baseline), word2vec, TF.word2vec 

Performance evaluation method F1-measure 

 

2.1. Dataset 

There are 2 sets of data used in this experiment. Table 2 and Table 3 represent the fist (Dataset1) 
and second (Dataset2) datasets respectively. Dataset1 in this experiment is crafted by manually 
annotating 677 Indonesian news articles. These news were arranged to be a balanced dataset for multi-
label classification, and were used as training and testing data. 

Table 2.  Details of Dataset1 

 Training Data Testing Data 
# of news 677 131 

Category (Level 1) 10 10 

Category (Level 2) 10 * 4 = 40 10 * 4 = 40 

Cardinality 1.7681 1.527 

Published date April 2014 – February 2016 March 2016 – May 2016 

Table 3.  Details of Dataset2 (Dataset1 + 5713 new data) 

 Training Data Testing Data 
# of news 6390 131 

Category (Level 1) 10 10 

Category (Level 2) 10 * 4 = 40 10 * 4 = 40 

Cardinality 1.1413 1.527 

Published date April 2014 – February 2016 + January 
2016 – February 2018 

March 2016 – May 2016 

 

To create Dataset1, we collected news which were written between April 2014 and May 2016. In 
total, there were 808 news manually annotated, 15 news for each smallest categories. After annotation, 
those news were split into training data and testing data. Cardinality for the training and testing data 
were 1.7681 and 1.527 respectively. Cardinality represents how many categories a news has on average. 

Dataset1 were already used in  [8] to build hierarchical multi-label classification. Using model built 
in said experiment, Dataset2 was manually annotated based on the result of the classification. After the 
model predicted a news’ categories, manual check was performed to ensure that the classification result 
is correct and it has covered all related categories. 5713 articles were added to the training data in 
Dataset1, resulting in Dataset2. Testing data used for model trained using Dataset1 and Dataset2 was 
identical, no news were added to the testing data. 
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There are 10 classes used as top-level classifier, with each top level classifier is a parent of four leaves-
node. Details of classes used in this experiment could be seen in Fig. 2. As can be seen in the hierarchical 
structure, there are 4 sub-categories for each top level categories, which contains of 3 specific sub-
categories and 1 other category. For example, Health category has 3 specific categories, which are Virus, 
Facility, and Alternative Medicine. Any news related to Health issues but not suitable for these 3 
categories (i.e. malpractice, health insurance) should be categorized as others. 
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Fig. 2.  Classes details 

2.2. Document representation 

This paper represents documents as a bag of words, hence ignoring sentences’ delimiters and 
paragraphs. The vocabulary extracted from the training data would be weighted using word vectors 
average, were obtained from pre-trained word embedding. There are three pre-trained word embedding 
that used in this experiment. There were 2 pre-trained word embedding model that was trained using 
GloVe [26] method, with 300 and 700 dimension of vectors each. These models were the results of [27], 
and were built using Indonesian news articles as training data. The other pre-trained word embedding 
model that was used in this paper was a 300 dimension word2vec model trained using Wikipedia articles, 
generated from FastText research [28][29]. 

In addition to averaging the word vectors that represent the semantics meaning between words, this 
paper would also utilize word term frequency (raw TF) to represent lexical value of the document. We 
combine these two things by multiplying word term frequency and the word vector average. Illustration 
of this document representation is shown in Fig. 3. 

 

Fig. 3.  Example of combining TF and word vector average to represent the training data 



ISSN 2442-6571 International Journal of Advances in Intelligent Informatics 44 
 Vol. 5, No. 1, March 2019, pp. 40-47 

 

 Irsan and Khodra (Hierarchical multi-label news article classification with distributed semantic model based features) 

2.3.  Model for text classification 

Our research use transformation problems approach to solve the multi-label classification problem. 
We use Calibrated Label Ranking (CLR) for shallow learning model, and Binary Relevance (BR) 
approach for the deep learning model [30].  

In this paper there are two methods: shallow learning and deep learning. For the shallow learning 
model, we built multi-label classifier using Naïve Bayes (NB) algorithm, while Convolutional Neural 
Network (CNN) was used to build the deep learning model. CLR-NB was used because it was the 
configuration that gives best performance in our previous work [8], while BR was chosen to transform 
CNN models because of BR’s simplicity. We built CNN model with one layer of convolution and 
parameters [16] that were used in the training is shown in Table 4. 

Table 4.  CNN’s parameters used to build model 

Parameter Value 

Filter windows (h) 3,4,5 

Feature maps 100 @ filter windows 

Dropout rate (p) 0.5 

L2 constraint 3 

Mini-batch size 50 

3. Results and Discussion 

3.1. Experiments for top-level multi-label classification 

For this experiment, we train shallow learning model using conventional term-weighting method 
(TF.IDF) to act as experiment’s baseline, as presented in [8]. Details of the baseline’s performance and 
experiment’s result could be observed in Table 5 and Table 6. 

Table 5.  Experiment's baseline 

Baseline (CLR – NB) with TF.IDF term weighting 

Dataset1 71.06% 

Dataset2 51.15% 

Table 6.  Experiment result  

Word 

Embedding 

Word Embedding’s Dimension Feature 
weighting 

method in doc. 

representation 

F-Measure (Level 1) 

Dataset 1 Dataset 2 Dataset 1 Dataset 2 

word2vec 300 300 avg WE 0.69322 0.6702 
GloVe 300 300 avg WE 0.6771 0.6094 

GloVe 700 700 avg WE 0.6744 0.6060 

word2vec 300 300 TF x avg WE 0.7531 0.6702 

GloVe 300 300 TF x avg WE 0.7452 0.6698 
GloVe 700 700 TF x avg WE 0.7342 0.5515 

 

Based on the experiment’s results, it could be seen that the best word-embedding model was 
word2vec. It constantly contributed to give better result compared to the Glove word embedding. Term 
frequency usage when multiplied with averaged word vector also improving multi-label classifier F1-
measure. However, when 5713 new data were added to the training data, model’s performance were 
affected badly. It decreased the model’s F1-measure instead of increasing it. We have 2 hypotheses as to 
why this data addition could not improve multi-label classifier performance. First, after the data addition, 
data’s cardinality is dropped from 1.77 to 1.14 and this may be the cause of the classifier performance’s 
reduction. To prove this hypothesis, we annotated new dataset, called Dataset3. As shown in Table 7, 
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Dataset3 was built with cardinality and number of news roughly similar to Dataset1. Model that is built 
using Dataset3 as training data then tested using testing data from Dataset1. 

Table 7.  Comparison of Dataset1, Dataset2, and Dataset3 

 Dataset1 Dataset2 Dataset3 
#of news 677 6312 (677 articles from 

Dataset1, 5635 new articles) 

633 

Cardinality 1.7681 1.1413 1.5987 
Published date period April 2014 – 

February 2016 

January 2016 – 

February 2018 

January 2016 – 

February 2018 

 

Table 8 present the result of testing with Dataset3 to prove hypothesis about cardinality effects on 
multi-label classification performance. Based on the result that shows that no improvements were made 
even after Dataset3 is used, it could be concluded that cardinality does not have a direct impact towards 
multi-label classification performance.  

Table 8.  Result of Experiment trained using Dataset3, tested with testing data From Dataset1 

Word Embedding 
 Word Embedding’s 

Dimension 

F1-measure multi-label 

classification 
word2vec 300 0.6581 

GloVe 300 0.6300 

GloVe 700 0.6266 

 

Second hypothesis may explain the reason of data addition, dropped multi-label classifier 
performances related to the training and testing of published data. Dataset3 was built to prove this 
hypothesis. The new testing data were collected from same period as the training data for Dataset3. The 
result of this experiment could be observed in Table 9. From the table could be seen that there are 
improvements when new testing data is used. This could supports our hypothesis that stated that news’ 
published date could affect multi-label classifier’s performance. 

Table 9.  Result of Experiment trained using Dataset3, tested with new testing Data 

Word Embedding 
 Word Embedding’s 

Dimension 

F1-measure multi-label 

classification 
word2vec 300 0.7435 

GloVe 300 0.7147 

GloVe 700 0.7080 

 

3.2. Experiments for Hierarchical Multilabel Classification (top-level and leaves-node) 

The next implementation is using top three best models into the hierarchical multi-label classifier. 
Table 10 shows the detailed results of this experiments. 

Table 10.  Results for Hierarchical Multi-label Classification 

Word 

Embedding 

 Word Embedding’s 

Dimension 

F1-measure for top-level 

multi-label classifier 

F1-measure for hierarchical 

multi-label classifier 
word2vec 300 75.31% (98 FP) 0.635 

GloVe 300 74.52% (93 FP) 0.6403 

GloVe 700 73.42% (100FP) 0.6339 

 

These experiment results showed that model which gives best performance on top-level multi-label 
classifier does not necessarily give best hierarchical multi-label classifier performance. In fact, the best 
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hierarchical multi-label classifier performance was obtained when there are less false positive error on 
top-level classifier. 

4. Conclusion 

Based on the result, we can conclude that, word embedding averaged vector that is multiplied with 
word term frequency could improve multi-label classification. On the other hands, data addition and 
deep learning model may reduce the classifier performance. This strengthen the fact that combination 
of lexical and semantic approach in feature engineering could lead to improvement in classification 
model’s performance. Configuration that contributed in giving best performance at the top-level 
classifier were shallow learning model (CLR-NB) that was built using Dataset1. The documents were 
represented using multiplication word term frequency and averaged word vector. The most suited pre-
trained word embedding for this experiment is word2vec model that was trained using Wikipedia articles. 
Finally, improving false positive error when classifying news at the top-level could improve hierarchical 
multi-label classification performance. News’ published date could affect model’s performance. When 
training data and testing data were collected from different range of time, it gave worse performance 
compared to the case when training data and testing data were collected from similar range of time. 
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