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1. Introduction 
In today's globalized economy, the efficient transportation of perishable products has become a critical 

concern. The increasing distance between production centers and consumers necessitates robust and 

reliable logistics systems to ensure the timely delivery and quality preservation of sensitive products, such 

as pharmaceuticals [1], food [2]–[4], and beverages [5]. This challenge is particularly evident in the 

bakery industry, where freshness is paramount to customer satisfaction and business success [6]. 

Consider, for instance, a large-scale bakery enterprise that supplies a variety of bread products to 

numerous retail outlets across a wide geographical area. This company faces the dual challenge of 

maintaining product freshness while simultaneously optimizing its distribution network to minimize 

costs [6], [7]. Such a scenario highlights the complexities inherent in managing supply chains for 

perishable products and underscores the necessity for advanced logistics solutions [8]. Within this 

context, time windows emerge as a critical constraint in the distribution of perishable goods, as 

demonstrated in studies examining the integration of time constraints within cold chain logistics [9]. 

This issue is particularly significant in the bakery industry, where the freshness of products is directly 
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 This paper introduces a novel approach to the Green Vehicle Routing 

Problem (GVRP) by integrating multiple trips, heterogeneous vehicles, and 

time windows, specifically applied to the distribution of bakery products. 

The primary objective of the proposed model is to optimize route planning 

and vehicle allocation, aiming to minimize transportation costs and carbon 

emissions while maximizing product quality upon delivery to retailers. 

Utilizing a Genetic Algorithm (GA), the model effectively achieves near-

optimal solutions that balance economic, environmental, and quality-

focused goals. Empirical results reveal a total transportation cost of IDR 

856,458.12, carbon emissions of 365.43 kgCO2e, and impressive average 

product quality of 99.90% across all vehicle trips. These findings 

underscore the capability of the model to efficiently navigate the 

complexities of real-world logistics while maintaining high standards of 

product delivery. The proposed GVRP model serves as a valuable tool for 

industries seeking sustainable and cost-effective distribution strategies, 

with implications for broader advancements in supply chain management.  
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linked to their quality and marketability, making effective time management essential for maintaining 

consumer satisfaction. 

Moreover, the operational challenges are further compounded by the need for multiple trips and the 

utilization of heterogeneous vehicles. The complexity of multiple trips allows for greater flexibility in 

route planning but also requires careful coordination to ensure that product freshness is maintained 

throughout each delivery cycle [10]. Heterogeneous vehicle fleets, which consist of different types of 

vehicles with varying capacities and characteristics, introduce additional logistical intricacies [11], [12], 

[13]. Effectively managing these vehicles can optimize delivery routes and reduce costs while ensuring 

that perishable items, like baked goods, are transported under optimal conditions [14]. Therefore, 

addressing these complexities through advanced routing models and logistics strategies is crucial for 

enhancing efficiency and preserving product quality in the bakery supply chain. 

The Vehicle Routing Problem (VRP) serves as a fundamental concept in operations research, 

encompassing diverse issues, including the optimization of distribution routes [15], [16], management 

of heterogeneous vehicle fleets [17], [18], and sustainable cold chain logistics [17]. Its versatility extends 

to various applications such as improving waste collection efficiency [19], coordinating emergency supply 

distribution [15], [20], and planning winter road maintenance [16], [21]. Traditional VRP models often 

prioritize cost minimization or time efficiency; however, few adequately consider the delivery's 

perishability. In the context of perishable products, the VRP becomes significantly more complex due 

to their time-sensitive nature [22], [23]. Recent scholarly work has illuminated the evolving landscape 

of VRP research, particularly concerning perishable products. A comprehensive review by Utama et al. 
[21] analyzed 59 studies published between 2001 and 2020, focusing on route optimization for quality-

sensitive goods and revealing a prevalence of metaheuristic algorithms that address single and multi-

objective optimization problems, with cost minimization as a predominant objective. Alkaabneh et al. 
[24] introduced a comprehensive approach combining inventory routing with environmental costs, 

highlighting the importance of minimizing fuel consumption alongside traditional delivery costs. 

Furthermore, Zhu et al. [25] explored the inclusion of freshness-keeping costs in cold chain logistics, 

optimizing routes to minimize product spoilage and overall distribution costs. These approaches 

demonstrate that modern VRP models must evolve to include multi-objective frameworks, balancing 

cost, time, and product quality to address the unique challenges perishable goods pose. In light of 

growing environmental concerns, the logistics industry faces increased scrutiny regarding its impact on 

sustainability. The emergence of the Green Vehicle Routing Problem (GVRP) integrates sustainability 

parameters into traditional VRP models [19], [26]. A thorough review by Moghdani et al. [19] 

encompassing 309 papers published from 2006 to 2019 highlighted the increasing emphasis on 

environmental considerations in transportation logistics. As the GVRP field continues to evolve, 

researchers recognize the need to incorporate realistic constraints and objectives to address the 

complexities of modern logistics operations. 

This study aims to contribute to this field by developing a comprehensive GVRP model tailored to 

the bakery industry, considering product deterioration, multiple trips, heterogeneous fleets, and time 

windows. The overarching goals include minimizing operational transport costs, reducing carbon 

emissions, and maximizing product quality. By addressing these interrelated objectives, this research 

provides a holistic approach to green logistics management in perishable goods distribution. Integrating 

multiple trips, heterogeneous fleets, time windows, cost minimization, emission reduction, and quality 

maximization into a single GVRP model reflects the real-world complexities logistics managers face, 

aligning with the broader societal goals of sustainable development and environmental stewardship. The 

intersection of perishable product logistics and environmental sustainability presents fertile ground for 

research and innovation, particularly in the bakery industry. This translates to a multifaceted challenge, 

primarily centered on designing an efficient distribution route network that ensures timely delivery of 

fresh bread products to various stores, each with specific receiving time windows [23], [27]. This time 

sensitivity is crucial for meeting contractual obligations and maintaining the quality of baked goods, 

which deteriorate rapidly [28]–[30]. The routing solution must also minimize transportation costs, a 
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significant component of operational expenses, while reducing carbon emissions associated with the 

distribution process [31]–[33]. 

To address these challenges, this paper develops a GVRP model tailored to the bakery industry, 

determining the optimal routing strategy and vehicle allocation that minimizes operational costs and 

environmental impact while ensuring the timely delivery of fresh products. This research employs a 

Genetic Algorithm (GA) to solve this complex optimization problem, leveraging its robustness in 

handling multi-objective scenarios and its capacity to find near-optimal solutions in large search spaces. 

The choice of GA is particularly well-suited to the GVRP due to its adaptive heuristic approach, 

which excels in addressing non-linear, multi-objective problems. Unlike exact methods such as linear 

programming, which may struggle with large-scale and highly constrained problems, GA dynamically 

explores the solution space, avoiding local optima and enhancing solution diversity. Compared to other 

metaheuristic techniques like tabu search and simulated annealing, GA offers greater flexibility in 

handling dynamic constraints and overlapping objectives, making it particularly effective for real-world 

logistics applications [34]–[36]. While metaheuristic methods like tabu search and simulated annealing 

can perform well under certain conditions, they often require extensive parameter tuning to achieve 

optimal results. In contrast, GA consistently provides high-quality solutions with improved 

computational efficiency, making it a robust approach for optimizing vehicle routing and allocation 

planning [37]. 

The novelty of this research lies in three key contributions. First, it develops a GVRP model that 

uniquely integrates perishability constraints with eco-friendly considerations, addressing a significant gap 

in the literature [38], [39]. Second, it demonstrates the effectiveness of GA in solving real-world logistics 

problems, particularly those that struggle with dynamic and large-scale scenarios [40]–[44]. Lastly, it 

offers actionable insights through a case study on bakery logistics, providing managers with a robust 

framework for balancing economic and environmental priorities. 

The remainder of this paper is structured as follows: Section 2 details our proposed method, including 

the specifics of our mathematical model and solution approach. Section 3 presents the results of our 

computational experiments and offers a thorough analysis of the findings. Finally, Section 4 concludes 

the paper by summarizing key insights and suggesting directions for future research in this critical area 

of logistics and supply chain management. 

2. Model Development 

2.1. Problem Descriptions 
An illustration of this complex bakery distribution problem is presented in Fig. 1. The bakery 

industry faces a complex VRP characterized by the delivery of perishable products with declining quality 

over time. Based on Fig. 1, fresh bread must be distributed to various retail stores, each with specific 

morning time windows for receiving deliveries. This time sensitivity is crucial for maintaining product 

freshness and meeting contractual obligations with retailers. In addition to the challenge of optimizing 

delivery schedules, multiple trips are considered if the load of the first trip exceeds the vehicle's capacity. 

In such cases, vehicles must return to the bakery hub for reloading before embarking on a second 

trip to complete the remaining deliveries. This adds complexity to route planning, as the need for 

additional trips impacts overall delivery time, vehicle utilization, and resource allocation. The problem 

becomes even more challenging due to the need to optimize the number and capacity of delivery vehicles 

and their routing to meet strict morning delivery schedules. Vehicle speed is critical, especially during 

morning rush hours when increased human activity leads to traffic congestion, potentially causing delays 

and affecting delivery times. This optimization challenge goes beyond logistical efficiency; it directly 

influences transportation costs and carbon emissions. The objective is to develop routing strategies and 

vehicle allocations that effectively meet time-window constraints while minimizing economic and 

environmental costs, all while maintaining the quality of bread products. The flow of this research is 

presented in Fig. 2 to illustrate the overall approach. 
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The research flow in Fig. 2 outlines a systematic approach to solving the VRP problem. It begins 

with problem descriptions, where the key challenges and objectives are identified. Next, model 

development involves formulating a comprehensive framework to address the VRP problem. Data 

collection follows, ensuring that relevant and accurate data are gathered to test the model. Finally, the 

model solution-based GA phase applies optimization techniques to find efficient solutions. 

 

Fig. 1. Bakery product distribution network 

 

Fig. 2. Research flowchart 

2.2. Model Formulation 
We can first use the notations to develop a mathematical model for this VRP that accounts for 

perishable product quality, delivery time windows, and carbon emissions. 

2.2.1. Notations 

• Indices and sets 

𝑁𝑁 : Set of locations, including the bakery hub (0) and retail stores (1 to n), {0, 1, 2, 3,…,n}. 

𝑘𝑘 : Index for vehicles, 𝑘𝑘 ∈  𝐾𝐾, where 𝐾𝐾 is the set of vehicles. 

𝑖𝑖, 𝑗𝑗 : Indices for locations (nodes), where 𝑖𝑖, 𝑗𝑗 ∈  𝑁𝑁. 
𝑟𝑟 : Number of trips for each vehicle 𝑘𝑘. 

𝑆𝑆 : A subset of nodes from the complete set of retailer nodes 𝑁𝑁 in the VRP 

• Parameter 

𝐷𝐷𝑖𝑖  : Demand at retail store 𝑖𝑖. 

𝑊𝑊𝑖𝑖𝑖𝑖
𝑘𝑘,𝑟𝑟

 : Total initial weight (in kg) of cargo at the start of a trip 𝑟𝑟 for vehicle 𝑘𝑘, calculated as 

the sum of demands for all nodes in that trip.  

𝑤𝑤  : Weight per unit product in kg. 

𝐵𝐵𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 : The empty weight of the truck. 

𝑇𝑇𝑖𝑖𝑖𝑖𝑟𝑟   : Arrival time at node 𝑖𝑖 for vehicle k during trip 𝑟𝑟. 
𝑇𝑇𝑗𝑗𝑗𝑗𝑟𝑟   : Arrival time at node 𝑗𝑗 for vehicle k during trip 𝑟𝑟. 
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Development Data collection
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based Genetic 

Algorithm
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𝑇𝑇𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 : Start of the delivery time window at store 𝑖𝑖. 
𝑇𝑇𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒 : End of the delivery time window at store 𝑖𝑖. 
𝑇𝑇𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 : Loading time at the bakery hub. 

𝑇𝑇𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 : Unloading time at each retail store. 

α𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 : Penalty cost for early delivery (before 𝑇𝑇𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠). 
𝛼𝛼𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 : Penalty cost for late delivery (after 𝑇𝑇𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒). 

𝑑𝑑𝑖𝑖𝑖𝑖  : Distance between locations 𝑖𝑖 and 𝑗𝑗 (in kilometers) 

𝑣𝑣𝑘𝑘  : Speed of vehicle 𝑘𝑘 (in km/h). 

𝐶𝐶𝑘𝑘  : Capacity of vehicle 𝑘𝑘 (in units of bread). 

𝑐𝑐𝑘𝑘𝑘𝑘 : Transportation cost per kilometer for vehicle k (in monetary units). 

𝑄𝑄𝑖𝑖  : Initial quality of the product at node 𝑖𝑖, assumed to be 100% at the depot. 

𝛿𝛿𝑖𝑖(𝑇𝑇𝑖𝑖𝑖𝑖𝑟𝑟 ) : Quality decay function at time 𝑡𝑡 for bread delivered to store 𝑖𝑖. 
𝑒𝑒𝑐𝑐    : The emission factor for CO2 

𝑒𝑒𝑚𝑚     : The emission factor for CH4 

𝑒𝑒𝑛𝑛     : The emission factor for NO2 

𝐺𝐺𝐺𝐺𝐺𝐺𝑐𝑐  : The global warming potential for CO2. 

𝐺𝐺𝐺𝐺𝐺𝐺𝑚𝑚  : The global warming potential for CH4. 

𝐺𝐺𝐺𝐺𝐺𝐺𝑛𝑛  : The global warming potential for NO2. 

• Decision variables 

𝑧𝑧𝑖𝑖𝑖𝑖
𝑘𝑘,𝑟𝑟

 : A binary decision variable that represents whether 1 if vehicle 𝑣𝑣 is allocated to travel 

from the station 𝑖𝑖 to station 𝑗𝑗, and 𝑧𝑧𝑖𝑖𝑖𝑖𝑣𝑣 = 0 otherwise. 

𝑁𝑁𝑘𝑘,𝑟𝑟
 : The sequence of nodes visited by a vehicle 𝑘𝑘 per trip 𝑟𝑟, for example [0, 

𝑛𝑛1,𝑛𝑛2,𝑛𝑛3, . . . ,𝑛𝑛𝑚𝑚, 0]. 

2.2.2. Assumptions 

We used some basic assumptions to ensure the model's suitability for operational conditions in the 

field, simplify calculations, and improve modelling accuracy. The following are the assumptions used in 

this study: 1) The demand at each retailer is known and constant; 2) Each retail store is visited exactly 

once by one vehicle; 3) The distances between all pairs of nodes are known and remain constant; 4) The 

quality of the bread decreases over time according to a predefined decay function 𝛿𝛿𝑖𝑖(𝑡𝑡); 5) Each vehicle 

travels at a constant speed 𝑣𝑣𝑘𝑘 and the travel time between any two locations 𝑖𝑖 and 𝑗𝑗 is calculated based 

on this fixed speed. 6) Each retail store has a specified time window for delivery; 7) The model assumes 

that the time required for loading at the bakery hub and unloading at each retail store is fixed and 

known; 8) Each vehicle has a fixed capacity 𝐶𝐶𝑘𝑘, which limits the amount of bread it can carry. The total 

demand fulfilled by each vehicle must not exceed its capacity. 

2.2.3. Mathematical model 

This model aims to minimize operational costs and emissions while ensuring that the bread quality 

remains high upon delivery to customers by optimizing the route planning 𝑁𝑁𝑘𝑘,𝑟𝑟
and vehicle allocation 

𝑧𝑧𝑖𝑖𝑖𝑖
𝑘𝑘,𝑟𝑟

. The model prioritizes operational efficiency and customer satisfaction, emphasizing the importance 

of delivering fresh, high-quality bread. 

• Objective 1: Minimize transport costs 

𝑍𝑍1(𝑁𝑁𝑘𝑘, 𝑧𝑧𝑖𝑖𝑖𝑖
𝑘𝑘,𝑟𝑟) = ∑ ∑ ∑ ∑ 𝑧𝑧𝑖𝑖𝑖𝑖

𝑘𝑘,𝑟𝑟�𝑐𝑐𝑘𝑘𝑘𝑘 ⋅ 𝑑𝑑𝑖𝑖𝑖𝑖�𝑗𝑗∈𝑁𝑁𝑖𝑖∈𝑁𝑁𝑟𝑟∈𝑅𝑅𝑘𝑘𝑘𝑘∈𝐾𝐾 + ∑ ∑ ∑ �𝛼𝛼𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ⋅ max�𝑇𝑇𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 −𝑖𝑖∈𝑁𝑁𝑟𝑟∈𝑅𝑅𝑘𝑘𝑘𝑘∈𝐾𝐾
𝑇𝑇𝑖𝑖,𝑘𝑘𝑟𝑟 , 0� + 𝛼𝛼𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ⋅ max�𝑇𝑇𝑖𝑖,𝑘𝑘𝑟𝑟 − 𝑇𝑇𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒 , 0��   (1) 

• Objective 2: Minimize carbon emissions 

𝑍𝑍2�𝑁𝑁𝑘𝑘, 𝑧𝑧𝑖𝑖𝑖𝑖
𝑘𝑘,𝑟𝑟� = ∑ ∑ ∑ 𝑧𝑧𝑖𝑖𝑖𝑖

𝑘𝑘,𝑟𝑟
𝑗𝑗∈𝑁𝑁𝑟𝑟∈𝑅𝑅 𝑑𝑑𝑖𝑖𝑖𝑖 (𝑊𝑊𝑖𝑖

𝑘𝑘,𝑟𝑟
𝑘𝑘∈𝐾𝐾 + 𝐵𝐵𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)(GWPc ⋅ 𝑒𝑒𝑐𝑐 + GWPm ⋅ 𝑒𝑒𝑚𝑚 + GWPn ⋅ 𝑒𝑒𝑛𝑛)  (2) 

• Objective 3: Maximize bread quality at delivery 
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𝑍𝑍3�𝑁𝑁𝑘𝑘, 𝑧𝑧𝑖𝑖𝑖𝑖
𝑘𝑘,𝑟𝑟� = 1

|𝐾𝐾|
∑ ∑ ∑ �𝑄𝑄𝑖𝑖 − 𝛿𝛿𝑖𝑖�𝑇𝑇𝑖𝑖𝑖𝑖𝑟𝑟 (𝑁𝑁𝑘𝑘, 𝑧𝑧𝑖𝑖𝑖𝑖𝑘𝑘 )��𝑖𝑖∈𝑁𝑁𝑟𝑟∈𝑅𝑅𝑘𝑘∈𝐾𝐾    (3) 

• Subject to 

∑ 𝑧𝑧0𝑗𝑗
𝑘𝑘,𝑟𝑟

𝑗𝑗∈𝑁𝑁 = 1,∑ 𝑧𝑧𝑖𝑖0
𝑘𝑘,𝑟𝑟

𝑖𝑖∈𝑁𝑁 = 1,∀𝑘𝑘 ∈ 𝐾𝐾,∀𝑟𝑟 ∈ 𝑅𝑅   (4) 

∑ ∑ 𝑧𝑧𝑖𝑖𝑖𝑖
𝑘𝑘,𝑟𝑟

𝑗𝑗∈𝑁𝑁𝑘𝑘∈𝐾𝐾 = 1, ∀𝑖𝑖 ∈ 𝑁𝑁   (5) 

∑ 𝑧𝑧𝑖𝑖𝑖𝑖
𝑘𝑘,𝑟𝑟

𝑗𝑗∈𝑁𝑁 = ∑ 𝑧𝑧𝑗𝑗𝑗𝑗
𝑘𝑘,𝑟𝑟

𝑗𝑗∈𝑁𝑁 ,  ∀𝑖𝑖 ∈ 𝑁𝑁,∀𝑘𝑘 ∈ 𝐾𝐾,∀𝑟𝑟 ∈ 𝑅𝑅   (6) 

∑ ∑ 𝐷𝐷𝑖𝑖𝑟𝑟𝑧𝑧𝑖𝑖𝑖𝑖
𝑘𝑘,𝑟𝑟

𝑗𝑗∈𝑁𝑁𝑖𝑖∈𝑁𝑁 ≤ 𝐶𝐶𝑘𝑘,  ∀𝑘𝑘 ∈ 𝐾𝐾,∀𝑟𝑟 ∈ 𝑅𝑅   (7) 

𝑇𝑇𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ≤ 𝑇𝑇𝑖𝑖𝑖𝑖𝑟𝑟 ≤ 𝑇𝑇𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒   (8) 

𝑇𝑇𝑗𝑗𝑗𝑗𝑟𝑟 ≥ 𝑇𝑇𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 +
𝑑𝑑0𝑗𝑗
𝑣𝑣𝑘𝑘

+ 𝑇𝑇𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢, ∀𝑗𝑗 ∈ 𝑁𝑁,∀𝑘𝑘 ∈ 𝐾𝐾,∀𝑟𝑟 ∈ 𝑅𝑅   (9) 

𝑇𝑇𝑗𝑗𝑗𝑗𝑟𝑟 ≥ 𝑇𝑇𝑖𝑖𝑖𝑖𝑟𝑟 +
𝑑𝑑𝑖𝑖𝑖𝑖
𝑣𝑣𝑘𝑘

+ 𝑇𝑇𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢,                    ∀𝑖𝑖, 𝑗𝑗 ∈ 𝑁𝑁,∀𝑘𝑘 ∈ 𝐾𝐾,∀𝑟𝑟 ∈ 𝑅𝑅  (10) 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖 = max(𝑇𝑇𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑇𝑇𝑖𝑖𝑖𝑖𝑟𝑟 , 0) , ∀𝑖𝑖 ∈ 𝑁𝑁,∀𝑘𝑘 ∈ 𝐾𝐾,∀𝑟𝑟 ∈ 𝑅𝑅    (11) 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖 = �𝛼𝛼𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑇𝑇𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑇𝑇𝑖𝑖𝑖𝑖𝑟𝑟 , 0), 𝐼𝐼𝐼𝐼 𝑇𝑇𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑇𝑇𝑖𝑖𝑖𝑖𝑟𝑟 > 1 ℎ𝑜𝑜𝑜𝑜𝑜𝑜
0, 𝑂𝑂𝑂𝑂ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

  (12) 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖 = max�𝑇𝑇𝑖𝑖𝑖𝑖𝑟𝑟 − 𝑇𝑇𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒 , 0� ,∀𝑖𝑖 ∈ 𝑁𝑁,∀𝑘𝑘 ∈ 𝐾𝐾,∀𝑟𝑟 ∈ 𝑅𝑅   (13) 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖 = �𝛼𝛼𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�𝑇𝑇𝑖𝑖𝑖𝑖
𝑟𝑟 − 𝑇𝑇𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒 , 0�, 𝐼𝐼𝐼𝐼 𝑇𝑇𝑖𝑖𝑖𝑖𝑟𝑟 − 𝑇𝑇𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒 > 1 ℎ𝑜𝑜𝑜𝑜𝑜𝑜

0, 𝑂𝑂𝑂𝑂ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
   (14) 

𝑊𝑊𝑖𝑖
𝑘𝑘,𝑟𝑟 = 𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑘𝑘,𝑟𝑟 − ∑ �𝐷𝐷𝑙𝑙𝑟𝑟𝑤𝑤 𝑧𝑧𝑙𝑙𝑙𝑙
𝑘𝑘,𝑟𝑟�𝑙𝑙∈𝑁𝑁 ,∀𝑖𝑖 ∈ 𝑁𝑁,∀𝑘𝑘 ∈ 𝐾𝐾,∀𝑟𝑟 ∈ 𝑅𝑅   (15) 

𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑘𝑘,𝑟𝑟 = ∑ 𝐷𝐷𝑙𝑙𝑟𝑟𝑤𝑤𝑙𝑙∈𝑁𝑁    (16) 

∑ 𝑧𝑧𝑖𝑖𝑖𝑖
𝑘𝑘,𝑟𝑟

𝑖𝑖,𝑗𝑗∈𝑆𝑆 ≤ |𝑆𝑆| − 1, ∀𝑆𝑆 ⊂ 𝑁𝑁, 𝑆𝑆 ≠ ∅,∀𝑘𝑘 ∈ 𝐾𝐾   (17) 

The objective of the GVRP model is to optimize three key functions. The first function, represented 

in Eq. (1), focuses on minimizing transportation costs. The second, as shown in Eq. (2), aims to reduce 

carbon emissions, while the third function, expressed in Eq. (3), addresses quality decay resulting from 

transportation time. Constraint (4) defines each vehicle must depart from the bakery hub and return to 

the bakery hub. Constraint (5) ensures each store must be visited exactly once by one vehicle for all trips. 

Constraint (6) states that the number of vehicles arriving at a node 𝑖𝑖 is equal to the number of vehicles 

departing from the same node 𝑖𝑖 on each trip 𝑟𝑟. Constraint (7) ensures that the total demand (i.e., the 

quantity of goods) delivered by vehicle 𝑘𝑘 during trip 𝑟𝑟 does not exceed the vehicle’s maximum capacity 

𝐶𝐶𝑘𝑘. Moreover, Constraint (7) also ensures that when the total demand for a route exceeds the vehicle’s 

capacity, the vehicle must make multiple trips. Constraint (8) ensures that the delivery times respect the 

time windows for each node. Arrival time calculation for the first leg (from the bakery hub to the first 

retailer) is computed in Constraint (9). Constraint (9) accounts for the loading time at the bakery hub, 

the travel time from the bakery hub to the first retailer, and the unloading time at that retailer. 

Meanwhile, for subsequent legs (from one retailer to another) defined in constraint (10). It accounts for 

the travel time between two retailers and the unloading time at the destination retailer. Constraints (11) 

and (13) specify the penalty for arriving before the start time and for late arrival at the store 𝑖𝑖, respectively. 

However, Constraints (11) and (13) are influenced by the conditions in Constraints (12) and (14), where 

if the penalty exceeds 1 hour, the cost should include a higher penalty rate. Since carbon emissions are 

calculated based on transportation distance and weight, then constraint (15) defines the total weight of 
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the cargo carried by a vehicle 𝑘𝑘 on trip 𝑟𝑟 from node 𝑖𝑖 to node 𝑗𝑗, which decreases progressively as deliveries 

are made. Constraint (16) total initial weight of cargo loaded onto the truck for trip 𝑟𝑟. Constraint (17) 

ensures that no subtours are formed by restricting the number of routes within any subset of nodes 𝑆𝑆 to 

be less than the size of the subset, thereby preventing vehicles from circulating among nodes without 

returning to the central hub. 

2.3. Solution approach 
In this section, the development of a GA tailored for the GVRP with multi-objective optimization, 

which consists of: minimizing both costs (𝑍𝑍1) and emissions (𝑍𝑍2) and maximizing bread quality upon 

delivery (𝑍𝑍3). The GVRP is an NP-hard problem, and metaheuristic approaches like GA are well-suited 

for finding near-optimal solutions within a reasonable timeframe. The chromosome structure is crucial 

to the success of the GA. Each chromosome is encoded as a binary string where the length corresponds 

to the number of possible routes between stations in the network. For instance, if there are 𝑛𝑛 stations 

and 𝑘𝑘 vehicles, each chromosome will have a length of 𝑘𝑘 × (𝑛𝑛2 − 𝑛𝑛), reflecting all potential vehicle-route 

combinations. Each gene in the chromosome is a binary decision variable 𝑧𝑧𝑖𝑖𝑖𝑖
𝑘𝑘,𝑟𝑟

 which takes the value of 

1 if the vehicle 𝑣𝑣 is assigned to the route from the station 𝑖𝑖 to station 𝑗𝑗, and 0 otherwise. Then, the 

pseudocode of GA for this problem is presented in Algorithm 1 (Fig. 3). 
1: Initialize Population: Randomly generate an initial population of chromosomes. 
2: Evaluate Fitness: 
   For each chromosome in the population, calculate its fitness based on the 

objective function (i.e., minimizing both costs 𝑍𝑍1 and emissions (𝑍𝑍2) and 
maximizing bread quality upon delivery (𝑍𝑍3)). 

3: While stopping criterion not met (i.e., the maximum number of generations or 
convergence): 

4: Selection: 
   Select chromosomes based on a roulette wheel mechanism, where the probability 

of selection is proportional to the fitness of each chromosome.  
5: Crossover (Two-Point Crossover): 
   For each selected pair of parent chromosomes: 
   With a certain probability, perform a two-point crossover by randomly selecting 

two crossover points on the parent chromosomes. Swap the genes between these 
two points to create two offspring chromosomes. 

6: Mutation (Jump and Creep Method): 
   For each offspring chromosome: 
   With a certain probability, apply one of the two mutation techniques:  
   Jump mutation: Randomly select and replace a gene with a randomly chosen    

value from the permissible range. 
   Creep Mutation: Select a gene and increment or decrement its value by a small 

predefined amount to introduce slight variations. 
7: Evaluate Fitness: 
   Calculate the fitness of each new offspring chromosome. 
8: End While 
9: Output: Return the best chromosome found as the optimal route planning 𝑁𝑁𝑘𝑘,𝑟𝑟 and 

vehicle allocation 𝑧𝑧𝑖𝑖𝑖𝑖
𝑘𝑘,𝑟𝑟 for vehicle routing. 

Fig. 3.  The pseudocode of GA 

The following provides a step-by-step outline of the GA process: 

Step 1. Initialize Population 

GA begins by initializing a population of potential solutions (𝑃𝑃𝑃𝑃𝑃𝑃), referred to as chromosomes. In 

this context, each chromosome is divided into two key components: route node planning 𝑁𝑁𝑘𝑘 and 

vehicle allocation 𝑧𝑧𝑖𝑖𝑖𝑖
𝑘𝑘,𝑟𝑟

 as shown in Fig. 4. The route node planning chromosome represents a 

possible sequence of customer visits, starting and ending at a bakery hub, effectively encoding the 

order in which customers are visited. The vehicle allocation chromosome, on the other hand, 

assigns specific vehicles to the planned routes, ensuring that each route has the appropriate vehicle 

based on capacity or other constraints. This dual representation allows the GA to simultaneously 

optimize both the route planning and vehicle assignment for efficient vehicle delivery in the context 

of the GVRP. The diversity of this initial population, containing variations in both route sequences 
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and vehicle allocations, is crucial as it forms the basis for the subsequent search for an optimal 

solution. 

 

Fig. 4. Chromosome representation 

Step 2. Evaluate Fitness 

After initializing the population, the fitness of each chromosome is evaluated using the fitness 

function F to assess the quality of each solution. In this formulation, 𝑍𝑍1 represents the cost of the 

route, 𝑍𝑍2 accounts for carbon emissions, and 𝑍𝑍3 reflects the quality of the bread upon delivery (to 

be maximized). The fitness function is designed to minimize the overall fitness value, which 

combines these objectives through a weighted sum approach, along with a penalty term 𝑃𝑃 for 

constraint violations. The fitness function is formulated as: 

𝐹𝐹 =  𝑤𝑤1 ⋅ 𝑍𝑍1 + 𝑤𝑤2 ⋅ 𝑍𝑍2+𝑤𝑤3 ⋅ −𝑍𝑍3 + 𝑃𝑃  (18) 

where 𝑤𝑤1, 𝑤𝑤2, and 𝑤𝑤3 are the weights assigned to the respective objectives. 𝑍𝑍1 and 𝑍𝑍2 are to be 

minimized (cost and emissions). 𝑍𝑍3 is to be maximized, so we use −𝑍𝑍3 to convert it into a 

minimization objective. 𝑃𝑃 represents any penalty for constraint violations. 

In this case, the weights reflect the relative importance of each objective, with 𝑤𝑤1= 0.4, 𝑤𝑤2=0.3, 

𝑤𝑤3 = 0.3. This weighting emphasizes the minimization of costs slightly more than emissions and 

quality. A lower fitness value indicates a more optimal solution, signifying reduced costs and 

emissions while maintaining high product quality and adhering to constraints. 

Step 3. Selection 

In this phase, the roulette wheel selection method selects chromosomes to contribute to the next 

generation. In this approach, each chromosome is assigned a probability of selection proportional 

to its fitness value, with fitter chromosomes having a higher chance of being selected. The metaphor 

of a roulette wheel is used, where sections of the wheel are allocated based on fitness, and 

chromosomes are chosen based on where the "wheel" lands. Unlike elitism, which directly preserves 

the best solutions, roulette wheel selection maintains diversity by allowing all chromosomes to 

contribute to the next generation, thus balancing exploration and exploitation and preventing 

premature convergence to suboptimal solutions. 

Step 4. Crossover 

The selected chromosomes undergo a two-point crossover, combining genetic material from two 

parents to produce offspring, as shown in Fig. 5.  

Step 5. Mutation 

A mutation process is applied with a specified probability to maintain genetic diversity and avoid 

premature convergence. The mutation is performed using the jump and creep method in this 

context. Jump mutation involves making large, random changes to a chromosome by replacing a 

gene with a completely different value, while creep mutation makes smaller, incremental 

adjustments by slightly altering the value of a gene within its allowable range, as shown in Fig. 6.  

1 2 3 4
1 0 0 0 Chromosome (Route node planning)
0 1 0 0 1 2 3 4 5
0 1 0 0
0 0 1 0 Chromosome (Vehicle allocation)
1 0 0 0 1 0 0 0 1 0 1 1 0 0 1 0 0 1 0 0 0 0 0 0

0-1-5-0 0-2-3-0 0-4-0 0

Vehicle
Node

1
2
3
4

Service route:
5
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Fig. 5. Crossover 

The mutation probability (𝑃𝑃𝑚𝑚) controls the frequency of both types of mutations. This combination 

allows the algorithm to explore a broader range of solutions, with jump mutations introducing 

significant diversity and creep mutations fine-tuning solutions to avoid local optima, ultimately 

enhancing the search for the global optimum. 

 

Fig. 6. Mutation 

Step 6. Evaluate Fitness 

After crossover and mutation, the fitness of the newly generated chromosomes is re-evaluated. The 

algorithm then determines which chromosomes will advance to the next generation, using 

strategies like elitism to preserve the best-performing individuals or additional selection methods. 

This process aims to retain high-quality solutions while promoting continued exploration and 

refinement within the population across successive generations. 

Step 7. Termination 

The algorithm continuously cycles through the processes of selection, crossover, mutation, and re-

evaluation until a specified stopping condition—namely, the number of generations 𝐺𝐺𝑛𝑛,—is met. 

Once this condition is satisfied, the algorithm terminates, and the most optimal solution identified 

during the process is selected. 

Step 8. Set the best solution 

The chromosome with the best fitness value in the final population represents the optimal solution 

to the GVRP. This solution corresponds to a vehicle route that minimizes costs and emissions 

while maximizing bread quality during delivery. 

3. Results and Discussion 
In this section, we address the GVRP in the bread industry by developing a mathematical model 

encoded in Microsoft Excel, optimized using a GA approach. The GA was executed through the XL 

Optimizer, an Excel add-in that facilitates optimization tasks. By using this add-in, the GA generated 

robust initial solutions, improving the efficiency and accuracy of route planning and vehicle allocation 

for bread distribution. To evaluate the effectiveness of the proposed method, numerical experiments 

Crossover

Parent 1 1 0 0 0 1 0 1 1 0 0 1 0 0 1 0 0 0 0 0 0

Parent 2 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 1

Offspring 1 1 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0

Offspring 2 0 0 0 1 0 0 1 1 0 0 1 0 0 1 0 0 1 0 0 1

Two-Point 

Mutation

Before 0 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0

After 0 0 0 0 0 0 0 1 1 0 1 0 0 1 1 0 0 0 0 0

Mutation

Before 0 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0

After 0 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0

Jump

Creep
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were conducted on a PC with an Intel(R) Core™ i5 10500H CPU at 2.5 GHz, 8 GB RAM, running 

Windows 10 Professional. The outcomes of the model were then compared to the existing distribution 

data in the bread industry to assess the performance improvements achieved through the GA-based 

optimization: 

3.1. Test instances 
To evaluate the proposed VRP model, we conducted numerical experiments using a large-scale 

scenario with 40 nodes. The demand data for each node 𝐷𝐷𝑖𝑖, the distances between nodes 𝑑𝑑𝑖𝑖𝑖𝑖, as well as 

time windows (𝑇𝑇𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and 𝑇𝑇𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒) for each node can be seen from this link (https://bit.ly/3Y1gxb6). 

Additionally, the operational logistics data, including vehicle capacities, speed, cost parameters, and 

emission, are summarized in Table 1 and Table 2.  

Table 1.  Data related to delivery operations 

𝒌𝒌 𝑪𝑪𝒌𝒌 
(Units) 

𝒗𝒗𝒌𝒌  
(km/hr) 

𝑩𝑩𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 
(kg) 𝒄𝒄𝒌𝒌𝒌𝒌 

(Rupiah/km) 𝒘𝒘 (kg) 
𝛂𝛂𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆& 
𝜶𝜶𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍 

(Rupiah/hr) 

𝑻𝑻𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍 
(minutes) 

𝑻𝑻𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖 
(minutes) 

𝑸𝑸𝒊𝒊 

1 5200 50 800 

581.20 0.07  10000 20 15 100 2 5200 50 800 
3 5200 50 800 
4 5200 50 1588 

Table 2.  Data related to emission 

Global Warming Potential Emission Factor 
𝐺𝐺𝐺𝐺𝐺𝐺𝑐𝑐 𝐺𝐺𝐺𝐺𝐺𝐺𝑚𝑚 𝐺𝐺𝐺𝐺𝐺𝐺𝑛𝑛 𝑒𝑒𝑐𝑐 𝑒𝑒𝑚𝑚 𝑒𝑒𝑛𝑛 

1 28 265 0.297 0.0035 0.0027 

 

 These tables provide the foundational inputs necessary for testing the model's performance across 

different scales, allowing us to analyze its effectiveness in optimizing routing strategies while maintaining 

product freshness and minimizing transportation costs. 

3.2. Computational results 
The computational results of the GVRP model using GA with demand data for 40 nodes and four 

vehicles were tested using four parameter combinations. Each combination was evaluated three times to 

account for the stochastic nature of the GA, which can produce varying results depending on the initial 

random population. Testing each combination multiple times ensures that the results are consistent and 

not influenced by random outliers, providing a more robust evaluation of the parameter settings. 

Based on the experimental results in Table 3, several key insights emerge regarding the performance 

of the GA in evaluating fitness values across three trials with different parameter combinations. The 

best-performing combination was found to be 𝑃𝑃𝑃𝑃𝑃𝑃 = 150, 𝑃𝑃𝑐𝑐 = 0.9, 𝑃𝑃𝑚𝑚 = 0.02, and 𝐺𝐺𝑛𝑛 =500, which 

yielded the lowest average fitness value of 371,877.04. This indicates that a larger population size, a high 

crossover rate, a moderate mutation rate, and a higher number of generations contribute to a more 

optimal fitness outcome. Furthermore, this parameter setting demonstrated good consistency across 

trials, with relatively small differences between the first, second, and third trials, showcasing its reliability 

in consistently achieving robust solutions. 

In contrast, the combination 𝑃𝑃𝑃𝑃𝑃𝑃 = 100; 𝑃𝑃𝑐𝑐 = 0.8; 𝑃𝑃𝑚𝑚 = 0.01; 𝐺𝐺𝑛𝑛 = 300 resulted in the highest 

average fitness value of 415,954.27, indicating that smaller population sizes and fewer generations hinder 

the algorithm's ability to explore the solution space effectively, leading to suboptimal outcomes. The 

𝑃𝑃𝑃𝑃𝑃𝑃 = 125; 𝑃𝑃𝑐𝑐 =0.75; 𝑃𝑃𝑚𝑚 = 0.025; 𝐺𝐺𝑛𝑛 = 400 combinations produced a slightly better average fitness 

value of 404,791.18, but it exhibited greater variability between trials. The lower crossover probability 

and higher mutation rate might have caused this variability, with one trial showing a significant 

improvement while the others performed less favorably. 

https://bit.ly/3Y1gxb6
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Table 3.  Experimental result for 40 nodes and 4 Vehicles 

Experiment Trial 1 Trial 2 Trial 3 Average 
𝑃𝑃𝑃𝑃𝑃𝑃 = 100; 𝑃𝑃𝑐𝑐 = 0.8; 

𝑃𝑃𝑚𝑚 = 0.01; 𝐺𝐺𝑛𝑛 = 300 

478,263.89 391,361.08 378,237.85 415,954.27 

𝑃𝑃𝑃𝑃𝑃𝑃 =125; 𝑃𝑃𝑐𝑐 = 0.75; 

𝑃𝑃𝑚𝑚 =0.025; 𝐺𝐺𝑛𝑛 = 400 

434,769.94 429,744.14 349,859.48 404,791.18 

𝑃𝑃𝑃𝑃𝑃𝑃 = 150; 𝑃𝑃𝑐𝑐 = 0.9; 

𝑃𝑃𝑚𝑚 = 0.02; 𝐺𝐺𝑛𝑛 =500 

383,841.41 389,126.82 342,662.90 371,877.04 

𝑃𝑃𝑃𝑃𝑃𝑃 = 175; 𝑃𝑃𝑐𝑐 =  0.85; 

𝑃𝑃𝑚𝑚 = 0.03; 𝐺𝐺𝑛𝑛 = 200 

437,121.39 395,817.79 371,812.75 401,583.97 

 

Lastly, the combination 𝑃𝑃𝑃𝑃𝑃𝑃 = 175; 𝑃𝑃𝑐𝑐 = 0.85; 𝑃𝑃𝑚𝑚 =  0.03; 𝐺𝐺𝑛𝑛 = 200 delivered a decent average 

fitness value of 401,583.97, but again showed larger variations between trials, particularly in the third 

trial. This suggests that while a larger population and higher mutation rate can be beneficial, the 

relatively low number of generations restricted the algorithm's ability to converge on optimal solutions. 

Overall, the parameter combination with 𝑃𝑃𝑃𝑃𝑃𝑃 = 150; 𝑃𝑃𝑐𝑐 = 0.9; 𝑃𝑃𝑚𝑚 =  0.02; 𝐺𝐺𝑛𝑛 = 500 proved to be the 

most effective, striking a good balance between exploration and exploitation in the solution space and 

leading to the most consistent and optimal results across trials. Building upon the previous analysis of 

the GA parameter combination 𝑃𝑃𝑃𝑃𝑃𝑃 = 150; 𝑃𝑃𝑐𝑐 = 0.9; 𝑃𝑃𝑚𝑚 =  0.02; 𝐺𝐺𝑛𝑛 = 500, which produced the best 

average fitness value, further investigation into the specific objectives reveals even more insightful results. 

Table 4 reflects the performance of this parameter set across three trials, evaluating three key objectives: 

costs (Rp), carbon emissions (kgCO2e), and average quality of bread (%). 

Table 4.  Summary of optimization results for vehicle routing problem across multiple trials 

Objectives Trial 1 Trial 2 Trial 3 Average 
Costs (IDR) 959,381.20 972,581.20 856,458.12 929.473,50 

Carbon emission (kgCO2e) 396.36 414.42 365.43 392,07 

Average Quality of Bread (%) 99.89 99.89 99.90 99.89 

 

From the results, Trial 3 stands out as the most effective trial, achieving the most favorable outcomes 

across all evaluated objectives. Transportation costs, calculated based on total travel distance, were 

minimized most efficiently in Trial 3, achieving the lowest cost of IDR 856,458.12, compared to IDR 

959,381.20 in Trial 1 and IDR 972,581.20 in Trial 2. This significant cost reduction indicates that the 

third trial effectively optimized route planning, resulting in superior cost efficiency while maintaining 

operational feasibility. 

Similarly, in terms of carbon emissions, calculated following the GHG protocol standards, Trial 3 

achieved the lowest emissions at 365.43 kgCO₂e, outperforming Trial 1 and Trial 2, which recorded 

emissions of 396.36 kgCO₂e and 414.42 kgCO₂e, respectively. The reduction in emissions in Trial 3 

highlights the model's ability to align economic and environmental objectives effectively. This 

emphasizes the model's capability to identify more sustainable routing solutions without significantly 

compromising cost efficiency, simultaneously addressing financial and environmental concerns. 

Regarding product quality, measured based on the adherence to delivery time windows to ensure 

freshness upon arrival, all trials demonstrated consistent results with minimal variation. Trial 3 

maintained a slightly higher quality score of 99.90%, compared to 99.89% in both Trial 1 and 2. This 

consistency indicates that, despite focusing on optimizing cost and emissions, the algorithm effectively 

maintained high product quality standards. The findings reaffirm the reliability of the model in balancing 

economic efficiency, environmental impact, and product quality throughout the delivery process. 

Overall, the results from Trial 3 demonstrate the effectiveness of the proposed model in optimizing 

the distribution process by minimizing transportation costs and emissions while ensuring product 

quality, making it a viable solution for sustainable logistics operations. 

Building on the selection of Trial 3 as the best performer from Table 4, a deeper analysis of the 

solution search process using the GA reveals interesting insights, as illustrated in Fig. 7. The 
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optimization process in Trial 3 demonstrates a clear convergence pattern, where the algorithm reaches 

an optimal or near-optimal solution by generation 321. From this point onward, no further 

improvements were observed in the fitness value up until generation 500, indicating that the algorithm 

had effectively explored and exploited the solution space by generation 321. 

 

Fig. 7. Graphs illustrating the convergence path of solutions reached by the GA 

The results from Trial 3 in Table 4 demonstrate the significant impact of optimized route planning 

and vehicle allocation on the overall performance of the GA solution, as shown in Fig. 8. Each vehicle 

route was strategically designed to minimize transportation costs and carbon emissions, and maintain 

high product quality. Vehicle 1, with its shorter routes totaling 281.90 km, achieved the lowest costs 
(IDR 163,839.32) and emissions (53.47 kgCO2e), while also delivering the highest quality of 99.94%. 
Similarly, Vehicles 2 and 3 maintained efficient routes, resulting in moderate costs and emissions while 

preserving product quality close to the optimal level. On the other hand, Vehicle 4, with a significantly 

longer route covering 547.40 km, contributed the highest costs (IDR 318,147.01) and emissions (194.68 

kgCO2e). Despite this, the overall system balanced the performance, allowing for cost-effective and 

environmentally sustainable operations without compromising on high-quality product delivery, as seen 

in the 99.85% quality for Vehicle 4. 

The optimized routing strategy led to a total transportation cost of IDR 856,458.12 and total carbon 

emissions of 365.43 kgCO2e, while maintaining an impressive 99.90% average product quality across all 

vehicles. This showcases the effectiveness of the GA in simultaneously addressing multiple objectives 

and finding an optimal balance. By minimizing emissions for most vehicles, the algorithm successfully 

reduced the environmental impact while ensuring delivery costs were kept low. Furthermore, the 

consistent product quality reflects the robustness of the solution, even when handling longer and more 

complex routes. Overall, the trial exemplifies the capability of the GA to deliver near-optimal solutions 

that prioritize sustainability, cost-efficiency, and product integrity in real-world logistics operations. 

Interestingly, the analysis of route planning for all four vehicles reveals that careful consideration of 

distance and delivery sequence can lead to notable efficiencies. By ensuring that vehicles are allocated to 

routes that optimize their total travel distance and align with delivery requirements, achieving substantial 

reductions in operational costs and carbon emissions is possible while maximizing product quality. The 

strategic trip planning, which prioritizes shorter routes with fewer stops for each vehicle, minimizes costs 

and emissions and enhances the overall service quality, as reflected in the high-quality scores across all 

vehicles. This indicates that a well-structured routing and allocation strategy is paramount for balancing 

economic viability and environmental responsibility, showcasing the effectiveness of the applied 

optimization model in enhancing supply chain performance. 

The results of this study have significant implications for industry applications and sustainability 

goals, offering a practical tool for optimizing logistics in sectors such as bakery product distribution. The 

proposed GVRP model effectively addresses real-world complexities, such as heterogeneous vehicle fleets 

and dynamic delivery time windows, demonstrating its adaptability and utility across various industries 
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dealing with perishable goods or time-sensitive deliveries. By minimizing transportation costs and carbon 

emissions while maintaining high average product quality (99.90%), the model enables businesses to 

achieve operational efficiency without compromising environmental and customer satisfaction standards. 

From a sustainability perspective, the model supports efforts to reduce carbon footprints in supply chain 

operations, aligning with global environmental regulations and corporate social responsibility initiatives. 

Additionally, it contributes to the United Nations' Sustainable Development Goals (SDG 12 and SDG 

13) by promoting responsible production and consumption and advancing climate action. By integrating 

economic, environmental, and quality objectives, this model serves as a valuable strategy for industries 

to enhance competitiveness and sustainability in an increasingly eco-conscious and demanding 

marketplace. 

  
(a) Routes of vehicle 1 (b) Routes of vehicle 2 

  
(c) Routes of vehicle 3 (d) Routes of vehicle 4 

Notes: (a) Routes of vehicle 1, total distance 281.90 km, total costs IDR 163839.32, total emission: 53.47 kgCO2e, and Quality 99.93% 

(Trip 1: 0→17→14→33→34→38→38→ 0, Trip 2: 0→20→0); (b) Routes of vehicle 2, total distance 303.30 km, total costs IDR 

176276.92, total emission: 58.88 kgCO2e, and Quality 99.90% (Trip 1: 0→9→36→22→25→26→21→15→0, Trip 2: 

0→2→3→4→10→0); (c) Routes of vehicle 3, total distance 306.60 km, total costs IDR 178194.87, total emission: 58.41 kgCO2e, and 

Quality 99.92% (Trip 1: 0→1→32→13→35→40→6→0, Trip 2: 0→12→31→0); (d) Routes of vehicle 4, total distance 547.40 km, total 

costs IDR 318147.01, total emission: 194.68 kgCO2e, and Quality 99.85% (Trip 1: 0→10→17→7→8→37→30→5→0, Trip 2: 

0→29→28→27→24→22→16→17→0) 

Fig. 8. Delivery routes optimized for four vehicles, illustrating efficient path selection 

While the proposed GVRP model has demonstrated significant strengths, there are some limitations 

and challenges that should be acknowledged to provide a balanced perspective. First, the model relies on 

specific input data from a real-world bakery distribution system, which may limit its generalizability to 

other industries or regions without customization. Additionally, the computational complexity of GA, 

particularly for large-scale datasets, can lead to extended processing times, requiring careful parameter 

tuning to balance solution quality and computational efficiency. Finally, external factors such as 
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fluctuating traffic conditions or unforeseen delays, which are difficult to model precisely, may impact the 

practical implementation of the proposed approach. Addressing these limitations in future work could 

further enhance the robustness and applicability of the model across diverse scenarios 

4. Conclusion 
In conclusion, this paper presents a novel GVRP model that incorporates multiple trips, 

heterogeneous vehicles, and time windows, applied to a real-world bakery product distribution case. The 

primary objective of the proposed model is to optimize route planning and vehicle allocation to minimize 

transportation costs and carbon emissions while maximizing product quality upon delivery to retailers. 

Through a series of comprehensive GA experiments, the model demonstrates its capability to find near-

optimal solutions that effectively balance economic, environmental, and quality-focused objectives. The 

results highlight the success of the proposed GVRP model, where the best trial achieved a total 

transportation cost of IDR 856,458.12, carbon emissions of 365.43 KgCO2e, and an average product 

quality of 99.90% across all vehicle trips. These outcomes showcase the algorithm's efficiency in 

optimizing multiple objectives while considering real-world constraints such as heterogeneous vehicle 

fleets and varying delivery windows. By integrating these complex factors, the model supports more 

sustainable and cost-effective distribution strategies and ensures the high quality of products during 

delivery. This makes the model a valuable tool for industries seeking to improve their operational 

efficiency and environmental impact in a competitive marketplace. Further research could explore the 

testing of alternative metaheuristic algorithms to enhance solution robustness and efficiency. In addition, 

incorporating the complexity of dynamic lot sizing into the model could provide deeper insights into 

inventory management alongside vehicle routing. This integration would allow for better alignment of 

production and distribution strategies, accommodating fluctuating demand patterns while optimizing 

resource utilization. 
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