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ABSTRACT

This paper introduces a novel approach to the Green Vehicle Routing
Problem (GVRP) by integrating multiple trips, heterogeneous vehicles, and
time windows, specifically applied to the distribution of bakery products.
The primary objective of the proposed model is to optimize route planning
and vehicle allocation, aiming to minimize transportation costs and carbon
emissions while maximizing product quality upon delivery to retailers.

Utilizing a Genetic Algorithm (GA), the model effectively achieves near-
optimal solutions that balance economic, environmental, and quality-
focused goals. Empirical results reveal a total transportation cost of IDR
856,458.12, carbon emissions of 365.43 kgCOze, and impressive average
product quality of 99.90% across all vehicle trips. These findings
underscore the capability of the model to efficiently navigate the
complexities of real-world logistics while maintaining high standards of
product delivery. The proposed GVRP model serves as a valuable tool for
industries seeking sustainable and cost-effective distribution strategies,
with implications for broader advancements in supply chain management.

© 2025 The Author(s).
This is an open access article under the CC-BY-SA license.
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1. Introduction

In today's globalized economy, the efficient transportation of perishable products has become a critical
concern. The increasing distance between production centers and consumers necessitates robust and
reliable logistics systems to ensure the timely delivery and quality preservation of sensitive products, such
as pharmaceuticals [1], food [2]-[4], and beverages [5]. This challenge is particularly evident in the
bakery industry, where freshness is paramount to customer satisfaction and business success [6].

Consider, for instance, a large-scale bakery enterprise that supplies a variety of bread products to
numerous retail outlets across a wide geographical area. This company faces the dual challenge of
maintaining product freshness while simultaneously optimizing its distribution network to minimize
costs [6], [7]. Such a scenario highlights the complexities inherent in managing supply chains for
perishable products and underscores the necessity for advanced logistics solutions [8]. Within this
context, time windows emerge as a critical constraint in the distribution of perishable goods, as
demonstrated in studies examining the integration of time constraints within cold chain logistics [9].
This issue is particularly significant in the bakery industry, where the freshness of products is directly
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linked to their quality and marketability, making effective time management essential for maintaining
consumer satisfaction.

Moreover, the operational challenges are further compounded by the need for multiple trips and the
utilization of heterogeneous vehicles. The complexity of multiple trips allows for greater flexibility in
route planning but also requires careful coordination to ensure that product freshness is maintained
throughout each delivery cycle [10]. Heterogeneous vehicle fleets, which consist of different types of
vehicles with varying capacities and characteristics, introduce additional logistical intricacies [11], [12],
[13]. Effectively managing these vehicles can optimize delivery routes and reduce costs while ensuring
that perishable items, like baked goods, are transported under optimal conditions [14]. Therefore,
addressing these complexities through advanced routing models and logistics strategies is crucial for

enhancing efficiency and preserving product quality in the bakery supply chain.

The Vehicle Routing Problem (VRP) serves as a fundamental concept in operations research,
encompassing diverse issues, including the optimization of distribution routes [15], [16], management
of heterogeneous vehicle fleets [17], [18], and sustainable cold chain logistics [17]. Its versatility extends
to various applications such as improving waste collection efficiency [19], coordinating emergency supply
distribution [15], [20], and planning winter road maintenance [16], [21]. Traditional VRP models often
prioritize cost minimization or time efficiency; however, few adequately consider the delivery's
perishability. In the context of perishable products, the VRP becomes significantly more complex due
to their time-sensitive nature [22], [23]. Recent scholarly work has illuminated the evolving landscape
of VRP research, particularly concerning perishable products. A comprehensive review by Utama et al.
[21] analyzed 59 studies published between 2001 and 2020, focusing on route optimization for quality-
sensitive goods and revealing a prevalence of metaheuristic algorithms that address single and multi-
objective optimization problems, with cost minimization as a predominant objective. Alkaabneh ez al.
[24] introduced a comprehensive approach combining inventory routing with environmental costs,
highlighting the importance of minimizing fuel consumption alongside traditional delivery costs.
Furthermore, Zhu et al. [25] explored the inclusion of freshness-keeping costs in cold chain logistics,
optimizing routes to minimize product spoilage and overall distribution costs. These approaches
demonstrate that modern VRP models must evolve to include multi-objective frameworks, balancing
cost, time, and product quality to address the unique challenges perishable goods pose. In light of
growing environmental concerns, the logistics industry faces increased scrutiny regarding its impact on
sustainability. The emergence of the Green Vehicle Routing Problem (GVRP) integrates sustainability
parameters into traditional VRP models [19], [26]. A thorough review by Moghdani er al. [19]
encompassing 309 papers published from 2006 to 2019 highlighted the increasing emphasis on
environmental considerations in transportation logistics. As the GVRP field continues to evolve,
researchers recognize the need to incorporate realistic constraints and objectives to address the
complexities of modern logistics operations.

This study aims to contribute to this field by developing a comprehensive GVRP model tailored to
the bakery industry, considering product deterioration, multiple trips, heterogeneous fleets, and time
windows. The overarching goals include minimizing operational transport costs, reducing carbon
emissions, and maximizing product quality. By addressing these interrelated objectives, this research
provides a holistic approach to green logistics management in perishable goods distribution. Integrating
multiple trips, heterogeneous fleets, time windows, cost minimization, emission reduction, and quality
maximization into a single GVRP model reflects the real-world complexities logistics managers face,
aligning with the broader societal goals of sustainable development and environmental stewardship. The
intersection of perishable product logistics and environmental sustainability presents fertile ground for
research and innovation, particularly in the bakery industry. This translates to a multifaceted challenge,
primarily centered on designing an efficient distribution route network that ensures timely delivery of
fresh bread products to various stores, each with specific receiving time windows [23], [27]. This time
sensitivity is crucial for meeting contractual obligations and maintaining the quality of baked goods,
which deteriorate rapidly [28]—[30]. The routing solution must also minimize transportation costs, a
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significant component of operational expenses, while reducing carbon emissions associated with the
distribution process [31]—[33].

To address these challenges, this paper develops a GVRP model tailored to the bakery industry,
determining the optimal routing strategy and vehicle allocation that minimizes operational costs and
environmental impact while ensuring the timely delivery of fresh products. This research employs a
Genetic Algorithm (GA) to solve this complex optimization problem, leveraging its robustness in
handling multi-objective scenarios and its capacity to find near-optimal solutions in large search spaces.

The choice of GA is particularly well-suited to the GVRP due to its adaptive heuristic approach,
which excels in addressing non-linear, multi-objective problems. Unlike exact methods such as linear
programming, which may struggle with large-scale and highly constrained problems, GA dynamically
explores the solution space, avoiding local optima and enhancing solution diversity. Compared to other
metaheuristic techniques like tabu search and simulated annealing, GA offers greater flexibility in
handling dynamic constraints and overlapping objectives, making it particularly effective for real-world
logistics applications [34]—[36]. While metaheuristic methods like tabu search and simulated annealing
can perform well under certain conditions, they often require extensive parameter tuning to achieve
optimal results. In contrast, GA consistently provides high-quality solutions with improved
computational efficiency, making it a robust approach for optimizing vehicle routing and allocation
planning [37].

The novelty of this research lies in three key contributions. First, it develops a GVRP model that
uniquely integrates perishability constraints with eco-friendly considerations, addressing a significant gap
in the literature [38], [39]. Second, it demonstrates the effectiveness of GA in solving real-world logistics
problems, particularly those that struggle with dynamic and large-scale scenarios [40]—[44]. Lastly, it
offers actionable insights through a case study on bakery logistics, providing managers with a robust
framework for balancing economic and environmental priorities.

The remainder of this paper is structured as follows: Section 2 details our proposed method, including
the specifics of our mathematical model and solution approach. Section 3 presents the results of our
computational experiments and offers a thorough analysis of the findings. Finally, Section 4 concludes
the paper by summarizing key insights and suggesting directions for future research in this critical area
of logistics and supply chain management.

2. Model Development

2.1. Problem Descriptions

An illustration of this complex bakery distribution problem is presented in Fig. 1. The bakery
industry faces a complex VRP characterized by the delivery of perishable products with declining quality
over time. Based on Fig. 1, fresh bread must be distributed to various retail stores, each with specific
morning time windows for receiving deliveries. This time sensitivity is crucial for maintaining product
freshness and meeting contractual obligations with retailers. In addition to the challenge of optimizing
delivery schedules, multiple trips are considered if the load of the first trip exceeds the vehicle's capacity.

In such cases, vehicles must return to the bakery hub for reloading before embarking on a second
trip to complete the remaining deliveries. This adds complexity to route planning, as the need for
additional trips impacts overall delivery time, vehicle utilization, and resource allocation. The problem
becomes even more challenging due to the need to optimize the number and capacity of delivery vehicles
and their routing to meet strict morning delivery schedules. Vehicle speed is critical, especially during
morning rush hours when increased human activity leads to traffic congestion, potentially causing delays
and affecting delivery times. This optimization challenge goes beyond logistical efficiency; it directly
influences transportation costs and carbon emissions. The objective is to develop routing strategies and
vehicle allocations that effectively meet time-window constraints while minimizing economic and
environmental costs, all while maintaining the quality of bread products. The flow of this research is
presented in Fig. 2 to illustrate the overall approach.
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The research flow in Fig. 2 outlines a systematic approach to solving the VRP problem. It begins
with problem descriptions, where the key challenges and objectives are identified. Next, model
development involves formulating a comprehensive framework to address the VRP problem. Data
collection follows, ensuring that relevant and accurate data are gathered to test the model. Finally, the
model solution-based GA phase applies optimization techniques to find efficient solutions.
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We can first use the notations to develop a mathematical model for this VRP that accounts for
perishable product quality, delivery time windows, and carbon emissions.

2.2.1. Notations

e Indices and sets

N : Set of locations, including the bakery hub (0) and retail stores (1 to n), {0, 1, 2, 3,...,n}.
k :Index for vehicles, k € K, where K is the set of vehicles.
i,j : Indices for locations (nodes), where i,j € N.

r : Number of trips for each vehicle k.

S : A subset of nodes from the complete set of retailer nodes N in the VRP

e  Parameter

D; : Demand at retail store i.
Wl-];-'r : Total initial weight (in kg) of cargo at the start of a trip 7 for vehicle k, calculated as
the sum of demands for all nodes in that trip.
w : Weight per unit product in kg.
Bruck : The empty weight of the truck.
i : Arrival time at node i for vehicle k during trip 7.
Tk : Arrival time at node j for vehicle k during trip 7.
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TStart : Start of the delivery time window at store i.

T : End of the delivery time window at store i.
Tioading : Loading time at the bakery hub.

Tunioading : Unloading time at each retail store.

Xearly : Penalty cost for early delivery (before TS*%"™).

Aate : Penalty cost for late delivery (after TE"%).

d;j : Distance between locations i and j (in kilometers)

Vg : Speed of vehicle k (in km/h).

Cx : Capacity of vehicle k (in units of bread).

Crem : Transportation cost per kilometer for vehicle k (in monetary units).

Q; : Initial quality of the product at node i, assumed to be 100% at the depot.
8;(T{x)  : Quality decay function at time t for bread delivered to store i.

e‘ : The emission factor for CO

e™ : The emission factor for CH4

: The emission factor for NO2

GWP, : The global warming potential for COx.
GWPR, : The global warming potential for CHa.
GWP, : The global warming potential for NO..

e Decision variables

Zlkj’r : A binary decision variable that represents whether 1 if vehicle v is allocated to travel
from the station i to station j, and z}; = 0 otherwise.
) ij
NkT : The sequence of nodes visited by a vehicle k per trip 7, for example [0,

ny, Ny, N3, ..., Ny, 0.
2.2.2. Assumptions

We used some basic assumptions to ensure the model's suitability for operational conditions in the
field, simplify calculations, and improve modelling accuracy. The following are the assumptions used in
this study: 1) The demand at each retailer is known and constant; 2) Each retail store is visited exactly
once by one vehicle; 3) The distances between all pairs of nodes are known and remain constant; 4) The
quality of the bread decreases over time according to a predefined decay function &;(t); 5) Each vehicle
travels at a constant speed v, and the travel time between any two locations i and j is calculated based
on this fixed speed. 6) Each retail store has a specified time window for delivery; 7) The model assumes
that the time required for loading at the bakery hub and unloading at each retail store is fixed and
known; 8) Each vehicle has a fixed capacity Cy, which limits the amount of bread it can carry. The total
demand fulfilled by each vehicle must not exceed its capacity.

2.2.3. Mathematical model

This model aims to minimize operational costs and emissions while ensuring that the bread quality
remains high upon delivery to customers by optimizing the route planning N®*"and vehicle allocation
ij'r
of delivering fresh, high-quality bread.

. The model prioritizes operational efficiency and customer satisfaction, emphasizing the importance

e  Objective 1: Minimize transport costs

Z1(Nk'zikj'r) = YkeK LreRy, LieN LjeN Zl-kj'r(ckm . dij) + Ykek Lrery ZiEN(a’eaﬂy - max(T " —
T 0) + @ - max(T, — TE™,0)) (1)

e  Objective 2: Minimize carbon emissions
kry _ kr kr c m n
Zz(Nk:ZU ) = Ykek ZreR LjeN Zij dij (W™ + Bruck) (GWP, - €€ + GWP,, - e™ + GWP, - e™) (2)

e  Objective 3: Maximize bread quality at delivery
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Z3(Nk'zikj'r)_ ZkEKZrERZlEN( 8i(Th (N, 2 u))) 3)

e Subject to

ZjeNZOJ 12151\1210 =1,Vk e K,Vr eR 4
Ykek LjeN Z{(j'r =1 VieN (5)
ZJeNZU Z}EN ﬂ , VieN,VkeEKVreRr (6)
Yien2jenDiz er <C, VKk€EKVreRr @)
Tistart < TL];C < Tiend (8)
doj :
T]?I; = Tloading + U_ij + Tunloading' V] € N’ vk € K' Vr €R (9)
dij .
e = T + v—k’ + Tuntoading: Vi,j € N,Vk € K,Vr € R (10)
Penalty} ., = max(T*** — T}, 0), Vi € N,Vk € K,vr € R (11)
a (Tstart 0) If Tstart T > 1 hour

Penalt { early e tk 12

Vearty = 0, Otherwise (12)
Penaltyly, = max(Tf, — T£"4,0),Vi € N,Vk € K,Vr € R (13)

3 T _ Tend T _ Tend
Penaltyl,,, = {alate( e — T ,0), If T}, 'Tl > 1 hour (14)
0, Otherwise

W =Wkl — Sien(DIw z7) Vi € N,Vk € K,vr € R (15)
Wittiar = Sien Dfw (16)
Yijeszi <IS|—1, VScN,S#0@VkeK (17)

The objective of the GVRP model is to optimize three key functions. The first function, represented
in Eq. (1), focuses on minimizing transportation costs. The second, as shown in Eq. (2), aims to reduce
carbon emissions, while the third function, expressed in Eq. (3), addresses quality decay resulting from
transportation time. Constraint (4) defines each vehicle must depart from the bakery hub and return to
the bakery hub. Constraint (5) ensures each store must be visited exactly once by one vehicle for all trips.
Constraint (6) states that the number of vehicles arriving at a node i is equal to the number of vehicles
departing from the same node i on each trip . Constraint (7) ensures that the total demand (i.e., the
quantity of goods) delivered by vehicle k during trip r does not exceed the vehicle’s maximum capacity
Cy. Moreover, Constraint (7) also ensures that when the total demand for a route exceeds the vehicle’s
capacity, the vehicle must make multiple trips. Constraint (8) ensures that the delivery times respect the
time windows for each node. Arrival time calculation for the first leg (from the bakery hub to the first
retailer) is computed in Constraint (9). Constraint (9) accounts for the loading time at the bakery hub,
the travel time from the bakery hub to the first retailer, and the unloading time at that retailer.
Meanwhile, for subsequent legs (from one retailer to another) defined in constraint (10). It accounts for
the travel time between two retailers and the unloading time at the destination retailer. Constraints (11)
and (13) specify the penalty for arriving before the start time and for late arrival at the store i, respectively.
However, Constraints (11) and (13) are influenced by the conditions in Constraints (12) and (14), where
if the penalty exceeds 1 hour, the cost should include a higher penalty rate. Since carbon emissions are
calculated based on transportation distance and weight, then constraint (15) defines the total weight of
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&=
the cargo carried by a vehicle k on trip 7 from node i to node j, which decreases progressively as deliveries
are made. Constraint (16) total initial weight of cargo loaded onto the truck for trip 7. Constraint (17)
ensures that no subtours are formed by restricting the number of routes within any subset of nodes S to
be less than the size of the subset, thereby preventing vehicles from circulating among nodes without
returning to the central hub.

2.3. Solution approach

In this section, the development of a GA tailored for the GVRP with multi-objective optimization,
which consists of: minimizing both costs (Z;) and emissions (Z,) and maximizing bread quality upon
delivery (Z3). The GVRP is an NP-hard problem, and metaheuristic approaches like GA are well-suited
for finding near-optimal solutions within a reasonable timeframe. The chromosome structure is crucial
to the success of the GA. Each chromosome is encoded as a binary string where the length corresponds
to the number of possible routes between stations in the network. For instance, if there are n stations
and k vehicles, each chromosome will have a length of k X (n? — n), reflecting all potential vehicle-route
;(j'r which takes the value of
1 if the vehicle v is assigned to the route from the station i to station j, and 0 otherwise. Then, the
pseudocode of GA for this problem is presented in Algorithm 1 (Fig. 3).

combinations. Each gene in the chromosome is a binary decision variable z

1: Initialize Population: Randomly generate an initial population of chromosomes.

2: Evaluate Fitness:
For each chromosome in the population, calculate its fitness based on the
objective function (i.e., minimizing both costs Z;and emissions (Z,) and
maximizing bread quality upon delivery (Z3)).

3: While stopping criterion not met (i.e., the maximum number of generations or
convergence) :

4: Selection:
Select chromosomes based on a roulette wheel mechanism, where the probability
of selection is proportional to the fitness of each chromosome.

5: Crossover (Two-Point Crossover):
For each selected pair of parent chromosomes:
With a certain probability, perform a two-point crossover by randomly selecting
two crossover points on the parent chromosomes. Swap the genes between these
two points to create two offspring chromosomes.

6: Mutation (Jump and Creep Method) :
For each offspring chromosome:
With a certain probability, apply one of the two mutation techniques:
Jump mutation: Randomly select and replace a gene with a randomly chosen
value from the permissible range.
Creep Mutation: Select a gene and increment or decrement its value by a small
predefined amount to introduce slight variations.

7: Evaluate Fitness:
Calculate the fitness of each new offspring chromosome.

8: End While

9: Output: Return the best chromosome found as the optimal route planning N®T and

vehicle allocation Zﬁr for vehicle routing.

Fig. 3. The pseudocode of GA

The following provides a step-by-step outline of the GA process:
Step 1. Initialize Population

GA begins by initializing a population of potential solutions (Pop), referred to as chromosomes. In
this context, each chromosome is divided into two key components: route node planning N, and
vehicle allocation ij’r as shown in Fig. 4. The route node planning chromosome represents a
possible sequence of customer visits, starting and ending at a bakery hub, effectively encoding the
order in which customers are visited. The vehicle allocation chromosome, on the other hand,
assigns specific vehicles to the planned routes, ensuring that each route has the appropriate vehicle
based on capacity or other constraints. This dual representation allows the GA to simultaneously
optimize both the route planning and vehicle assignment for efficient vehicle delivery in the context
of the GVRP. The diversity of this initial population, containing variations in both route sequences
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and vehicle allocations, is crucial as it forms the basis for the subsequent search for an optimal

solution.
Vehicle
Node
1 2 3 4

1 1 0 0 0 Chromosome (Route node planning)

2 0 1 0 0 L 1 | 2 | 3 4 | s
3 0 1 0 0

4 0 0 1 0 Chromosome (Vehicle allocation)

5 1 0 0 0 [ 10001 Jo1100]10010]00000]
Service route: | 0-1-5-0| 0-2-3-0| 0-4-0 0

Fig. 4. Chromosome representation

Step 2. Evaluate Fitness

After initializing the population, the fitness of each chromosome is evaluated using the fitness
function F to assess the quality of each solution. In this formulation, Z; represents the cost of the
route, Z, accounts for carbon emissions, and Z3 reflects the quality of the bread upon delivery (to
be maximized). The fitness function is designed to minimize the overall fitness value, which
combines these objectives through a weighted sum approach, along with a penalty term P for
constraint violations. The fitness function is formulated as:

F = Wl'Z1+W2'Zz+W3‘_Z3+P (18)

where wy, W, and ws are the weights assigned to the respective objectives. Z; and Z; are to be
minimized (cost and emissions). Z3 is to be maximized, so we use —Z3 to convert it into a
minimization objective. P represents any penalty for constraint violations.

In this case, the weights reflect the relative importance of each objective, with w;= 0.4, w,=0.3,
w3z = 0.3. This weighting emphasizes the minimization of costs slightly more than emissions and
quality. A lower fitness value indicates a more optimal solution, signifying reduced costs and
emissions while maintaining high product quality and adhering to constraints.

Step 3. Selection

In this phase, the roulette wheel selection method selects chromosomes to contribute to the next
generation. In this approach, each chromosome is assigned a probability of selection proportional
to its fitness value, with fitter chromosomes having a higher chance of being selected. The metaphor
of a roulette wheel is used, where sections of the wheel are allocated based on fitness, and
chromosomes are chosen based on where the "wheel" lands. Unlike elitism, which directly preserves
the best solutions, roulette wheel selection maintains diversity by allowing all chromosomes to
contribute to the next generation, thus balancing exploration and exploitation and preventing
premature convergence to suboptimal solutions.

Step 4. Crossover

The selected chromosomes undergo a two-point crossover, combining genetic material from two
parents to produce oftspring, as shown in Fig. 5.

Step 5. Mutation

A mutation process is applied with a specified probability to maintain genetic diversity and avoid
premature convergence. The mutation is performed using the jump and creep method in this
context. Jump mutation involves making large, random changes to a chromosome by replacing a
gene with a completely different value, while creep mutation makes smaller, incremental
adjustments by slightly altering the value of a gene within its allowable range, as shown in Fig. 6.

Asib et al. (Genetic algorithm to optimize green vebicle routing and allocation planning for perishable products)



ISSN 2442-6571 International Journal of Advances in Intelligent Informatics 183
Vol. 11, No. 2, May 2025, pp. 175-191

Crossover
Two-Point
Parent 1 10001+01100|10010 00000

Parent2  00010]/00100|10000|01001

Offspring1  10001]00100/10000|/00000
Offspring2 0001001100 |10010]/01001
Fig. 5. Crossover

The mutation probability (P,,) controls the frequency of both types of mutations. This combination
allows the algorithm to explore a broader range of solutions, with jump mutations introducing
significant diversity and creep mutations fine-tuning solutions to avoid local optima, ultimately
enhancing the search for the global optimum.

Mutation Jump

Before  00010]/00100|10010]/00000
After 00000 ]00110|10011]00000

Mutation Creep

Before 00010 |00100|10010[00000
After ~ 00010]00101|/00010|00000
Fig. 6. Mutation

Step 6. Evaluate Fitness

After crossover and mutation, the fitness of the newly generated chromosomes is re-evaluated. The
algorithm then determines which chromosomes will advance to the next generation, using
strategies like elitism to preserve the best-performing individuals or additional selection methods.
This process aims to retain high-quality solutions while promoting continued exploration and
refinement within the population across successive generations.

Step 7. Termination

The algorithm continuously cycles through the processes of selection, crossover, mutation, and re-
evaluation until a specified stopping condition—namely, the number of generations G,,—is met.
Once this condition is satisfied, the algorithm terminates, and the most optimal solution identified
during the process is selected.

Step 8. Set the best solution

The chromosome with the best fitness value in the final population represents the optimal solution
to the GVRP. This solution corresponds to a vehicle route that minimizes costs and emissions
while maximizing bread quality during delivery.

3. Results and Discussion

In this section, we address the GVRP in the bread industry by developing a mathematical model
encoded in Microsoft Excel, optimized using a GA approach. The GA was executed through the XL
Optimizer, an Excel add-in that facilitates optimization tasks. By using this add-in, the GA generated
robust initial solutions, improving the efficiency and accuracy of route planning and vehicle allocation
for bread distribution. To evaluate the effectiveness of the proposed method, numerical experiments
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were conducted on a PC with an Intel(R) Core™ i5 10500H CPU at 2.5 GHz, 8 GB RAM, running
Windows 10 Professional. The outcomes of the model were then compared to the existing distribution
data in the bread industry to assess the performance improvements achieved through the GA-based
optimization:

3.1. Test instances

To evaluate the proposed VRP model, we conducted numerical experiments using a large-scale
scenario with 40 nodes. The demand data for each node D;, the distances between nodes d;;, as well as
time windows (T*"t and T#™®) for each node can be seen from this link (https:/bit.ly/3Y1gxbé).
Additionally, the operational logistics data, including vehicle capacities, speed, cost parameters, and
emission, are summarized in Table 1 and Table 2.

Table 1. Data related to delivery operations

C B truck aearly& Tloading Tunloading Qi
k (Un’lcts) (kl”l"’l}‘hr) (kg) (Ru Clgrﬁl/k m) w (kg) Aate (minutes) (minutes)
P (Rupiah/hr)
1 5200 50 800
2 5200 50 800
3 5200 50 300 581.20 0.07 10000 20 15 100
4 5200 50 1588
Table 2. Data related to emission
Global Warming Potential Emission Factor
GWP, GWP, GWP, et em en
1 28 265 0.297 0.0035 0.0027

These tables provide the foundational inputs necessary for testing the model's performance across
different scales, allowing us to analyze its eftectiveness in optimizing routing strategies while maintaining
product freshness and minimizing transportation costs.

3.2. Computational results

The computational results of the GVRP model using GA with demand data for 40 nodes and four
vehicles were tested using four parameter combinations. Each combination was evaluated three times to
account for the stochastic nature of the GA, which can produce varying results depending on the initial
random population. Testing each combination multiple times ensures that the results are consistent and
not influenced by random outliers, providing a more robust evaluation of the parameter settings.

Based on the experimental results in Table 3, several key insights emerge regarding the performance
of the GA in evaluating fitness values across three trials with different parameter combinations. The
best-performing combination was found to be Pop = 150, P, = 0.9, P,, = 0.02, and G,, =500, which
yielded the lowest average fitness value of 371,877.04. This indicates that a larger population size, a high
crossover rate, a moderate mutation rate, and a higher number of generations contribute to a more
optimal fitness outcome. Furthermore, this parameter setting demonstrated good consistency across
trials, with relatively small differences between the first, second, and third trials, showcasing its reliability
in consistently achieving robust solutions.

In contrast, the combination Pop = 100; P, = 0.8; P,, = 0.01; G,, = 300 resulted in the highest
average fitness value of 415,954.27, indicating that smaller population sizes and fewer generations hinder
the algorithm's ability to explore the solution space effectively, leading to suboptimal outcomes. The
Pop = 125; P, =0.75; B,, = 0.025; G,, = 400 combinations produced a slightly better average fitness
value of 404,791.18, but it exhibited greater variability between trials. The lower crossover probability
and higher mutation rate might have caused this variability, with one trial showing a significant
improvement while the others performed less favorably.
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Table 3. Experimental result for 40 nodes and 4 Vehicles

Experiment Trial 1 Trial 2 Trial 3 Average
Pop = 100; P, = 0.8;

B, = 0.01; G, = 300 478,263.89 1,361.08 AT AT
Pop =125; P, =0.75;

P, =0.025: G, = 400 434,769.94 429,744.14 349,859.48 404,791.18
Pop = 150; P, =0.9;

P = 0.02; Gy, =500 383,841.41 389,126.82 342,662.90 371,877.04
Pop = 175; P, = 0.85; 437,121.39 395,817.79 371,812.75 401,583.97

P,, = 0.03; G, = 200

Lastly, the combination Pop = 175; P, = 0.85; P,,, = 0.03; G,, = 200 delivered a decent average
fitness value of 401,583.97, but again showed larger variations between trials, particularly in the third
trial. This suggests that while a larger population and higher mutation rate can be beneficial, the
relatively low number of generations restricted the algorithm's ability to converge on optimal solutions.
Overall, the parameter combination with Pop = 150; P, = 0.9; B, = 0.02; G,, = 500 proved to be the
most effective, striking a good balance between exploration and exploitation in the solution space and
leading to the most consistent and optimal results across trials. Building upon the previous analysis of
the GA parameter combination Pop = 150; P, = 0.9; B,, = 0.02; G, = 500, which produced the best
average fitness value, further investigation into the specific objectives reveals even more insightful results.
Table 4 reflects the performance of this parameter set across three trials, evaluating three key objectives:
costs (Rp), carbon emissions (kgCO-e), and average quality of bread (%).

Table 4. Summary of optimization results for vehicle routing problem across multiple trials

Objectives Trial 1 Trial 2 Trial 3 Average

Costs (IDR) 959,381.20 972,581.20 856,458.12 929.473,50
Carbon emission (kgCOze) 396.36 414.42 365.43 392,07
Average Quality of Bread (%) 99.89 99.89 99.90 99.89

From the results, Trial 3 stands out as the most effective trial, achieving the most favorable outcomes
across all evaluated objectives. Transportation costs, calculated based on total travel distance, were
minimized most efficiently in Trial 3, achieving the lowest cost of IDR 856,458.12, compared to IDR
959,381.20 in Trial 1 and IDR 972,581.20 in Trial 2. This significant cost reduction indicates that the
third trial effectively optimized route planning, resulting in superior cost efficiency while maintaining
operational feasibility.

Similarly, in terms of carbon emissions, calculated following the GHG protocol standards, Trial 3
achieved the lowest emissions at 365.43 kgCOse, outperforming Trial 1 and Trial 2, which recorded
emissions of 396.36 kgCO,e and 414.42 kgCO,e, respectively. The reduction in emissions in Trial 3
highlights the model's ability to align economic and environmental objectives effectively. This
emphasizes the model's capability to identify more sustainable routing solutions without significantly
compromising cost efficiency, simultaneously addressing financial and environmental concerns.

Regarding product quality, measured based on the adherence to delivery time windows to ensure
freshness upon arrival, all trials demonstrated consistent results with minimal variation. Trial 3
maintained a slightly higher quality score of 99.90%, compared to 99.89% in both Trial 1 and 2. This
consistency indicates that, despite focusing on optimizing cost and emissions, the algorithm effectively
maintained high product quality standards. The findings reaffirm the reliability of the model in balancing
economic efficiency, environmental impact, and product quality throughout the delivery process.

Overall, the results from Trial 3 demonstrate the effectiveness of the proposed model in optimizing
the distribution process by minimizing transportation costs and emissions while ensuring product
quality, making it a viable solution for sustainable logistics operations.

Building on the selection of Trial 3 as the best performer from Table 4, a deeper analysis of the
solution search process using the GA reveals interesting insights, as illustrated in Fig. 7. The
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optimization process in Trial 3 demonstrates a clear convergence pattern, where the algorithm reaches
an optimal or near-optimal solution by generation 321. From this point onward, no further
improvements were observed in the fitness value up until generation 500, indicating that the algorithm
had effectively explored and exploited the solution space by generation 321.

25300000
20300000

15300000

Fitness

10300000

5300000
G,= 321

300000 —

0 50 100 150 200 250 300 350 400 450 500

Generations

Fig. 7. Graphs illustrating the convergence path of solutions reached by the GA

The results from Trial 3 in Table 4 demonstrate the significant impact of optimized route planning
and vehicle allocation on the overall performance of the GA solution, as shown in Fig. 8. Each vehicle
route was strategically designed to minimize transportation costs and carbon emissions, and maintain
high product quality. Vehicle 1, with its shorter routes totaling 281.90 km, achieved the lowest costs
(IDR 163,839.32) and emissions (53.47 kgCOze), while also delivering the highest quality of 99.94%.
Similarly, Vehicles 2 and 3 maintained efficient routes, resulting in moderate costs and emissions while
preserving product quality close to the optimal level. On the other hand, Vehicle 4, with a significantly
longer route covering 547.40 km, contributed the highest costs (IDR 318,147.01) and emissions (194.68
kgCOze). Despite this, the overall system balanced the performance, allowing for cost-effective and
environmentally sustainable operations without compromising on high-quality product delivery, as seen
in the 99.85% quality for Vehicle 4.

The optimized routing strategy led to a total transportation cost of IDR 856,458.12 and total carbon
emissions of 365.43 kgCOze, while maintaining an impressive 99.90% average product quality across all
vehicles. This showcases the effectiveness of the GA in simultaneously addressing multiple objectives
and finding an optimal balance. By minimizing emissions for most vehicles, the algorithm successfully
reduced the environmental impact while ensuring delivery costs were kept low. Furthermore, the
consistent product quality reflects the robustness of the solution, even when handling longer and more
complex routes. Overall, the trial exemplifies the capability of the GA to deliver near-optimal solutions
that prioritize sustainability, cost-efficiency, and product integrity in real-world logistics operations.

Interestingly, the analysis of route planning for all four vehicles reveals that careful consideration of
distance and delivery sequence can lead to notable efficiencies. By ensuring that vehicles are allocated to
routes that optimize their total travel distance and align with delivery requirements, achieving substantial
reductions in operational costs and carbon emissions is possible while maximizing product quality. The
strategic trip planning, which prioritizes shorter routes with fewer stops for each vehicle, minimizes costs
and emissions and enhances the overall service quality, as reflected in the high-quality scores across all
vehicles. This indicates that a well-structured routing and allocation strategy is paramount for balancing
economic viability and environmental responsibility, showcasing the effectiveness of the applied
optimization model in enhancing supply chain performance.

The results of this study have significant implications for industry applications and sustainability
goals, offering a practical tool for optimizing logistics in sectors such as bakery product distribution. The
proposed GVRP model effectively addresses real-world complexities, such as heterogeneous vehicle fleets
and dynamic delivery time windows, demonstrating its adaptability and utility across various industries

Asib et al. (Genetic algorithm to optimize green vebicle routing and allocation planning for perishable products)



ISSN 2442-6571 International Journal of Advances in Intelligent Informatics 187
Vol. 11, No. 2, May 2025, pp. 175-191

e—
dealing with perishable goods or time-sensitive deliveries. By minimizing transportation costs and carbon
emissions while maintaining high average product quality (99.90%), the model enables businesses to
achieve operational efficiency without compromising environmental and customer satisfaction standards.
From a sustainability perspective, the model supports efforts to reduce carbon footprints in supply chain
operations, aligning with global environmental regulations and corporate social responsibility initiatives.
Additionally, it contributes to the United Nations' Sustainable Development Goals (SDG 12 and SDG
13) by promoting responsible production and consumption and advancing climate action. By integrating
economic, environmental, and quality objectives, this model serves as a valuable strategy for industries
to enhance competitiveness and sustainability in an increasingly eco-conscious and demanding
marketplace.

111.20 110.90
111.10 110.80
111.00 110.70
— 11090 | ~
e N 110.60
] 110.80 3
110.50
£ 110.70 2
— 110.60 3 11040
110.50 110.30
110.40 110.20
——@— Vehicle 1-Trip I <@ Vehicle 1-Trip 2 110.30 —@— Vehicle 2 -Trip | —@—Vehicle 2 -Trip 2 110.10
-790 -7.85 -7.80 -7.75 -7.70 -7.65 -7.60 -7.90 -7.80 -7.70 -7.60 -7.50 -7.40 -7.30
Longitude (x) Longitude (x)
(a) Routes of vehicle 1 (b) Routes of vehicle 2
110.90 111.00
110.90
110.80
110.80
= 110.70 = 110.70
] o 110.60
S 110.60 3
h= = 110.50
T 5
- 110.50 110.40
110.30
110.40
110.20
—e— Vehicle 3 -Trip 1 —@— Vehicle 3 -Trip 2 110.30 —&— Vehicle 4 -Trip 1 —@— Vehicle 4 -Trip 2 110.10
-7.85 -7.80 -7.75 -7.70 -7.65 -7.60 -7.55 -790 -780 -7.70 -7.60 -7.50 -7.40
Longitude (x) Longitude (x)
(c) Routes of vehicle 3 (d) Routes of vehicle 4

Notes: (a) Routes of vehicle 1, total distance 281.90 km, total costs IDR 163839.32, total emission: 53.47 kgCOze, and Quality 99.93%
(Trip 1: 0-17-14-33-34-38-38—- 0, Trip 2: 0-20—0); (b) Routes of vehicle 2, total distance 303.30 km, total costs IDR
176276.92, total emission: 58.88 kgCOze, and Quality 99.90% (Trip 1: 0-9-36-22-25-26—21-15-0, Trip 2:
0-2-3-4-10-0); (c) Routes of vehicle 3, total distance 306.60 km, total costs IDR 178194.87, total emission: 58.41 kgCOze, and
Quality 99.92% (Trip 1: 0-1-32—-13-35-40-6—0, Trip 2: 0-12—-31-0); (d) Routes of vehicle 4, total distance 547.40 km, total
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Fig. 8. Delivery routes optimized for four vehicles, illustrating efficient path selection

While the proposed GVRP model has demonstrated significant strengths, there are some limitations
and challenges that should be acknowledged to provide a balanced perspective. First, the model relies on
specific input data from a real-world bakery distribution system, which may limit its generalizability to
other industries or regions without customization. Additionally, the computational complexity of GA,
particularly for large-scale datasets, can lead to extended processing times, requiring careful parameter

tuninﬁ to balance solution quality and computational efficiency. Finally, external factors such as
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fluctuating traffic conditions or unforeseen delays, which are difficult to model precisely, may impact the
practical implementation of the proposed approach. Addressing these limitations in future work could
further enhance the robustness and applicability of the model across diverse scenarios

4. Conclusion

In conclusion, this paper presents a novel GVRP model that incorporates multiple trips,
heterogeneous vehicles, and time windows, applied to a real-world bakery product distribution case. The
primary objective of the proposed model is to optimize route planning and vehicle allocation to minimize
transportation costs and carbon emissions while maximizing product quality upon delivery to retailers.
Through a series of comprehensive GA experiments, the model demonstrates its capability to find near-
optimal solutions that effectively balance economic, environmental, and quality-focused objectives. The
results highlight the success of the proposed GVRP model, where the best trial achieved a total
transportation cost of IDR 856,458.12, carbon emissions of 365.43 KgCOze, and an average product
quality of 99.90% across all vehicle trips. These outcomes showcase the algorithm's efficiency in
optimizing multiple objectives while considering real-world constraints such as heterogeneous vehicle
fleets and varying delivery windows. By integrating these complex factors, the model supports more
sustainable and cost-effective distribution strategies and ensures the high quality of products during
delivery. This makes the model a valuable tool for industries seeking to improve their operational
efficiency and environmental impact in a competitive marketplace. Further research could explore the
testing of alternative metaheuristic algorithms to enhance solution robustness and efficiency. In addition,
incorporating the complexity of dynamic lot sizing into the model could provide deeper insights into
inventory management alongside vehicle routing. This integration would allow for better alignment of
production and distribution strategies, accommodating fluctuating demand patterns while optimizing
resource utilization.
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