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1. Introduction 
In the digital era, users are constantly exposed to an overwhelming abundance of information, giving 

rise to a condition known as information overload [1]. While such access is generally advantageous, it 

creates difficulties in identifying content that aligns with individual preferences, often resulting in 

cognitive fatigue, time inefficiencies, and diminished user satisfaction [2]. To address this challenge, 

Recommender Systems (RSs) have emerged as critical tools that leverage user behavior and preferences 
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 Recommender systems are crucial for filtering vast amounts of digital 

content and providing personalized recommendations; however, their 

effectiveness is often hindered by data sparsity, where limited user-item 

interactions lead to reduced prediction accuracy. This study introduces a 

novel hybrid model, Optimization Hybrid Weighted Switching Filtering 

(OHWSF), to overcome this challenge by integrating two complementary 

strategies: Hybrid Weighted Filtering (HWF), which linearly combines 

predictions from SVD and SVD++ using a weighting parameter (α), and 

Hybrid Switching Filtering (HSF), which dynamically selects predictions 

based on a threshold rating (θ). The OHWSF framework introduces a 

tunable optimization mechanism governed by the parameter σ₁ to 

adaptively balance weighting and switching decisions based on actual rating 

deviations. Unlike existing static or manually tuned hybrid methods, the 

proposed model combines dynamic switching with weight optimization to 

minimize prediction error effectively. Extensive experiments on four 

benchmark datasets (ML-100K, ML-1M, Amazon Cell Phones Reviews, 

and GoodBooks-10K) demonstrate that OHWSF consistently outperforms 

traditional collaborative filtering (UBCF, IBCF), matrix factorization 

techniques (SVD, SVD++), and standalone hybrid models across all 

evaluation metrics (MAE, MSE, RMSE). The model achieves optimal 

performance within the range of α = 0.6–0.9 and θ = 1.0–1.5, 

demonstrating robustness across varying sparsity levels. Notably, OHWSF 

achieves up to 742.16% MAE improvement over the UBCF model, with 

significantly reduced training time compared to SVD++. These findings 

confirm that OHWSF significantly improves prediction accuracy, 

scalability, and adaptability in sparse data environments. This research 

contributes a flexible, interpretable, and efficient hybrid recommendation 

framework suitable for real-world applications.  
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to provide personalized content suggestions [3], [4]. These systems are now deeply embedded across 

diverse application domains, including movies [5], music [6], online shopping [7], food [8], tourism [9], 

books [10], news [11], healthcare systems [12], social networks [13], and online education platforms 

[14]. 

Among the foundational techniques in RSs, Collaborative Filtering (CF) remains the most widely 

adopted approach due to its capacity to uncover latent patterns in user-item interactions without 

requiring explicit domain knowledge [15]. CF techniques are broadly classified into neighborhood-based 

and model-based methods [16], [17]. The former exploits user-user or item-item similarities, such as 

user-based collaborative filtering (UBCF) and item-based collaborative filtering (IBCF), as well as latent 

feature models, including Singular Value Decomposition (SVD) and SVD++, which capture user and 

item characteristics. However, both variants suffer critically from the data sparsity problem, which occurs 

when users rate only a limited subset of items, resulting in an incomplete and sparse user-item matrix 

[18]–[20]. This sparsity substantially hinders the system’s ability to learn meaningful representations and 

deliver accurate recommendations, particularly in large-scale domains like movie platforms, online retail, 

and digital libraries [2], [4], [21]–[24]. 

Several methods have been proposed to mitigate sparsity, including K-Nearest Neighbors (the 

UBCF and IBCF) [23], [25]–[27], matrix factorization (SVD, SVD++, and NMF) [24], [28]–[30], and 

Co-Clustering [31]. Nevertheless, these approaches often fall short in highly sparse conditions, mainly 

when they rely solely on either explicit or implicit feedback. Hybrid recommender systems offer a 

promising direction by integrating multiple algorithms to leverage their complementary strengths [32]–

[36]. However, existing hybrid methods typically use static weight combinations or fixed decision rules, 

which lack adaptability to dynamic interaction patterns and fail to generalize across varying sparsity levels. 

To address this gap, this study introduces the Optimization Hybrid Weighted Switching Filtering 

(OHWSF) model, a novel and adaptive hybrid recommendation framework that dynamically integrates 

Hybrid Weighted Filtering (HWF) and Hybrid Switching Filtering (HSF) mechanisms. It employs a 

Lagrangian-based weighting mechanism for linear combination (via α in HWF) and a threshold-based 

decision rule (via θ in HSF) to determine when to switch models based on predicted confidence. These 

strategies are then fused and optimized through the OHWSF architecture using an adaptive weight 

parameter (σ₁), which automatically adjusts the influence of HWF and HSF according to the actual error 

distribution. 

The main contributions of this research include: 

• Introduction of OHWSF, a novel optimization-based hybrid recommendation model that 

adaptively integrates Hybrid Weighted Filtering (HWF) and Hybrid Switching Filtering (HSF) 

through a dynamic weighting mechanism (σ₁), effectively balancing linear combination and 

threshold-based selection to minimize prediction error. 

• Empirical validation of its performance across diverse datasets (ML-100K, ML-1M, Amazon Cell 

Phones Reviews, and GoodBooks-10K), which differ in scale and sparsity, to validate the model's 

generalizability across diverse recommendation scenarios. 

• An ablation study examining the impact of tuning α, θ, and σ₁ and demonstrating OHWSF’s 

superiority over traditional collaborative filtering methods (UBCF, IBCF), matrix factorization 

techniques (SVD, SVD++), and standalone hybrid models (HWF, HSF, OHWF) using standard 

evaluation metrics (MAE, MSE, RMSE) and training time, highlighting both its predictive 

accuracy and computational efficiency 

2. Method 

2.1. k-NN collaborative filtering 
K-nearest neighbors (k-NN) collaborative filtering is a memory-based collaborative filtering 

technique that utilizes the entire user-item interaction dataset to generate predictions. As one of the 
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earliest automated CF methods, k-NN uses the rating matrix to compute item similarities and 

recommend relevant items. There are two main types of k-NN models: user-based collaborative filtering 

(UBCF) and item-based collaborative filtering (IBCF). In this approach, the rating prediction for an 

item i by a user u is derived directly from an 𝑚𝑚 × 𝑛𝑛 user-item rating matrix R, where m represents the 

number of users and n represents the number of items. 

2.1.1. User-based collaborative filtering (UBCF) model 
User-Based Collaborative Filtering (UBCF) is a personalized recommendation technique grounded 

in the intuition that users with similar past behaviors are likely to share similar preferences in the future 

[37]. This method predicts the preferences of an active user by identifying other users referred to as 

neighbors who exhibit similar rating profiles. The process begins by representing each user’s rating 

behavior as an n-dimensional rating vector. The rating vector of 𝑟𝑟𝑢𝑢���⃗ = {𝑟𝑟𝑢𝑢1, 𝑟𝑟𝑢𝑢2, … , 𝑟𝑟𝑢𝑢𝑢𝑢} represents the 

ratings assigned by a user 𝑢𝑢 to a set of 𝑛𝑛 items. Each element 𝑟𝑟𝑢𝑢𝑢𝑢 within the vector corresponds to the 

rating that user 𝑢𝑢 has given to item 𝑖𝑖. By comparing these vectors, one can compute the similarity 

between users, typically using metrics such as Cosine Similarity (COS) or the Pearson Correlation 

Coefficient (PCC) [26], [27]. UBCF predicts the rating that a user u would give to an item i by 

aggregating the ratings of similar users who have also rated item i [38]. The basic prediction formula is 

given in equation (1). 

𝑟̂𝑟𝑢𝑢𝑢𝑢𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 =
∑ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑢𝑢,𝑣𝑣)∙𝑟𝑟𝑣𝑣𝑣𝑣𝑣𝑣∈𝑁𝑁𝑖𝑖

𝑘𝑘(𝑢𝑢)

∑ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑢𝑢,𝑣𝑣)
𝑣𝑣∈𝑁𝑁𝑖𝑖

𝑘𝑘(𝑢𝑢)
   (1) 

where 𝑟̂𝑟𝑢𝑢𝑢𝑢𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈is the predicted rating, 𝑠𝑠𝑠𝑠𝑠𝑠(𝑢𝑢, 𝑣𝑣) is the similarity between users u and v, 𝑟𝑟𝑣𝑣𝑣𝑣 is the 

rating given by user 𝑣𝑣 to item 𝑖𝑖, and 𝑁𝑁𝑖𝑖𝑘𝑘(𝑢𝑢) represents the set of k-nearest neighbors of user u who have 

rated item i. To address rating scale biases among users, a mean-centered version is commonly employed 

in equation (2). 

𝑟̂𝑟𝑢𝑢𝑢𝑢𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 = 𝑟𝑟𝑢𝑢� +
∑ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑢𝑢,𝑣𝑣)∙(𝑟𝑟𝑣𝑣𝑣𝑣−𝑟̅𝑟𝑣𝑣)
𝑣𝑣∈𝑁𝑁𝑖𝑖

𝑘𝑘(𝑢𝑢))

∑ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑢𝑢,𝑣𝑣)
𝑣𝑣∈𝑁𝑁𝑖𝑖

𝑘𝑘(𝑢𝑢)
   (2) 

where 𝑟𝑟𝑢𝑢�  and 𝑟𝑟𝑣𝑣�  represent the average ratings of users u and v, respectively. 

2.2. Item-based collaborative filtering (IBCF) model 
Similarly, the item-based collaborative filtering (IBCF) model is a memory-based recommendation 

approach that focuses on the similarity between items rather than users. This model predicts a user's 

rating of a particular item by analyzing the ratings the user has given to other similar items. The 

fundamental principle of IBCF is that if a user has rated an item highly, they are likely to rate other 

similar items similarly. To achieve this, item-item similarity is calculated using measures such as the 

COS and PCC, with the COS being commonly favored due to its geometric interpretability and empirical 

performance [39]. The prediction in IBCF is calculated using a weighted sum of the user’s ratings for 

similar items, adjusted by the mean rating of each item. The prediction formula is defined as equation 

(3). 

𝑟̂𝑟𝑢𝑢𝑢𝑢𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = 𝑟̅𝑟𝑖𝑖 +
∑ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑖𝑖,𝑗𝑗)∙�𝑟𝑟𝑢𝑢𝑢𝑢−𝑟̅𝑟𝑗𝑗�𝑗𝑗∈𝑁𝑁𝑢𝑢

𝑘𝑘(𝑖𝑖)

∑ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑖𝑖,𝑗𝑗)
𝑗𝑗∈𝑁𝑁𝑢𝑢

𝑘𝑘(𝑖𝑖)
   (3) 

where 𝑟̂𝑟𝑢𝑢𝑢𝑢𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 represents the predicted rating for user u and item i, 𝑟̅𝑟𝑖𝑖 and 𝑟̅𝑟𝑗𝑗 represent the average 

ratings of items i and j, respectively, 𝑟𝑟𝑢𝑢𝑢𝑢 denotes the rating given by user 𝑢𝑢 to item 𝑗𝑗, 𝑠𝑠𝑠𝑠𝑠𝑠(𝑖𝑖, 𝑗𝑗) represents 

the similarity between items i and j, 𝑁𝑁𝑢𝑢𝑘𝑘(𝑖𝑖) denotes the set of k most similar items to item i that have 

been rated by user u.. 
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2.3. Matrix Factorization (MF) 
Matrix Factorization (MF) is one of the most widely adopted techniques in model-based collaborative 

filtering, particularly effective in handling the sparsity problem in user-item rating matrices. Matrix 

Factorization is a fundamental model-based collaborative filtering technique that decomposes the user–

item rating matrix R ∈ ℝ𝑛𝑛×𝑚𝑚 into the product of two lower-dimensional latent matrices. The central 

assumption is that both users and items can be represented in a shared latent factor space of dimension 

𝑘𝑘, where 𝑘𝑘 ≪ min(𝑛𝑛,𝑚𝑚). This dimensionality reduction captures the hidden features underlying user 

preferences and item characteristics, enabling the model to generalize more effectively to unseen data. 

Formally, the MF aims to approximate the original matrix 𝑅𝑅 as in (4). 

𝑅𝑅 ≈ 𝑄𝑄𝑇𝑇 · 𝑃𝑃   (4) 

where 𝑃𝑃 ∈ ℝ𝑘𝑘×𝑛𝑛
 is the user latent matrix, each column 𝑝𝑝𝑢𝑢 ∈ ℝ𝑘𝑘

 representing user 𝑢𝑢, 𝑄𝑄 ∈ ℝ𝑘𝑘×𝑚𝑚
 is the 

item latent matrix, each column 𝑞𝑞𝑖𝑖 ∈ ℝ𝑘𝑘
 representing item 𝑖𝑖, 𝑘𝑘 is the number of latent factors. 

Therefore, the predicted rating 𝑟̂𝑟𝑢𝑢𝑢𝑢 is defined in equation (5). 

𝑟̂𝑟𝑢𝑢𝑢𝑢 = 𝑞𝑞𝑖𝑖𝑇𝑇 · 𝑝𝑝𝑢𝑢   (5) 

where 𝑞𝑞𝑖𝑖 is the vector of each item 𝑖𝑖, and 𝑝𝑝𝑢𝑢 is the vector of each user 𝑢𝑢. 

2.3.1. Singular Value Decomposition (SVD) 
Singular Value Decomposition (SVD) is a matrix factorization technique widely used in recommender 

systems to reduce the dimensionality of large user–item interaction matrices. By projecting the original 

high-dimensional rating matrix into a lower-dimensional latent feature space, SVD effectively captures 

the most significant patterns in user behavior and item characteristics [40]. Given a user-item rating 

matrix R ∈ ℝ𝑛𝑛×𝑚𝑚
 of size m×n, where m is the number of users and n is the number of items, SVD 

approximates 𝑅𝑅 as the product of three matrices in equation (6) [23]. 

𝑅𝑅 ≈ 𝑃𝑃 · S · 𝑄𝑄𝑇𝑇   (6) 

where 𝑆𝑆 ∈ ℝ𝑘𝑘×𝑘𝑘
 is a diagonal matrix of single values. 

In practical implementations, particularly in collaborative filtering, SVD is often extended to 

incorporate bias terms that capture user and item rating tendencies. The predicted rating 𝑟̂𝑟𝑢𝑢𝑢𝑢𝑆𝑆𝑆𝑆𝑆𝑆 for user 

𝑢𝑢 and item 𝑖𝑖 is computed in equation (7). 

𝑟̂𝑟𝑢𝑢𝑢𝑢𝑆𝑆𝑆𝑆𝑆𝑆 = 𝜇𝜇 + 𝑏𝑏𝑢𝑢 + 𝑏𝑏𝑖𝑖 + 𝑞𝑞𝑖𝑖𝑇𝑇 · 𝑝𝑝𝑢𝑢   (7) 

where 𝜇𝜇 is the global mean rating. The parameters 𝑏𝑏𝑢𝑢 and 𝑏𝑏𝑖𝑖 represent the user and item biases, 

respectively, and are defined in equations (8) and (9). 

𝑏𝑏𝑢𝑢 =
∑ (𝑟𝑟𝑢𝑢𝑢𝑢−𝜇𝜇)𝑖𝑖∈𝑅𝑅(𝑢𝑢)

|𝑅𝑅(𝑢𝑢)|
   (8) 

𝑏𝑏𝑖𝑖 =
∑ (𝑟𝑟𝑢𝑢𝑢𝑢−𝜇𝜇)𝑖𝑖∈𝑅𝑅(𝑖𝑖)

|𝑅𝑅(𝑖𝑖)|
   (9) 

where 𝑅𝑅(𝑢𝑢) is the set of all items that are rated by user 𝑢𝑢 and 𝑅𝑅(𝑖𝑖) is the set of all users who rated 

item 𝑖𝑖. If a user 𝑢𝑢 is unknown (i.e., not present in the training data), then their bias term 𝑏𝑏𝑢𝑢 and latent 

factor vector 𝑝𝑝𝑢𝑢 are assumed to be zero. Similarly, for an unseen item 𝑖𝑖, both the item bias 𝑏𝑏𝑖𝑖 and the 

latent factor vector 𝑞𝑞𝑖𝑖 are also set to zero. 

2.3.2. Singular Value Decomposition Plus Plus (SVD++) 
SVD++ is an improved version of SVD and has been widely applied in recommender systems due to 

its superior prediction performance compared to SVD [41]. SVD++ is an advanced matrix factorization-

based recommendation algorithm that builds upon the traditional SVD approach by integrating both 
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explicit user-item ratings and implicit user interactions such as views, clicks, and browsing behavior. 

This additional information enhances the accuracy of recommendations by considering user biases and 

implicit preferences. The predicted rating for user u and item i is computed using the following equation 

(10) [28]. 

𝑟̂𝑟𝑢𝑢𝑢𝑢𝑆𝑆𝑆𝑆𝑆𝑆++ = 𝜇𝜇 + 𝑏𝑏𝑢𝑢 + 𝑏𝑏𝑖𝑖 + 𝑞𝑞𝑖𝑖𝑇𝑇 · �𝑝𝑝𝑢𝑢 + 1
�⌈𝑁𝑁(𝜇𝜇)⌉

∑ 𝑦𝑦𝑗𝑗𝑗𝑗𝜖𝜖𝑁𝑁(𝜇𝜇) �   (10) 

where 𝑁𝑁(𝜇𝜇) is the set of items with implicit feedback from user 𝑢𝑢, 𝑦𝑦𝑗𝑗  represents the latent factor 

vector for item 𝑗𝑗 that captures the implicit feedback effect. The term 

1
�⌈𝑁𝑁(𝜇𝜇)⌉

∑ 𝑦𝑦𝑗𝑗𝑗𝑗𝜖𝜖𝑁𝑁(𝜇𝜇)  models the 

aggregate effect of implicit interactions. If a user 𝑢𝑢 is unknown (not present in the training set), their 

bias 𝑏𝑏𝑢𝑢 and latent factor vector 𝑝𝑝𝑢𝑢 are assumed to be zero. Similarly, for an unseen item 𝑖𝑖, the item bias 

𝑏𝑏𝑖𝑖, the latent factor vector 𝑞𝑞𝑖𝑖, and the implicit feedback factor 𝑦𝑦𝑗𝑗 are also initialized to zero. This 

defaulting mechanism ensures that the model provides a baseline prediction of 𝜇𝜇 when no prior 

information is available. 

2.4. Hybrid Filtering (HWF) 
Hybrid filtering techniques combine two or more distinct basic recommender techniques, such as 

collaborative filtering, content-based filtering, knowledge-based filtering, and demographic filtering, 

aiming to produce a robust system by mitigating the weaknesses of one method through the strengths 

of another [42]–[45]. Aggarwal [46] categorizes hybrid filtering recommendation systems into three 

categories: ensemble design, monolithic design, and mixed system. The ensemble design is divided into 

two categories, namely parallel and sequential. Parallel methods include Hybrid Weighted Filtering 

(HWF) and Hybrid Switching Filtering (HSF), while sequential methods include Hybrid Feature 

Augmentation Filtering (HFAF) and Hybrid Cascade Filtering (HCF). Moreover, monolithic designs 

include Hybrid Feature Combination Filtering (HFCF) and Hybrid Meta-Level Filtering (HMLF). The 

last category is mixed, providing Hybrid Mixed Filtering (HMF). 

2.4.1. Hybrid Weighted Filtering (HWF) Model 
The Hybrid Weighted Filtering (HWF) model is a technique that combines the outputs of multiple 

recommendation algorithms to enhance predictive accuracy by leveraging their complementary 

strengths. Rather than relying on a single model, HWF computes a weighted average of predictions 

from two or more algorithms, balancing their contributions based on their individual performance or 

domain relevance. In this case, the HWF model combines the predictions of the best two models. The 

hybrid prediction 𝑟̂𝑟𝑢𝑢𝑢𝑢𝐻𝐻𝐻𝐻𝐻𝐻
 for user u and item i is given by equation (11) [44]. 

𝑟̂𝑟𝑢𝑢𝑢𝑢𝐻𝐻𝐻𝐻𝐻𝐻 = 𝛼𝛼 · 𝑟̂𝑟𝑢𝑢𝑢𝑢1 + (1 − 𝛼𝛼) · 𝑟̂𝑟𝑢𝑢𝑢𝑢2    (11) 

where 𝑟̂𝑟𝑢𝑢𝑢𝑢𝐻𝐻𝐻𝐻𝐻𝐻
 is the predicted rating using the HWF model, 𝑟̂𝑟𝑢𝑢𝑢𝑢1 is the predicted rating using the first 

model, 𝑟̂𝑟𝑢𝑢𝑢𝑢2  is the predicted rating using the second model, 𝛼𝛼 ∈ [ 0, 1] is the weight for the first model 

predictions, and (1 − 𝛼𝛼) is the weight assigned to the second model predictions. 

2.4.2. Hybrid Switching Filtering (HSF) Model 
The Hybrid Filter Switching Model (HSF) dynamically switches between different recommendation 

algorithms based on specific criteria. The idea is to select the most suitable algorithm based on the 

context, such as the number of user interactions, the availability of implicit feedback, or other factors 

that influence prediction accuracy [47]. Unlike HWF, which blends model outputs, HSF switches 

entirely between models based on a predetermined rating threshold 𝜃𝜃, which determines when to use 

the first or second model based on the rating threshold. The formula can be expressed as equation (12). 

𝑟̂𝑟𝑢𝑢𝑢𝑢𝐻𝐻𝐻𝐻𝐻𝐻 = �
𝑟̂𝑟𝑢𝑢𝑢𝑢2 , 𝑖𝑖𝑖𝑖 𝑟̂𝑟𝑢𝑢𝑢𝑢2 >  𝜃𝜃
𝑟̂𝑟𝑢𝑢𝑢𝑢1 , 𝑖𝑖𝑖𝑖 𝑟̂𝑟𝑢𝑢𝑢𝑢1 ≤  𝜃𝜃

   (12) 

where 𝜃𝜃 is the rating threshold for switching between first and second model predictions. 
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2.5. Proposed Model 
The proposed model, Optimized Hybrid Weighted Filtering (OHWF), is designed to enhance the 

accuracy and relevance of recommendation items to users by intelligently combining the strengths of 

multiple collaborative filtering (CF) algorithms. Unlike traditional hybrid models that use fixed or 

manually assigned weights, OHWF incorporates an optimization mechanism to dynamically determine 

the optimal contribution of each algorithm in the ensemble. This model enables the model to adapt its 

weighting scheme in a data-driven manner, thereby minimizing prediction errors across users and items. 

Algorithm 1 Optimization Hybrid Weighted Filtering (OHWF)  
Require:  

• User-item interaction matrix 𝑅𝑅 for 𝑚𝑚 users and 𝑛𝑛 items. 
• Algorithms 𝐴𝐴1 (first model) and 𝐴𝐴2 (second model) with prediction outputs 𝑟̂𝑟𝑢𝑢𝑢𝑢

𝐴𝐴1
 and 𝑟̂𝑟𝑢𝑢𝑢𝑢

𝐴𝐴2
, respectively. 

• Threshold 𝜃𝜃 for switching between the first model and the second model 

• Initial weight optimization parameter 𝜎𝜎1,𝜎𝜎2 
 
Objective:  

• Final prediction 𝑟̂𝑟𝑢𝑢𝑢𝑢𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂
 and 𝑟̂𝑟𝑢𝑢𝑢𝑢𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂

, optimized weights 𝜎𝜎1,𝜎𝜎2, and Top-N recommendations 

 
Step 1: Split the user-item matrix 𝑅𝑅 into training (80%) and testing (20%) datasets: 

• 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇, 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ←  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑅𝑅) 
Step 2: Train the state-of-the-art models (UBCF, IBCF) and baseline models (SVD, and SVD++): 

• 𝐴𝐴1 ← 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈, 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) 

• 𝐴𝐴2 ← 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼, 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) 

• 𝐴𝐴3 ← 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑆𝑆𝑆𝑆𝑆𝑆, 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) 

• 𝐴𝐴4 ← 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑆𝑆𝑆𝑆𝑆𝑆 + +, 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) 

Step 3: For each user-item pair (𝑢𝑢, 𝑖𝑖) in the test set, calculate the prediction ratings: 

• 𝑟̂𝑟𝑢𝑢𝑢𝑢
𝐴𝐴1 ← 𝐴𝐴1(𝑢𝑢, 𝑖𝑖) 

•  𝑟̂𝑟𝑢𝑢𝑢𝑢
𝐴𝐴2 ← 𝐴𝐴2(𝑢𝑢, 𝑖𝑖) 

• 𝑟̂𝑟𝑢𝑢𝑢𝑢
𝐴𝐴3 ← 𝐴𝐴3(𝑢𝑢, 𝑖𝑖) 

•  𝑟̂𝑟𝑢𝑢𝑢𝑢
𝐴𝐴4 ← 𝐴𝐴4(𝑢𝑢, 𝑖𝑖) 

Step 4: Implement the hybrid weighted filtering (HWF) model using SVD++ and SVD based on a predefined α = 0.5. 

• 𝑟̂𝑟𝑢𝑢𝑢𝑢𝐻𝐻𝐻𝐻𝐻𝐻 = 𝛼𝛼 · 𝑟̂𝑟𝑢𝑢𝑢𝑢𝑆𝑆𝑆𝑆𝑆𝑆++ + (1 − 𝛼𝛼) · 𝑟̂𝑟𝑢𝑢𝑢𝑢𝑆𝑆𝑆𝑆𝑆𝑆 
Step 5: Implement the hybrid switching filtering (HSF) model using SVD++ and SVD based on a predefined rating 

threshold 𝜃𝜃 = 3.0. 

• 𝑟̂𝑟𝑢𝑢𝑢𝑢𝐻𝐻𝐻𝐻𝐻𝐻 = �
𝑟̂𝑟𝑢𝑢𝑢𝑢𝑆𝑆𝑆𝑆𝑆𝑆++, 𝑖𝑖𝑖𝑖 𝑟̂𝑟𝑢𝑢𝑢𝑢𝑆𝑆𝑆𝑆𝑆𝑆++ >  𝜃𝜃
𝑟̂𝑟𝑢𝑢𝑢𝑢𝑆𝑆𝑆𝑆𝑆𝑆 , 𝑖𝑖𝑖𝑖 𝑟̂𝑟𝑢𝑢𝑢𝑢𝑆𝑆𝑆𝑆𝑆𝑆++ ≤  𝜃𝜃

 

Step 6: Calculate evaluation metrics such as MAE, MSE, and RMSE to assess the best model performance: 

• 𝑀𝑀𝑀𝑀𝑀𝑀 ←
∑ |𝑟𝑟𝑢𝑢𝑢𝑢−𝑟̂𝑟𝑢𝑢𝑢𝑢|(𝑢𝑢,𝑖𝑖)∈𝑊𝑊

|𝑊𝑊|  

• 𝑀𝑀𝑀𝑀𝑀𝑀 ←
∑ (𝑟𝑟𝑢𝑢𝑢𝑢−𝑟̂𝑟𝑢𝑢𝑢𝑢)2(𝑢𝑢.𝑖𝑖)∈𝑊𝑊

|𝑊𝑊|  

• 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 ← �∑ (𝑟𝑟𝑢𝑢𝑢𝑢−𝑟̂𝑟𝑢𝑢𝑢𝑢)2(𝑢𝑢.𝑖𝑖)∈𝑊𝑊

|𝑊𝑊| , where W denotes the testset 

Step 7: Optimize the weights 𝜎𝜎1 and 𝜎𝜎2 to minimize the error between the actual and predicted ratings: 

• 𝜎𝜎1 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚𝜎𝜎1 ∑ �𝑟𝑟𝑢𝑢𝑢𝑢 − 𝑟̂𝑟𝑢𝑢𝑢𝑢𝑆𝑆𝑆𝑆𝑆𝑆�
2

𝑢𝑢,𝑖𝑖  and 𝜎𝜎2 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚𝜎𝜎2 ∑ �𝑟𝑟𝑢𝑢𝑢𝑢 − 𝑟̂𝑟𝑢𝑢𝑢𝑢𝑆𝑆𝑆𝑆𝑆𝑆++�
2

𝑢𝑢,𝑖𝑖  

• 𝜎𝜎1 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚𝜎𝜎1 ∑ �𝑟𝑟𝑢𝑢𝑢𝑢 − 𝑟̂𝑟𝑢𝑢𝑢𝑢𝐻𝐻𝐻𝐻𝐻𝐻�2𝑢𝑢,𝑖𝑖  and 𝜎𝜎2 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚𝜎𝜎2 ∑ �𝑟𝑟𝑢𝑢𝑢𝑢 − 𝑟̂𝑟𝑢𝑢𝑢𝑢𝐻𝐻𝐻𝐻𝐻𝐻�
2

𝑢𝑢,𝑖𝑖  

Step 8: Combine the predictions from both algorithms using the optimized hybrid weighted filtering. 

• 𝑟̂𝑟𝑢𝑢𝑢𝑢𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = 𝜎𝜎1 · 𝑟̂𝑟𝑢𝑢𝑢𝑢𝑆𝑆𝑆𝑆𝑆𝑆++ + (1 − 𝜎𝜎2) · 𝑟̂𝑟𝑢𝑢𝑢𝑢𝑆𝑆𝑆𝑆𝑆𝑆 
• 𝑟̂𝑟𝑢𝑢𝑢𝑢𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = 𝜎𝜎1 · 𝑟̂𝑟𝑢𝑢𝑢𝑢𝐻𝐻𝐻𝐻𝐻𝐻 + (1 − 𝜎𝜎2) · 𝑟̂𝑟𝑢𝑢𝑢𝑢𝐻𝐻𝐻𝐻𝐻𝐻 

Step 9: Iterate over all user-item pairs and calculate the final predictions for the test set: 

•  𝑟̂𝑟𝑢𝑢𝑢𝑢 = 𝑟̂𝑟𝑢𝑢𝑢𝑢𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂
 

• 𝑟̂𝑟𝑢𝑢𝑢𝑢 = 𝑟̂𝑟𝑢𝑢𝑢𝑢𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂
 

Step 10: Calculate evaluation metrics in step 6 

Step 11: Return the optimized weights (𝜎𝜎1 and 𝜎𝜎2), the final predictions of 𝑟̂𝑟𝑢𝑢𝑢𝑢𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂
 and 𝑟̂𝑟𝑢𝑢𝑢𝑢𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂

 for each user-item pair. 

 

The foundation of this model lies in the integration of multiple prediction models, such as SVD, 

SVD++, and others. The final predicted rating 𝑟̂𝑟𝑢𝑢𝑢𝑢𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂
 for a given user 𝑢𝑢 and item 𝑖𝑖 is computed as a 

weighted sum of the predictions from each contributing algorithm, as in equation (13). 
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𝑟̂𝑟𝑢𝑢𝑢𝑢𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 =  ∑ 𝜎𝜎𝑓𝑓𝑟𝑟𝑢𝑢𝑢𝑢
(𝑓𝑓)𝑐𝑐

𝑓𝑓=1    (13) 

where 𝑟𝑟𝑢𝑢𝑢𝑢
(𝑓𝑓)

 is the predicted rating for user 𝑢𝑢 and item 𝑖𝑖 produced by the 𝑓𝑓𝑡𝑡ℎ recommendation algorithm, 

𝜎𝜎𝑓𝑓  represents the weight of the 𝑓𝑓𝑡𝑡ℎ algorithm f, and c is the total number of algorithms included in the 

hybrid model.  

The central objective of OHWF is to minimize the total squared prediction error between the actual 

user ratings, 𝑟𝑟𝑢𝑢𝑢𝑢, and the predicted ratings, 𝑟̂𝑟𝑢𝑢𝑢𝑢𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂
. This formula is expressed as the following 

optimization problem in equation (14). 

𝐸𝐸(𝜎𝜎) = ∑ (𝑟𝑟𝑢𝑢𝑢𝑢 − 𝑟̂𝑟𝑢𝑢𝑢𝑢𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂)2𝑢𝑢,𝑖𝑖    (14) 

subject to the normalization constraint in equation (15): 

∑ 𝜎𝜎𝑓𝑓 = 1𝑐𝑐
𝑓𝑓=1    (15) 

This constraint ensures that the algorithm weights 𝜎𝜎𝑓𝑓 form a convex combination, maintaining a 

balanced and interpretable weighting scheme. The optimization can be efficiently solved using Lagrange 

multipliers, ensuring that the best-performing model combinations receive higher weight while still 

contributing to a unified ensemble prediction. The target function 𝐸𝐸(𝜎𝜎) is the sum of squared errors 

between actual and predicted ratings across all user–item pairs in (16). 

𝐸𝐸(𝜎𝜎) = ∑ ∑ (𝑟𝑟𝑢𝑢𝑢𝑢 −𝑛𝑛
𝑖𝑖=1

𝑚𝑚
𝑢𝑢=1 ∑ 𝜎𝜎𝑓𝑓𝑟𝑟𝑢𝑢𝑢𝑢

(𝑓𝑓)𝑐𝑐
𝑓𝑓=1 )2   (16) 

to solve the optimization problem while respecting the constraint, we use a Lagrange multiplier method. 

The Lagrange function is constructed in  (17). 

𝐿𝐿(𝜎𝜎, 𝜆𝜆) = 1
2
𝐸𝐸(𝜎𝜎) + 𝜆𝜆�∑ 𝜎𝜎𝑓𝑓𝑐𝑐

𝑓𝑓=1 − 1�   (17) 

where λ is the Lagrange multiplier associated with the constraint. 

To find the optimal 𝜎𝜎𝑓𝑓, we compute the partial derivatives of 𝐿𝐿(𝜎𝜎, 𝜆𝜆) with respect to each 𝜎𝜎𝑓𝑓 and set 

them to zero. This formula gives us the necessary condition for optimization. The partial derivative of 

𝜎𝜎𝑓𝑓 is 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜎𝜎𝑓𝑓

= 0. Taking the derivative of the Lagrange function (equation 18), we get. 

𝐿𝐿(𝜎𝜎, 𝜆𝜆) = 1
2
�∑ ∑ (𝑟𝑟𝑢𝑢𝑢𝑢 −𝑛𝑛

𝑖𝑖=1
𝑚𝑚
𝑢𝑢=1 ∑ 𝜎𝜎𝑘𝑘𝑐𝑐

𝑓𝑓=1 · 𝑟𝑟𝑢𝑢𝑢𝑢
(𝑓𝑓))2� + 𝜆𝜆�∑ 𝜎𝜎𝑓𝑓𝑐𝑐

𝑘𝑘=1 − 1�  

𝜕𝜕𝜕𝜕
𝜕𝜕𝜎𝜎𝑓𝑓

= 1
2

(2) �∑ ∑ �𝑟𝑟𝑢𝑢𝑢𝑢 − ∑ 𝜎𝜎𝑓𝑓𝑐𝑐
𝑓𝑓=1 · 𝑟𝑟𝑢𝑢𝑢𝑢

(𝑓𝑓)�𝑛𝑛
𝑖𝑖=1

𝑚𝑚
𝑢𝑢=1 � +

𝜕𝜕�∑ ∑ �𝑟𝑟𝑢𝑢𝑢𝑢−∑ 𝜎𝜎𝑓𝑓𝑐𝑐
𝑓𝑓=1 ·𝑟𝑟𝑢𝑢𝑢𝑢

(𝑓𝑓)�𝑛𝑛
𝑖𝑖=1

𝑚𝑚
𝑢𝑢=1 �

𝜕𝜕𝜎𝜎𝑓𝑓
+ 𝜆𝜆 = 0  

⇔ ∑ ∑ �𝑟𝑟𝑢𝑢𝑢𝑢 − ∑ 𝜎𝜎𝑓𝑓𝑐𝑐
𝑓𝑓=1 · 𝑟𝑟𝑢𝑢𝑢𝑢

(𝑓𝑓)�𝑛𝑛
𝑖𝑖=1

𝑚𝑚
𝑢𝑢=1 �−𝑟𝑟𝑢𝑢𝑢𝑢

(𝑓𝑓)� + 𝜆𝜆 = 0  

⇔ −∑ ∑ 𝑟𝑟𝑢𝑢𝑢𝑢𝑟𝑟𝑢𝑢𝑢𝑢
(𝑓𝑓) + ∑ ∑ ∑ 𝜎𝜎𝑓𝑓𝑐𝑐

𝑓𝑓=1 · 𝑟𝑟𝑢𝑢𝑢𝑢
(𝑓𝑓)𝑛𝑛

𝑖𝑖=1 𝑟𝑟𝑢𝑢𝑢𝑢
(𝑓𝑓)𝑚𝑚

𝑢𝑢=1
𝑛𝑛
𝑖𝑖=1

𝑚𝑚
𝑢𝑢=1 + 𝜆𝜆 = 0  

⇔ ∑ ∑ ∑ 𝜎𝜎𝑓𝑓𝑐𝑐
𝑓𝑓=1 · 𝑟𝑟𝑢𝑢𝑢𝑢

(𝑓𝑓)𝑟𝑟𝑢𝑢𝑢𝑢
(𝑓𝑓)𝑛𝑛

𝑖𝑖=1
𝑚𝑚
𝑢𝑢=1 + 𝜆𝜆 = ∑ ∑ 𝑟𝑟𝑢𝑢𝑢𝑢𝑟𝑟𝑢𝑢𝑢𝑢

(𝑓𝑓)𝑛𝑛
𝑖𝑖=1

𝑚𝑚
𝑢𝑢=1   

∑ ∑ (𝜎𝜎1𝑟𝑟𝑢𝑢𝑢𝑢
(1) + 𝜎𝜎2𝑟𝑟𝑢𝑢𝑢𝑢

(2) + ⋯+ 𝜎𝜎𝑐𝑐𝑟𝑟𝑢𝑢𝑢𝑢
(𝑐𝑐))𝑟𝑟𝑢𝑢𝑢𝑢

(𝑓𝑓)𝑛𝑛
𝑖𝑖=1

𝑚𝑚
𝑢𝑢=1 + 𝜆𝜆 = ∑ ∑ 𝑟𝑟𝑢𝑢𝑢𝑢𝑟𝑟𝑢𝑢𝑢𝑢

(𝑓𝑓)𝑛𝑛
𝑖𝑖=1

𝑚𝑚
𝑢𝑢=1  (18) 

The left-hand side represents the weighted sum of ratings predicted by the c-th algorithm (including 

the Lagrange multiplier term). The right-hand side represents the sum of the actual ratings weighted 

by the corresponding predicted ratings. Next, we convert equation (18) into matrix form 𝐴𝐴 · 𝑋𝑋 = 𝐵𝐵. 

Thus, the system of equations (19) is used to solve for the optimal weights 𝜎𝜎1,𝜎𝜎2, … ,𝜎𝜎𝑐𝑐. 
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⎣
⎢
⎢
⎢
⎡∑ ∑ 𝑟𝑟𝑢𝑢𝑢𝑢

(1)𝑟𝑟𝑢𝑢𝑢𝑢
(1)𝑛𝑛

𝑖𝑖=1
𝑚𝑚
𝑢𝑢=1 … ∑ ∑ 𝑟𝑟𝑢𝑢𝑢𝑢
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The system of linear equations can be solved using matrix inversion  𝑋𝑋 = 𝐴𝐴−1 · B. The solution for 

𝑋𝑋, which contains the optimal weights 𝜎𝜎1,𝜎𝜎2, … ,𝜎𝜎𝑐𝑐 in equation (20). 
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Equation (20) provides the optimal values for the weights 𝜎𝜎1,𝜎𝜎2, … ,𝜎𝜎𝑐𝑐 and the Lagrange multiplier 

𝜆𝜆. Once we have these optimal values, we can compute the final weighted predictions for the 

recommender system. Suppose we have two recommendation algorithms (SVD and SVD++); the final 

prediction 𝑟̂𝑟𝑢𝑢𝑢𝑢𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂
 for user 𝑢𝑢 and item 𝑖𝑖 is a weighted sum of the predictions from these two algorithms, 

as shown in equation (21). 

𝑟̂𝑟𝑢𝑢𝑢𝑢𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = 𝜎𝜎1𝑟𝑟𝑢𝑢𝑢𝑢
(1) + 𝜎𝜎2𝑟𝑟𝑢𝑢𝑢𝑢

(2)   (21) 

The key constraint is that the sum of the weights must equal 1, with 𝜎𝜎1 + 𝜎𝜎2 = 1. Our goal is to 

compute the values of 𝜎𝜎1 and 𝜎𝜎2 that minimize the prediction error. To compute the weights, we solve 

the following matrix equation, which is derived from the optimization process in equation (22). 
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The optimal values of 𝜎𝜎1 and 𝜎𝜎2 can be computed using the matrix inversion process 𝑋𝑋 = 𝐴𝐴−1 · B. 

Here are the explicit formulas for 𝑡𝑡ℎ𝑒𝑒 𝜎𝜎1 and 𝜎𝜎2 equations (23). 

𝜎𝜎1 =
∑ ∑ (𝑟𝑟𝑢𝑢𝑢𝑢−𝑟𝑟𝑢𝑢𝑢𝑢

(2))(𝑟𝑟𝑢𝑢𝑢𝑢
(1)−𝑟𝑟𝑢𝑢𝑢𝑢

(2))𝑛𝑛
𝑖𝑖=1

𝑚𝑚
𝑢𝑢=1

∑ ∑ (𝑟𝑟𝑢𝑢𝑢𝑢
(1)−𝑟𝑟𝑢𝑢𝑢𝑢

(2))2𝑛𝑛
𝑖𝑖=1

𝑚𝑚
𝑢𝑢=1

, and 𝜎𝜎2 = 1 − 𝜎𝜎1   (23) 

3. Results and Discussion 

3.1. Experimental dataset 
This study conducts a comprehensive evaluation of various recommendation algorithms using 

benchmark datasets, including MovieLens 100K, MovieLens 1M, Amazon Cell Phones Reviews, and 

GoodBooks-10K, with a focus on state-of-the-art, baseline, hybrid, and optimization-based hybrid 

models. The state-of-the-art models include User-Based Collaborative Filtering (UBCF) and Item-

Based Collaborative Filtering (IBCF), which leverage similarity-based neighborhood methods. The 

baseline models, Singular Value Decomposition (SVD) and its extension SVD++, serve as fundamental 

matrix factorization approaches that capture latent factor interactions. To improve recommendation 

accuracy, two hybrid models are examined: Hybrid Weighted Filtering (HWF), which combines SVD 

and SVD++ through a weighted average mechanism controlled by parameter α, and Hybrid Switching 

Filtering (HSF), which dynamically selects between the two models based on a threshold parameter θ. 

Further, two optimization-based hybrid methods are proposed: Optimized Hybrid Weighted Filtering 

(OHWF), which determines the optimal weighting coefficient σ₁ by minimizing the prediction error 

between SVD and SVD++ outputs, and Optimized Hybrid Weighted Switching Filtering (OHWSF), 

which integrates the HWF and HSF predictions using a similarly optimized weighting scheme. 
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Table 1 presents the essential features of the benchmark datasets utilized in this study. These datasets 

vary significantly in scale, number of ratings, and sparsity levels, offering a comprehensive and diverse 

evaluation environment for benchmarking recommendation algorithms. The MovieLens 100K dataset 

comprises 943 users, 1,682 items, and 100,000 ratings, with a sparsity level of 93.69%. In contrast, the 

larger MovieLens 1M dataset features 6,040 users, 3,952 items, and over one million ratings, resulting 

in a sparsity level of 95.81%. In comparison, the Amazon Cell Phones Reviews dataset is highly sparse, 

featuring 720 users and 47,322 items with only 67,986 ratings, resulting in a sparsity of 98.47%. The 

GoodBooks-10K dataset comprises 28,906 users and 794 items, with 79,701 ratings, resulting in a 

sparsity of 99.65%. These datasets were selected to provide a comprehensive assessment of the 

recommendation models under various levels of data sparsity and scale, thereby ensuring the robustness 

and generalizability of the experimental results. 

Table 1.  Features of the dataset 

Dataset Users Items Ratings Sparsity 

ML 100K 943 1,682 100,000 93.69% 

ML 1M 6,040 3,952 1,000,209 95.81% 

Amazon Cell Phones Reviews 720 47,322 67,986 99.80% 

GoodBooks-10K 28,906 794 79,701 99.65% 

3.2. Evaluation Metrics Comparison 
A comprehensive evaluation was conducted to compare the predictive performance of state-of-the-

art, baseline, hybrid, and optimization-based models across the four diverse datasets. All models are 

trained and tested using an 80%:20% data split, and their predictive performance is measured using 

Mean Absolute Error (MAE), Mean Squared Error (MSE), and Root Mean Squared Error (RMSE), 

providing a robust basis for comparative analysis. To handle the computational requirements for 

modeling large datasets, we utilized Google Colab with a Python 3 runtime and a hardware accelerator 

CPU, leveraging shared resources to ensure consistent performance. All experiments and results of the 

system are carried out using an AMD Ryzen 5 4500U with Radeon Graphics (6 CPUs) processor at 2.4 

GHz, paired with 32 GB of memory. 

Table 2 presents a comparative evaluation of eight recommendation algorithms across four 

benchmark datasets, assessing both predictive accuracy (using MAE, MSE, and RMSE) and training 

efficiency (measured in seconds). Traditional neighborhood-based models, such as the UBCF and the 

IBCF, consistently recorded the highest error rates and offered no significant gains in sparse scenarios. 

In the ML-100K dataset, UBCF showed the worst MAE (0.7481) and RMSE (0.9500) with moderate 

training time (0.275s), while IBCF achieved better accuracy (MAE: 0.7320; RMSE: 0.9319) with 

extremely low training time (0.036s). Matrix factorization methods, such as SVD and SVD++, have 

significantly improved accuracy, with SVD++ achieving an RMSE of 0.9206 on ML-100K and 0.8622 

on ML-1M, albeit at the highest training costs (18.752s and 368.412s, respectively).  

Hybrid models, such as HWF and HSF, offered moderate enhancements over baselines with 

remarkably lower training times (as low as 0.001 s–0.003 s). Most notably, the optimization-based 

OHWF and OHWSF models consistently outperformed others, effectively balancing accuracy and 

efficiency. For instance, OHWF achieved the lowest RMSE on ML-1M (0.8540) and Amazon Reviews 

(0.0857), while OHWSF delivered the best result on GoodBooks-10K (RMSE: 0.9024) with minimal 

training time (0.001s). These results underscore the capability of OHWSF to adaptively learn the optimal 

fusion of HWF and HSF using the σ₁ parameter, providing accurate, efficient, and generalizable 

predictions even in high-sparsity environments. Overall, the inclusion of dynamic switching and weight 

optimization proves to be a valuable advancement in addressing the limitations of traditional and static 

hybrid recommendation models. 
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Table 2.  Performance Comparison of All Models Across Multiple Datasets 

 

3.3. Ablation Study: Impact of Tuning Parameter for Contribution of Each Component (Switching 
Vs. Weighting Optimization) 

The novelty of the proposed framework lies in its dynamic parameter tuning (α and θ) and the 

introduction of a two-level optimization strategy (OHWF and OHWSF), enabling the models to 

adaptively balance the contributions of latent and neighborhood-based methods. Consequently, the 

optimized hybrid models not only deliver better prediction accuracy but also demonstrate robustness in 

handling datasets with high sparsity and varying distribution characteristics. 

Dataset Models 
Training Time 

(Seconds) MAE MSE RMSE 

ML-100K 

UBCF 0.275 
0.748054 0.902492 0.949996 

IBCF 0.036 

0.731999 0.868475 0.93192 

SVD 0.968 

0.73808 0.876531 0.936232 

SVD++ 18.752 

0.721104 0.847517 0.920607 

HWF (α = 0.5) 0.002 

0.72125 0.83937 0.916171 

HSF (θ = 3.0) 0.001 

0.726099 0.855603 0.924988 

OHWF (𝜎𝜎1 = 0.3399) 0.007 
0.719446 0.837047 0.914903 

OHWSF (𝜎𝜎1 = 0.8583) 0.017 

0.720922 0.838915 0.915923 

ML-1M 

UBCF 34.697 

0.738266 0.863668 0.929337 

IBCF 8.176 

0.694460 0.785728 0.886413 

SVD 10.682 

0.684765 0.761609 0.872702 

SVD++ 368.412 
0.672110 0.74343 0.862224 

HWF (α = 0.5) 0.003 

0.669784 0.730325 0.854590 

HSF (θ = 3.0) 0.003 

0.675242 0.748402 0.865102 

OHWF (𝜎𝜎1 = 0.3976) 0.006 

0.668854 0.729394 0.854046 

OHWSF (𝜎𝜎1 = 0.9072) 0.049 

0.669545 0.730134 0.854479 

Amazon Cell 

Phones Reviews 

UBCF 0.033 

0.227719 0.12209 0.349414 

IBCF 0.205 
0.302479 0.15168 0.389461 

SVD 0.881 

0.037253 0.009679 0.09838 

SVD++ 23.811 

0.027040 0.007348 0.085722 

HWF (α = 0.5) 0.001 

0.030343 0.008152 0.090288 

HSF (θ = 3.0) 0.036 

0.027666 0.007522 0.086728 

OHWF (𝜎𝜎1 = 0.000) 0.027 

0.027040 0.007348 0.085722 

OHWSF (𝜎𝜎1 = 0.000) 0.001 
0.027666 0.007522 0.086728 

GoodBooks-10K 

UBCF 0.025 

0.762709 1.021719 1.010801 

IBCF 0.067 

0.741138 0.944633 0.971922 

SVD 0.907 

0.728941 0.83099 0.911587 

SVD++ 1.016 

0.720632 0.817129 0.903952 

HWF (α = 0.5) 0.001 
0.720966 0.815775 0.903203 

HSF (θ = 3.0) 0.008 

0.720537 0.817128 0.903951 

OHWF (𝜎𝜎1 = 0.2909) 0.007 

0.719944 0.814326 0.902400 

OHWSF (𝜎𝜎1 = 0.5817) 0.001 

0.719897 0.814325 0.902400 
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This section presents an ablation study to investigate the individual and joint contributions of the 

switching and weighting mechanisms within the Optimization Hybrid Weighted Switching Filtering 

(OHWSF) model, which emerged as the best-performing framework in prior evaluations. The objective 

is to analyze how variations in the hyperparameters alpha (α), governing the Hybrid Weighted Filtering 

(HWF) mechanism, and theta (θ), determining the threshold in Hybrid Switching Filtering (HSF), 

affect overall recommendation performance. Specifically, α controls the weighted combination between 

SVD and SVD++, while θ determines the decision boundary for switching between them based on 

prediction confidence. 

Table 3 outlines the tuning parameter space explored in this study, with α values ranging from 0.1 

to 0.9 and θ ranging from 1.0 to 5.0 in increments of 0.5. Through an extensive grid search on the 

validation set, the optimal α and θ were identified, which were then used to compute the final OHWSF 

predictions via an optimized linear combination of HWF and HSF outputs. This systematic tuning 

enables a deeper understanding of the relative importance and synergy between the two hybridization 

strategies, providing empirical guidance for parameter selection in real-world applications 

Table 3.  Tunning Parameter 

Parameters Values 
Alpha (α) [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9] 

Threshold (θ) [1.0, 1.5, 2.0, … , 5.0] 

 

Fig. 1 illustrates the performance comparison between HWF and HSF on the ML-100K dataset, 

revealing that HWF achieved the lowest errors at α = 0.7 with MAE = 0.7192, MSE = 0.8372, and 

RMSE = 0.9150. In contrast, the HSF model attained its best performance at θ = 1.5 with slightly higher 

error values: MAE = 0.7207, MSE = 0.8473, and RMSE = 0.9205. These results indicate that the 

weighted fusion strategy in HWF is more effective than the switching mechanism in HSF under this 

dataset’s sparsity level. Additionally, the OHWSF model adaptively converged to the HWF output (σ₁ = 

1.000), confirming the superior influence of weighted integration in this context. 

(a) Best Tunning Parameter α = 0.7 (b) Best Tunning Parameter θ = 1.5 

Fig. 1. Comparison of (a) and (b) based on ML-100K 

Fig. 2 illustrates the evaluation of Hybrid Weighted Filtering (HWF) and Hybrid Switching Filtering 

(HSF) on the ML-1M dataset, where tuning of the α and θ parameters significantly influences prediction 

accuracy. In subfigure (a), the optimal performance for HWF is achieved at α = 0.6, yielding the lowest 

error values: MAE = 0.6697, MSE = 0.7308, and RMSE = 0.8549, indicating that an appropriate balance 

between SVD and SVD++ contributes to better generalization. Subfigure (b) demonstrates that HSF 

attains its best accuracy at θ = 1.0, although its performance is slightly inferior to HWF, with MAE = 

0.6727, MSE = 0.7443, and RMSE = 0.8627. These findings suggest that for ML-1M, the weighted 

fusion strategy is more effective than threshold-based switching, especially under moderately sparse 

conditions. 
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(a) Best Tunning Parameter α = 0.6 
(b) Best Tunning Parameter θ = 1.0 

Fig. 2. Comparison of (a) and (b) based on M-1M 

Fig. 3 presents a tuning analysis of Hybrid Weighted Filtering (HWF) and Hybrid Switching 

Filtering (HSF) on the Amazon Cell Phones Reviews dataset. In subfigure (a), the HWF model shows 

optimal performance at α = 0.9, resulting in the lowest error rates of MAE = 0.0272, MSE = 0.00745, 

and RMSE = 0.0863, indicating that a higher emphasis on SVD++ enhances predictive accuracy due to 

its handling of implicit feedback. Subfigure (b) demonstrates that HSF performs best at θ = 1.0, where 

MAE = 0.0270, MSE = 0.00735, and RMSE = 0.0857, validating the effectiveness of SVD++ dominance 

when above the confidence threshold. These results highlight the model's sensitivity to parameter 

settings and confirm that tailored weighting and switching strategies significantly enhance 

recommendation quality in highly sparse environments. 

(a) Best Tunning Parameter α = 0.9 (b) Best Tunning Parameter θ = 1.0 

Fig. 3. Comparison of (a) and (b) based on Amazon Cell Phones Reviews 

Fig. 4 presents the evaluation of parameter tuning for the Hybrid Weighted Filtering (HWF) and 

Hybrid Switching Filtering (HSF) models on the GoodBooks-10K dataset, demonstrating the impact 

of optimal α and θ values on predictive performance. In subfigure (a), the HWF model attains its best 

performance at α = 0.8, achieving the lowest error metrics MAE = 0.71996, MSE = 0.81433, and RMSE 

= 0.90240 by favoring SVD++'s contribution, which is particularly effective in addressing extreme 

sparsity. Subfigure (b) indicates that HSF reaches optimal results at θ = 1.0. However, its performance 

remains slightly inferior, with higher MAE and RMSE values due to less effective switching decisions 

in this sparse environment. These findings confirm that emphasizing SVD++ through a weighted fusion 

strategy outperforms threshold-based switching, reinforcing the importance of adaptive weighting in 

handling datasets with limited user-item interactions. 
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(a) Best Tunning Parameter α = 0.7 (b) Best Tunning Parameter θ = 1.0 

Fig. 4. Comparison of (a) and (b) based on GoodBooks-10K 

The comparative analysis of best-tuned parameters for Hybrid Weighted Filtering (HWF), Hybrid 

Switching Filtering (HSF), and the Optimized Hybrid Weighted Switching Filtering (OHWSF) models 

across four diverse benchmark datasets demonstrates consistent improvements in both predictive 

accuracy and computational efficiency when optimal tuning is applied as show in Table 4. On the ML-

100K dataset, OHWSF achieved an MAE of 0.7192, MSE of 0.8372, and RMSE of 0.9149 with just 

0.034 seconds of training time, resulting in a 4.01% MAE improvement over the baseline. In the ML-

1M dataset, OHWSF produced an MAE of 0.6688, MSE of 0.7294, and RMSE of 0.8540 in 0.147 

seconds, achieving a 10.38% MAE gain compared to UBCF. On the Amazon Cell Phones Reviews 

dataset, which is highly sparse, OHWSF delivered the lowest MAE (0.0270), MSE (0.0073), and RMSE 

(0.0857) in just 0.007 seconds, showing a remarkable 742.16% MAE improvement. For the GoodBooks-

10K dataset, OHWSF achieved an MAE of 0.7199, MSE of 0.8143, and RMSE of 0.9024 within 0.147 

seconds, improving MAE by 5.94% relative to the baseline. These substantial percentage gains in MAE 

illustrate OHWSF’s ability to adaptively optimize hybrid strategies across different data sparsity levels. 

Overall, the OHWSF model stands out as a robust, scalable, and accurate solution for modern 

recommender systems operating in diverse and sparse environments. 

Table 4.  Best Tuning Parameters Performance Comparison 

4. Conclusion 
This study proposed and rigorously evaluated the Optimization Hybrid Weighted Switching Filtering 

(OHWSF) model, a novel hybrid recommender system designed to improve predictive accuracy and 

mitigate data sparsity challenges. By integrating Hybrid Weighted Filtering (HWF) and Hybrid 

Switching Filtering (HSF) with a dynamic optimization mechanism controlled by the tunable parameter 

σ₁, OHWSF adaptively balances the contributions of SVD and SVD++ based on actual rating deviations. 

Dataset Models 
Training Time 

(Seconds) MAE MSE RMSE 

MAE Impv 
(%) 

ML-100K 

HWF (α = 0.7) 0.250 0.719231 0.837192 0.914982 4.01 

HSF (θ = 1.5) 0.162 0.720673 0.847328 0.920504 3.80 

OHWSF (𝜎𝜎1 = 1.000) 0.034 0.719231 0.837192 0.914982 4.01 

ML-1M 

HWF (α = 0.6) 0.598 0.668867 0.729395 0.854046 10.38 

HSF (θ = 1.0) 0.457 0.672004 0.743382 0.862196 9.86 

OHWSF (𝜎𝜎1 = 0.9915) 0.147 0.668848 0.729394 0.854045 10.38 

Amazon Cell 

Phones Reviews 

HWF (α = 0.9) 0.227 0.027209 0.007451 0.086320 736.93 

HSF (θ = 1.0) 0.183 0.027040 0.007348 0.085722 742.16 

OHWSF (𝜎𝜎1 = 0.000) 0.007 0.027040 0.007348 0.085722 742.16 

GoodBooks-10K 

HWF (α = 0.7) 0.227 0.719961 0.814329 0.902402 5.94 

HSF (θ = 1.0) 0.183 0.720632 0.817129 0.903952 5.84 

OHWSF (𝜎𝜎1 = 0.9695) 0.147 0.719944 0.814326 0.902400 5.94 
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Experimental results across four benchmark datasets, ML-100K, ML-1M, Amazon Cell Phones 

Reviews, and GoodBooks-10K, consistently demonstrate the superiority of OHWSF in achieving lower 

error rates (MAE, MSE, RMSE) compared to traditional models (UBCF, IBCF), baseline matrix 

factorization methods (SVD, SVD++), and standalone hybrid models. The performance gains were 

particularly pronounced when optimal values for α and θ were applied, with HWF achieving best results 

in highly sparse scenarios (e.g., α = 0.9 on Amazon and α = 0.8 on GoodBooks). At the same time, HSF 

performed better with lower thresholds (e.g., θ = 1.0 across datasets). The OHWSF model effectively 

leveraged this tuning, dynamically adjusting its internal weighting (σ₁) to favor the more accurate 

strategy per dataset. Moreover, OHWSF achieved significant computational efficiency, delivering top-

tier accuracy with a lower training time than complex models, such as SVD++. Future research should 

explore several promising directions to build more adaptive and robust recommender systems. First, 

incorporating context-aware factors such as temporal dynamics, user demographics, and session-based 

behaviors could enhance personalization. Second, extending the OHWSF framework to integrate deep 

learning-based embeddings or graph neural networks may enable richer user-item representations and 

improved scalability in large-scale, heterogeneous data environments. Lastly, reinforcement learning-

based optimization mechanisms may enable real-time model updating and self-adaptive learning without 

full retraining. These directions offer a pathway toward developing next-generation recommender 

systems that are not only accurate and scalable but also dynamically responsive to user needs and evolving 

data conditions. 
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