International Journal of Advances in Intelligent Informatics

Vol. 11, No. 3, August 2025, pp. 533-549

Optimization hybrid weighted switching filtering )
(OHWSF) using SVD and SVD++ for addressing data Gneck o

sparsity

ISSN 2442-6571
533

Malim Muhammad "%, Gunardi ™2, Danardono 3, Dedi Rosadi %%

@ Department of Mathematics, Faculty of Mathematics and Natural Science, Universitas Gadjah Mada, 55281, Indonesia
b Department of Mathematics Education, Faculty of Teacher Training and Education, Universitas Muhammadiyah Purwokerto, 53182, Indonesia

¢ Statistics RnD, Yogyakarta, Indonesia

" malimmuhammad1986@mail.ugm.ac.id; 2gunardi@ugm.ac.id; * danardono@ugm.ac.id; * dedirosadistat91@gmail.com

* corresponding author

ARTICLE INFO

Article history

Received October 11, 2024
Revised July 7, 2025

Accepted July 30, 2025
Available online August 31, 2025

Keywords
Recommender systems
Data sparsity

OHWSF

Hybrid weighted filtering
MAE improvement

1. Introduction

ABSTRACT

Recommender systems are crucial for filtering vast amounts of digital
content and providing personalized recommendations; however, their
effectiveness is often hindered by data sparsity, where limited user-item
interactions lead to reduced prediction accuracy. This study introduces a
novel hybrid model, Optimization Hybrid Weighted Switching Filtering
(OHWSF), to overcome this challenge by integrating two complementary
strategies: Hybrid Weighted Filtering (HWF), which linearly combines
predictions from SVD and SVD++ using a weighting parameter (ct), and
Hybrid Switching Filtering (HSF), which dynamically selects predictions
based on a threshold rating (§). The OHWSF framework introduces a
tunable optimization mechanism governed by the parameter o; to
adaptively balance weighting and switching decisions based on actual rating
deviations. Unlike existing static or manually tuned hybrid methods, the
proposed model combines dynamic switching with weight optimization to
minimize prediction error effectively. Extensive experiments on four
benchmark datasets (ML-100K, ML-1M, Amazon Cell Phones Reviews,
and GoodBooks-10K) demonstrate that OHWSF consistently outperforms
traditional collaborative filtering (UBCF, IBCF), matrix factorization
techniques (SVD, SVD++), and standalone hybrid models across all
evaluation metrics (MAE, MSE, RMSE). The model achieves optimal
performance within the range of a = 0.6-0.9 and 0 = 1.0-1.5,
demonstrating robustness across varying sparsity levels. Notably, OHWSF
achieves up to 742.16% MAE improvement over the UBCF model, with
significantly reduced training time compared to SVD++. These findings
confirm that OHWSF significantly improves prediction accuracy,
scalability, and adaptability in sparse data environments. This research
contributes a flexible, interpretable, and efficient hybrid recommendation
framework suitable for real-world applications.

© 2025 The Author(s).
This is an open access article under the CC-BY-SA license.

In the digital era, users are constantly exposed to an overwhelming abundance of information, giving
rise to a condition known as information overload [1]. While such access is generally advantageous, it
creates difficulties in identifying content that aligns with individual preferences, often resulting in
cognitive fatigue, time inefficiencies, and diminished user satisfaction [2]. To address this challenge,
Recommender Systems (RSs) have emerged as critical tools that leverage user behavior and preferences
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to provide personalized content suggestions [3], [4]. These systems are now deeply embedded across
diverse application domains, including movies [5], music [6], online shopping [7], food [8], tourism [9],
books [10], news [11], healthcare systems [12], social networks [13], and online education platforms

[14].

Among the foundational techniques in RSs, Collaborative Filtering (CF) remains the most widely
adopted approach due to its capacity to uncover latent patterns in user-item interactions without
requiring explicit domain knowledge [15]. CF techniques are broadly classified into neighborhood-based
and model-based methods [16], [17]. The former exploits user-user or item-item similarities, such as
user-based collaborative filtering (UBCF) and item-based collaborative filtering (IBCF), as well as latent
feature models, including Singular Value Decomposition (SVD) and SVD++, which capture user and
item characteristics. However, both variants sufter critically from the data sparsity problem, which occurs
when users rate only a limited subset of items, resulting in an incomplete and sparse user-item matrix
[18]—[20]. This sparsity substantially hinders the system’s ability to learn meaningful representations and
deliver accurate recommendations, particularly in large-scale domains like movie platforms, online retail,

and digital libraries [2], [4], [21]—[24].

Several methods have been proposed to mitigate sparsity, including K-Nearest Neighbors (the
UBCF and IBCF) [23], [25]—[27], matrix factorization (SVD, SVD++, and NMF) [24], [28]—[30], and
Co-Clustering [31]. Nevertheless, these approaches often fall short in highly sparse conditions, mainly
when they rely solely on either explicit or implicit feedback. Hybrid recommender systems offer a
promising direction by integrating multiple algorithms to leverage their complementary strengths [32]-
[36]. However, existing hybrid methods typically use static weight combinations or fixed decision rules,
which lack adaptability to dynamic interaction patterns and fail to generalize across varying sparsity levels.

To address this gap, this study introduces the Optimization Hybrid Weighted Switching Filtering
(OHWSF) model, a novel and adaptive hybrid recommendation framework that dynamically integrates
Hybrid Weighted Filtering (HWF) and Hybrid Switching Filtering (HSF) mechanisms. It employs a
Lagrangian-based weighting mechanism for linear combination (via « in HWF) and a threshold-based
decision rule (via § in HSF) to determine when to switch models based on predicted confidence. These
strategies are then fused and optimized through the OHWSF architecture using an adaptive weight
parameter (o), which automatically adjusts the influence of HWF and HSF according to the actual error
distribution.

The main contributions of this research include:

* Introduction of OHWSF, a novel optimization-based hybrid recommendation model that
adaptively integrates Hybrid Weighted Filtering (HWF) and Hybrid Switching Filtering (HSF)
through a dynamic weighting mechanism (0;), effectively balancing linear combination and
threshold-based selection to minimize prediction error.

*  Empirical validation of its performance across diverse datasets (ML-100K, ML-1M, Amazon Cell
Phones Reviews, and GoodBooks-10K), which differ in scale and sparsity, to validate the model's
generalizability across diverse recommendation scenarios.

*  An ablation study examining the impact of tuning «, §, and o, and demonstrating OHWSF’s
superiority over traditional collaborative filtering methods (UBCF, IBCF), matrix factorization
techniques (SVD, SVD++), and standalone hybrid models (HWF, HSF, OHWF) using standard
evaluation metrics (MAE, MSE, RMSE) and training time, highlighting both its predictive
accuracy and computational efficiency

2. Method

2.1. k-NN collaborative filtering

K-nearest neighbors (k-NN) collaborative filtering is a memory-based collaborative filtering
technique that utilizes the entire user-item interaction dataset to generate predictions. As one of the
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earliest automated CF methods, k-NN uses the rating matrix to compute item similarities and
recommend relevant items. There are two main types of k-NN models: user-based collaborative filtering
(UBCF) and item-based collaborative filtering (IBCF). In this approach, the rating prediction for an
item i by a user u is derived directly from an m X n user-item rating matrix R, where m represents the
number of users and n represents the number of items.

2.1.1. User-based collaborative filtering (UBCF) model

User-Based Collaborative Filtering (UBCF) is a personalized recommendation technique grounded
in the intuition that users with similar past behaviors are likely to share similar preferences in the future
[37]. This method predicts the preferences of an active user by identifying other users referred to as
neighbors who exhibit similar rating profiles. The process begins by representing each user’s rating
behavior as an n-dimensional rating vector. The rating vector of 7, = {ry1, 72, ..., Tun} represents the
ratings assigned by a user u to a set of n items. Each element 7,,; within the vector corresponds to the
rating that user u has given to item i. By comparing these vectors, one can compute the similarity
between users, typically using metrics such as Cosine Similarity (COS) or the Pearson Correlation
Coefficient (PCC) [26], [27]. UBCF predicts the rating that a user u would give to an item i by
aggregating the ratings of similar users who have also rated item i [38]. The basic prediction formula is
given in equation (1).

UBCF ZveN{((u)sim(u,v)-rui

T

W = = (1)

vEN{-‘(u) sim(u,v)

where f,ﬁ-B CFis the predicted rating, sim(u, v) is the similarity between users u and v, 1; is the

rating given by user v to item i, and Nik (u) represents the set of k-nearest neighbors of user # who have
rated item i. To address rating scale biases among users, a mean-centered version is commonly employed
in equation (2).

z

UBCF  — venk ) sim(uv)-(ryi—y)
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where 7, and 7;, represent the average ratings of users u and v, respectively.

2.2. Item-based collaborative filtering (IBCF) model

Similarly, the item-based collaborative filtering (IBCF) model is a memory-based recommendation
approach that focuses on the similarity between items rather than users. This model predicts a user's
rating of a particular item by analyzing the ratings the user has given to other similar items. The
fundamental principle of IBCF is that if a user has rated an item highly, they are likely to rate other
similar items similarly. To achieve this, item-item similarity is calculated using measures such as the
COS and PCC, with the COS being commonly favored due to its geometric interpretability and empirical
performance [39]. The prediction in IBCF is calculated using a weighted sum of the user’s ratings for
similar items, adjusted by the mean rating of each item. The prediction formula is defined as equation

A3).

AIBCF _ = ZjeNz’i(i)Slm(l’J)'(ruj_Ff) 3
hui "t =Tt e 3
jenk J

where 717" represents the predicted rating for user u and item i, 7; and 7 represent the average

ratings of items i and j, respectively, 1, ; denotes the rating given by user u to item j, sim(i, j) represents

the similarity between items i and j, N} (i) denotes the set of k most similar items to item i that have
been rated by user u..

Mubammad et al. (Optimization hybrid weighted switching filtering...)



536 International Journal of Advances in Intelligent Informatics ISSN 2442-6571
Vol. 11, No. 3, August 2025, pp. 533-549

2.3. Matrix Factorization (MF)

Matrix Factorization (MF) is one of the most widely adopted techniques in model-based collaborative
filtering, particularly effective in handling the sparsity problem in user-item rating matrices. Matrix
Factorization is a fundamental model-based collaborative filtering technique that decomposes the user—
item rating matrix R € R™™ into the product of two lower-dimensional latent matrices. The central
assumption is that both users and items can be represented in a shared latent factor space of dimension
k, where k < min(n, m). This dimensionality reduction captures the hidden features underlying user
preferences and item characteristics, enabling the model to generalize more effectively to unseen data.
Formally, the MF aims to approximate the original matrix R as in (4).

R~QT-P (4)

where P € RF*™ is the user latent matrix, each column p, € R¥ representing user u, Q € RF*™ is the
item latent matrix, each column gq; € R¥ representing item i, k is the number of latent factors.
Therefore, the predicted rating 7;; is defined in equation (5).

Fui = qu *DPu ®)

where q; is the vector of each item i, and p,, is the vector of each user u.

2.3.1. Singular Value Decomposition (SVD)

Singular Value Decomposition (SVD) is a matrix factorization technique widely used in recommender
systems to reduce the dimensionality of large user—item interaction matrices. By projecting the original
high-dimensional rating matrix into a lower-dimensional latent feature space, SVD effectively captures
the most significant patterns in user behavior and item characteristics [40]. Given a user-item rating
matrix R € R™™ of size mxn, where m is the number of users and » is the number of items, SVD
approximates R as the product of three matrices in equation (6) [23].

R~P-S-QT (6)

where S € RK¥K is a diagonal matrix of single values.

In practical implementations, particularly in collaborative filtering, SVD is often extended to
incorporate bias terms that capture user and item rating tendencies. The predicted rating 7,572 for user
u and item i is computed in equation (7).

fa/P =p+by + b +4qf vy (7

where p is the global mean rating. The parameters by, and b; represent the user and item biases,
respectively, and are defined in equations (8) and (9).

_ Ziera)Tui=H)

by == o ®
_ Yier(®(Tui—1)

bi = 0] ©)

where R(u) is the set of all items that are rated by user u and R (i) is the set of all users who rated
item i. If a user u is unknown (i.e., not present in the training data), then their bias term b,, and latent
factor vector p,, are assumed to be zero. Similarly, for an unseen item i, both the item bias b; and the
latent factor vector q; are also set to zero.

2.3.2. Singular Value Decomposition Plus Plus (SVD++)

SVD++ is an improved version of SVD and has been widely applied in recommender systems due to
its superior prediction performance compared to SVD [41]. SVD++ is an advanced matrix factorization-
based recommendation algorithm that builds upon the traditional SVD approach by integrating both
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explicit user-item ratings and implicit user interactions such as views, clicks, and browsing behavior.
This additional information enhances the accuracy of recommendations by considering user biases and
implicit preferences. The predicted rating for user « and item i is computed using the following equation

(10) [28].

ASVD++

1
Tui =“+bu+bi+q?'(ZM"'WZKN(#)}G) (10)

where N(u) is the set of items with implicit feedback from user u, y; represents the latent factor

vector for item j that captures the implicit feedback effect. The term ;Z jen(w)Y;j models the

VIN@I

aggregate effect of implicit interactions. If a user u is unknown (not present in the training set), their
bias b, and latent factor vector p,, are assumed to be zero. Similarly, for an unseen item i, the item bias
b;, the latent factor vector q;, and the implicit feedback factor y; are also initialized to zero. This
defaulting mechanism ensures that the model provides a baseline prediction of p when no prior
information is available.

2.4. Hybrid Filtering (HWF)

Hybrid filtering techniques combine two or more distinct basic recommender techniques, such as
collaborative filtering, content-based filtering, knowledge-based filtering, and demographic filtering,
aiming to produce a robust system by mitigating the weaknesses of one method through the strengths
of another [42]-[45]. Aggarwal [46] categorizes hybrid filtering recommendation systems into three
categories: ensemble design, monolithic design, and mixed system. The ensemble design is divided into
two categories, namely parallel and sequential. Parallel methods include Hybrid Weighted Filtering
(HWF) and Hybrid Switching Filtering (HSF), while sequential methods include Hybrid Feature
Augmentation Filtering (HFAF) and Hybrid Cascade Filtering (HCF). Moreover, monolithic designs
include Hybrid Feature Combination Filtering (HFCF) and Hybrid Meta-Level Filtering (HMLF). The
last category is mixed, providing Hybrid Mixed Filtering (HMF).

2.4.1. Hybrid Weighted Filtering (HWF) Model

The Hybrid Weighted Filtering (HWF) model is a technique that combines the outputs of multiple
recommendation algorithms to enhance predictive accuracy by leveraging their complementary
strengths. Rather than relying on a single model, HWF computes a weighted average of predictions
from two or more algorithms, balancing their contributions based on their individual performance or
domain relevance. In this case, the HWF model combines the predictions of the best two models. The
hybrid prediction 2" for user u and item i is given by equation (11) [44].

where £1IWF is the predicted rating using the HWF model, is the predicted rating using the first
model, 72 is the predicted rating using the second model, @ € [ 0,1] is the weight for the first model
predictions, and (1 — ) is the weight assigned to the second model predictions.

2.4.2. Hybrid Switching Filtering (HSF) Model

The Hybrid Filter Switching Model (HSF) dynamically switches between different recommendation
algorithms based on specific criteria. The idea is to select the most suitable algorithm based on the
context, such as the number of user interactions, the availability of implicit feedback, or other factors
that influence prediction accuracy [47]. Unlike HWF, which blends model outputs, HSF switches
entirely between models based on a predetermined rating threshold 8, which determines when to use
the first or second model based on the rating threshold. The formula can be expressed as equation (12).

= (12)

"2 ip a2
AHSF _ {Tui: if 7y > 0

o
ut A1l » Al
P if Ty < 0

where 0 is the rating threshold for switching between first and second model predictions.
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2.5. Proposed Model

The proposed model, Optimized Hybrid Weighted Filtering (OHWTF), is designed to enhance the
accuracy and relevance of recommendation items to users by intelligently combining the strengths of
multiple collaborative filtering (CF) algorithms. Unlike traditional hybrid models that use fixed or
manually assigned weights, OHWF incorporates an optimization mechanism to dynamically determine
the optimal contribution of each algorithm in the ensemble. This model enables the model to adapt its
weighting scheme in a data-driven manner, thereby minimizing prediction errors across users and items.

Algorithm 1 Optimization Hybrid Weighted Filtering (OHWF)

Require:

. User-item interaction matrix R for m users and n items.

e Algorithms A; (first model) and A, (second model) with prediction outputs ffil and ft‘gz, respectively.
e Threshold 8 for switching between the first model and the second model

e  Initial weight optimization parameter 0y, 0,

Objective:

e  Final prediction TOHWF and 7, AOHWSF

, optimized weights 04, 05, and Top-N recommendations

Step 1: Split the user-item matrix R into training (80%) and testing (20%) datasets:
e Trainset,testset « split(R)
Step 2: Train the state-of-the-art models (UBCF, IBCF) and baseline models (SVD, and SVD++):
o A, « train(UBCF, trainset)
o A, « train(IBCF, trainset)
e A; « train(SVD, trainset)
o A, < train(SVD + +, trainset)
Step 3: For each user-item pair (u, 1) in the test set, calculate the prediction ratings:

o fut e A

. “u‘jz « A, (u, i)
LA

] u13 «— A3(u l)

LA
. fot e Ag(u, i)

Step 4: Implement the hybrid weighted filtering (HWF) model using SVD++ and SVD based on a predefined o = 0.5.
o RHWF =g pSYDFF 4 (1 ). SVP

Step 5: Implement the hybrid switching filtering (HSF) model using SVD++ and SVD based on a predefined rating
threshold 6 = 3.0.

pSVDHE £ pSVD+
o pHsF _ |Tui Lif Ty > 6
ut ,;:SVD lf f.SVD++ <6

Step 6: Calculate evaluation metrics such as MAE, MSE, and RMSE to assess the best model performance:
. MAE « Z(u,i)ewlrui_ruil
174
MSE Z(u l)EW(rui_rul)
wl|

L= )2
e RMSE « ’W, where W denotes the testset

Step 7: Optimize the weights o and ¢, to minimize the error between the actual and predicted ratings:

. . 2
e 0y =argming Si(rui — SVD) and 0, = argmin,, Si(r — 737P++

. . . 2
o oy =argming Yyi(ru — HWF) and 0, = argming, ¥, (1 — Fi*F

Step 8: Combine the predictions from both algorithms using the optimized hybrid weighted filtering.

o .f:uOLHWF =a ASVD++ +(1—0,) 7 ASVD
o TA.IZHWSF o, AHWF +(1—0y)-F AHSF
Step 9: Iterate over all user-item pairs and calculate the final predictions for the test set:
A AOHWF
° Tui = Ty
. ‘f' ; f.OHSWF

Step 10: Calculate evaluation metrics in step 6

£+ OHWF

Step 11: Return the optimized weights (o7 and o,), the final predictions o and 28PYSF for each user-item pair.
P p g 1 2) P ui p

The foundation of this model lies in the integration of multiple prediction models, such as SVD,
SVD-++, and others. The final predicted rating £ for a given user u and item i is computed as a
weighted sum of the predictions from each contrlbuting algorithm, as in equation (13).

Mubammad et al. (Optimization hybrid weighted switching filtering...)
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FOHWF Y6y apr (f) (13)
where T(f ) is the predicted rating for user u and item i produced by the ft" recommendation algorithm,

oy represents the weight of the f" algorithm £, and c is the total number of algorithms included in the
hybrid model.

The central objective of OHWTF is to minimize the total squared prediction error between the actual

user ratings, Ty;, and the predicted ratings, #9F"F. This formula is expressed as the following
optimization problem in equation (14).
E(0) = Euyi(ru — fi"")? (14

subject to the normalization constraint in equation (15):
Yi=10r =1 (15)

This constraint ensures that the algorithm weights o5 form a convex combination, maintaining a

balanced and interpretable weighting scheme. The optimization can be efficiently solved using Lagrange
multipliers, ensuring that the best-performing model combinations receive higher weight while still
contributing to a unified ensemble prediction. The target function E (o) is the sum of squared errors
between actual and predicted ratings across all user—item pairs in (16).

E(0) = X0y Sy (s — Yoy 07 )? (16)

to solve the optimization problem while respecting the constraint, we use a Lagrange multiplier method.
The Lagrange function is constructed in (17).

L(o, 1) = %E(J) + ATy 07 — 1) (17

where 2 is the Lagrange multiplier associated with the constraint.

To find the optimal g5, we compute the partial derivatives of L(a, ) with respect to each gf and set
them to zero. This formula gives us the necessary condition for optimization. The partial derivative of

o5 is :TL = 0. Taking the derivative of the Lagrange function (equation 18), we get.
f

L(0,2) = 3 [Zey B s (it = e 01 - 10 V2] + A(Bfica 07 — 1)

%%(2)[ By (s — Bgen 0 )] +a[2$:12?=1(r;;—f2; )l L
& Ny Sy (ru = Sgerop n D) (-r) + 2= 0
— Y1 D Tuily, m + e Ny XEg OF T, m (f)+/1—0
Y Y Yo r DD v a=3m v D
ﬁzlz?zl(alrjil)+azrlfz)+ “+ o.r, (C))r(f)+/1 DD WA AT szf) (18)

The left-hand side represents the weighted sum of ratings predicted by the c-th algorithm (including
the Lagrange multiplier term). The right-hand side represents the sum of the actual ratings weighted
by the corresponding predicted ratings. Next, we convert equation (18) into matrix form A -X = B.
Thus, the system of equations (19) is used to solve for the optimal weights gy, 05, ..., 0.
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(1) (€] 1
[ 12 uz ul 12 u(l) u(lC) 1] 3_-1 [ 121 1rul uL “
(2) (€] 2) (. (2)
121 P 121 4 r@r© 1“| 121 1 Tuilyi (19)
=1 Xi=1 u(f) PR Y i u(f) r 1la =1 Z?=1 Tty

The system of linear equations can be solved using matrix inversion X = A~1 . B. The solution for
X, which contains the optimal weights 1, 05, ..., 0, in equation (20).

A, -
gl [Zm 12 rrs 12n .7 (1) (C) 1} [ 1211 17,.1“7,.( )‘|
2 F@,. 2 r®
: 121 1T Tui 121 1 ‘lfl) ‘LEI.C) 1 [ 121 1 Tuily; ‘ (20)
o, :
llJ 121 1 u(lC) u(ll) 121 1 u(lC) u(zC) 1 121 1r‘“

Equation (20) provides the optimal values for the weights 1, g5, ..., 0. and the Lagrange multiplier
A. Once we have these optimal values, we can compute the final weighted predictions for the
recommender system. Suppose we have two recommendation algorithms (SVD and SVD++); the final
prediction £2HWF for user u and item i is a weighted sum of the predictions from these two algorithms,
as shown in equation 21).
FOHWF ()+ a,T, (2) (1)
The key constraint is that the sum of the weights must equal 1, with o3 + 0, = 1. Our goal is to
compute the values of g; and o, that minimize the prediction error. To compute the weights, we solve
the following matrix equation, which is derived from the optimization process in equation (22).

o r.M 1),.(2

[0’;] _ [ 121 1 uL uL 121 1 Lfl) Lfl) l [ 1 1 Tui u(l)l (22)
- @0 2) (2 )

A 12 Tui Tui 121 1 u(l) u(l) l 1 TuiTy;

The optimal values of o; and g, can be computed using the matrix inversion process X = A™* - B.
Here are the explicit formulas for the g; and o, equations (23).

ZL"' 12? 1(rui—T, (2))(7‘(%)_7‘15?)
Zm 1211 1( (1) (f))z

o) = ,ando, =1 —o0; (23)

3. Results and Discussion

3.1. Experimental dataset

This study conducts a comprehensive evaluation of various recommendation algorithms using
benchmark datasets, including MovieLens 100K, MovieLens 1M, Amazon Cell Phones Reviews, and
GoodBooks-10K, with a focus on state-of-the-art, baseline, hybrid, and optimization-based hybrid
models. The state-of-the-art models include User-Based Collaborative Filtering (UBCF) and Item-
Based Collaborative Filtering (IBCF), which leverage similarity-based neighborhood methods. The
baseline models, Singular Value Decomposition (SVD) and its extension SVD++, serve as fundamental
matrix factorization approaches that capture latent factor interactions. To improve recommendation
accuracy, two hybrid models are examined: Hybrid Weighted Filtering (HWF), which combines SVD
and SVD++ through a weighted average mechanism controlled by parameter @, and Hybrid Switching
Filtering (HSF), which dynamically selects between the two models based on a threshold parameter 6.
Further, two optimization-based hybrid methods are proposed: Optimized Hybrid Weighted Filtering
(OHWF), which determines the optimal weighting coefficient ¢; by minimizing the prediction error
between SVD and SVD++ outputs, and Optimized Hybrid Weighted Switching Filtering (OHWSF),
which integrates the HWF and HSF predictions using a similarly optimized weighting scheme.
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Table 1 presents the essential features of the benchmark datasets utilized in this study. These datasets
vary significantly in scale, number of ratings, and sparsity levels, offering a comprehensive and diverse
evaluation environment for benchmarking recommendation algorithms. The MovieLens 100K dataset
comprises 943 users, 1,682 items, and 100,000 ratings, with a sparsity level of 93.69%. In contrast, the
larger MovieLens 1M dataset features 6,040 users, 3,952 items, and over one million ratings, resulting
in a sparsity level of 95.81%. In comparison, the Amazon Cell Phones Reviews dataset is highly sparse,
featuring 720 users and 47,322 items with only 67,986 ratings, resulting in a sparsity of 98.47%. The
GoodBooks-10K dataset comprises 28,906 users and 794 items, with 79,701 ratings, resulting in a
sparsity of 99.65%. These datasets were selected to provide a comprehensive assessment of the
recommendation models under various levels of data sparsity and scale, thereby ensuring the robustness
and generalizability of the experimental results.

Table 1. Features of the dataset

Dataset Users Items Ratings Sparsity

ML 100K 943 1,682 100,000 93.69%

ML 1M 6,040 3,952 1,000,209 95.81%

Amazon Cell Phones Reviews 720 47,322 67,986 99.80%
GoodBooks-10K 28,906 794 79,701 99.65%

3.2. Evaluation Metrics Comparison

A comprehensive evaluation was conducted to compare the predictive performance of state-of-the-
art, baseline, hybrid, and optimization-based models across the four diverse datasets. All models are
trained and tested using an 80%:20% data split, and their predictive performance is measured using
Mean Absolute Error (MAE), Mean Squared Error (MSE), and Root Mean Squared Error (RMSE),
providing a robust basis for comparative analysis. To handle the computational requirements for
modeling large datasets, we utilized Google Colab with a Python 3 runtime and a hardware accelerator
CPU, leveraging shared resources to ensure consistent performance. All experiments and results of the
system are carried out using an AMD Ryzen 5 4500U with Radeon Graphics (6 CPUs) processor at 2.4
GHz, paired with 32 GB of memory.

Table 2 presents a comparative evaluation of eight recommendation algorithms across four
benchmark datasets, assessing both predictive accuracy (using MAE, MSE, and RMSE) and training
efficiency (measured in seconds). Traditional neighborhood-based models, such as the UBCF and the
IBCF, consistently recorded the highest error rates and offered no significant gains in sparse scenarios.
In the ML-100K dataset, UBCF showed the worst MAE (0.7481) and RMSE (0.9500) with moderate
training time (0.275s), while IBCF achieved better accuracy (MAE: 0.7320; RMSE: 0.9319) with
extremely low training time (0.036s). Matrix factorization methods, such as SVD and SVD++, have
significantly improved accuracy, with SVD++ achieving an RMSE of 0.9206 on ML-100K and 0.8622
on ML-1M, albeit at the highest training costs (18.752s and 368.412s, respectively).

Hybrid models, such as HWF and HSF, offered moderate enhancements over baselines with
remarkably lower training times (as low as 0.001 s—0.003 s). Most notably, the optimization-based
OHWF and OHWSF models consistently outperformed others, effectively balancing accuracy and
efficiency. For instance, OHWF achieved the lowest RMSE on ML-1M (0.8540) and Amazon Reviews
(0.0857), while OHWSF delivered the best result on GoodBooks-10K (RMSE: 0.9024) with minimal
training time (0.001s). These results underscore the capability of OHWSF to adaptively learn the optimal
fusion of HWF and HSF using the o, parameter, providing accurate, efficient, and generalizable
predictions even in high-sparsity environments. Overall, the inclusion of dynamic switching and weight
optimization proves to be a valuable advancement in addressing the limitations of traditional and static
hybrid recommendation models.
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Table 2. Performance Comparison of All Models Across Multiple Datasets

Training Time

Dataset Models (Seconds) MAE MSE RMSE
UBCF 0.275 0.748054 0.902492  0.949996

IBCF 0.036 0.731999 0.868475  0.93192

SVD 0.968 0.73808 0.876531  0.936232

ML-100K SVD++ 18.752 0.721104 0.847517  0.920607
HWF (a.=0.5) 0.002 0.72125 0.83937  0.916171

HSF (0=3.0) 0.001 0.726099 0.855603  0.924988

OHWF (g; = 0.3399) 0.007 0.719446 0.837047  0.914903

OHWSF (0; = 0.8583) 0.017 0.720922 0.838915  0.915923

UBCF 34.697 0.738266 0.863668  0.929337

IBCF 8.176 0.694460 0.785728  0.886413

SVD 10.682 0.684765 0.761609  0.872702

ML 1M SVD++ 368.412 0.672110 0.74343  0.862224
HWF (a.=0.5) 0.003 0.669784 0.730325  0.854590

HSF (0=3.0) 0.003 0.675242 0.748402  0.865102

OHWF (g; = 0.3976) 0.006 0.668854 0.729394  0.854046

OHWSF (oy = 0.9072) 0.049 0.669545 0.730134  0.854479

UBCF 0.033 0.227719 0.12209  0.349414

IBCF 0.205 0.302479 0.15168  0.389461

SVD 0.881 0.037253 0.009679  0.09838

Amazon Cell SVD++ 23.811 0.027040 0.007348  0.085722
Phones Reviews HWF (a=0.5) 0.001 0.030343 0.008152  0.090288
HSF (0 =3.0) 0.036 0.027666 0.007522  0.086728

OHWF (g7 = 0.000) 0.027 0.027040 0.007348  0.085722

OHWSF (o; = 0.000) 0.001 0.027666 0.007522  0.086728

UBCF 0.025 0.762709 1.021719  1.010801

IBCF 0.067 0.741138 0.944633  0.971922

SVD 0.907 0.728941 0.83099  0.911587

GoodBooks- 10K SVD++ L.0te 0.720632 0.817129  0.903952
HWF (0= 0.5) 0.001 0.720966 0.815775  0.903203

HSF (0=3.0) 0.008 0.720537 0.817128  0.903951

OHWF (g7 = 0.2909) 0.007 0.719944 0.814326  0.902400

OHWSF (0, = 0.5817) 0.001 0.719897 0.814325  0.902400

3.3. Ablation Study: Impact of Tuning Parameter for Contribution of Each Component (Switching

Vs. Weighting Optimization)

The novelty of the proposed framework lies in its dynamic parameter tuning (a and ) and the
introduction of a two-level optimization strategy (OHWF and OHWSF), enabling the models to
adaptively balance the contributions of latent and neighborhood-based methods. Consequently, the
optimized hybrid models not only deliver better prediction accuracy but also demonstrate robustness in
handling datasets with high sparsity and varying distribution characteristics.
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This section presents an ablation study to investigate the individual and joint contributions of the
switching and weighting mechanisms within the Optimization Hybrid Weighted Switching Filtering
(OHWSF) model, which emerged as the best-performing framework in prior evaluations. The objective
is to analyze how variations in the hyperparameters alpha (), governing the Hybrid Weighted Filtering
(HWF) mechanism, and theta (f), determining the threshold in Hybrid Switching Filtering (HSF),
affect overall recommendation performance. Specifically, a controls the weighted combination between
SVD and SVD++, while 6 determines the decision boundary for switching between them based on
prediction confidence.

Table 3 outlines the tuning parameter space explored in this study, with « values ranging from 0.1
to 0.9 and 6 ranging from 1.0 to 5.0 in increments of 0.5. Through an extensive grid search on the
validation set, the optimal a and 6 were identified, which were then used to compute the final OHWSF
predictions via an optimized linear combination of HWF and HSF outputs. This systematic tuning
enables a deeper understanding of the relative importance and synergy between the two hybridization
strategies, providing empirical guidance for parameter selection in real-world applications

Table 3. Tunning Parameter

Parameters Values
Alpha (a) [0.1,0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]
Threshold (0) [1.0, 1.5, 2.0, ..., 5.0]

Fig. 1 illustrates the performance comparison between HWF and HSF on the ML-100K dataset,
revealing that HWF achieved the lowest errors at a = 0.7 with MAE = 0.7192, MSE = 0.8372, and
RMSE = 0.9150. In contrast, the HSF model attained its best performance at § = 1.5 with slightly higher
error values: MAE = 0.7207, MSE = 0.8473, and RMSE = 0.9205. These results indicate that the
weighted fusion strategy in HWF is more eftective than the switching mechanism in HSF under this
dataset’s sparsity level. Additionally, the OHWSF model adaptively converged to the HWF output (o) =
1.000), confirming the superior influence of weighted integration in this context.

Evaluation Metrics vs Alpha in Hybrid Weighted Filtering (HWF) on ML-100K HSF Evaluation Metrics vs Threshold in Hybrid Switching Filtering (HWF) on ML-100K
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Fig. 1. Comparison of () and (b) based on ML-100K

Fig. 2 illustrates the evaluation of Hybrid Weighted Filtering (HWF) and Hybrid Switching Filtering
(HSF) on the ML-1M dataset, where tuning of the « and § parameters significantly influences prediction
accuracy. In subfigure (a), the optimal performance for HWF is achieved at « = 0.6, yielding the lowest
error values: MAE = 0.6697, MSE = 0.7308, and RMSE = 0.8549, indicating that an appropriate balance
between SVD and SVD++ contributes to better generalization. Subfigure (b) demonstrates that HSF
attains its best accuracy at 6 = 1.0, although its performance is slightly inferior to HWF, with MAE =
0.6727, MSE = 0.7443, and RMSE = 0.8627. These findings suggest that for ML-1M, the weighted
fusion strategy is more effective than threshold-based switching, especially under moderately sparse
conditions.

'
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Fig. 3 presents a tuning analysis of Hybrid Weighted Filtering (HWF) and Hybrid Switching
Filtering (HSF) on the Amazon Cell Phones Reviews dataset. In subfigure (a), the HWF model shows
optimal performance at & = 0.9, resulting in the lowest error rates of MAE = 0.0272, MSE = 0.00745,
and RMSE = 0.0863, indicating that a higher emphasis on SVD++ enhances predictive accuracy due to
its handling of implicit feedback. Subfigure (b) demonstrates that HSF performs best at § = 1.0, where
MAE = 0.0270, MSE = 0.00735, and RMSE = 0.0857, validating the effectiveness of SVD++ dominance
when above the confidence threshold. These results highlight the model's sensitivity to parameter
settings and confirm that tailored weighting and switching strategies significantly enhance
recommendation quality in highly sparse environments.
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Fig. 3. Comparison of (a) and (b) based on Amazon Cell Phones Reviews

Fig. 4 presents the evaluation of parameter tuning for the Hybrid Weighted Filtering (HWF) and
Hybrid Switching Filtering (HSF) models on the GoodBooks-10K dataset, demonstrating the impact
of optimal & and  values on predictive performance. In subfigure (a), the HWF model attains its best
performance at a = 0.8, achieving the lowest error metrics MAE = 0.71996, MSE = 0.81433, and RMSE
= 0.90240 by favoring SVD++'s contribution, which is particularly effective in addressing extreme
sparsity. Subfigure (b) indicates that HSF reaches optimal results at § = 1.0. However, its performance
remains slightly inferior, with higher MAE and RMSE values due to less eftective switching decisions
in this sparse environment. These findings confirm that emphasizing SVD++ through a weighted fusion
strategy outperforms threshold-based switching, reinforcing the importance of adaptive weighting in
handling datasets with limited user-item interactions.
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Fig. 4. Comparison of (a) and (b) based on GoodBooks-10K

The comparative analysis of best-tuned parameters for Hybrid Weighted Filtering (HWF), Hybrid
Switching Filtering (HSF), and the Optimized Hybrid Weighted Switching Filtering (OHWSF) models
across four diverse benchmark datasets demonstrates consistent improvements in both predictive
accuracy and computational efficiency when optimal tuning is applied as show in Table 4. On the ML-
100K dataset, OHWSF achieved an MAE of 0.7192, MSE of 0.8372, and RMSE of 0.9149 with just
0.034 seconds of training time, resulting in a 4.01% MAE improvement over the baseline. In the ML-
IM dataset, OHWSF produced an MAE of 0.6688, MSE of 0.7294, and RMSE of 0.8540 in 0.147
seconds, achieving a 10.38% MAE gain compared to UBCF. On the Amazon Cell Phones Reviews
dataset, which is highly sparse, OHWSF delivered the lowest MAE (0.0270), MSE (0.0073), and RMSE
(0.0857) in just 0.007 seconds, showing a remarkable 742.16% MAE improvement. For the GoodBooks-
10K dataset, OHWSF achieved an MAE of 0.7199, MSE of 0.8143, and RMSE of 0.9024 within 0.147
seconds, improving MAE by 5.94% relative to the baseline. These substantial percentage gains in MAE
illustrate OHWSF’s ability to adaptively optimize hybrid strategies across different data sparsity levels.
Overall, the OHWSF model stands out as a robust, scalable, and accurate solution for modern
recommender systems operating in diverse and sparse environments.

Table 4. Best Tuning Parameters Performance Comparison

Dataset Models Training Time / p MSE RMSE  MAE Impv
(Seconds) (%)
HWF (a=0.7) 0.250 0.719231 0.837192 0.914982 4,01
ML-100K HSF (9 = 1.5) 0.162 0.720673 0.847328 0.920504 3.80
OHWSF (01 = 1.000) 0.034 0.719231 0.837192 0.914982 4.01
HWF (a = 0.6) 0.598 0.668867 0.729395 0.854046 10.38
ML-1M HSF (0 = 1.0) 0.457 0.672004 0.743382 0.862196 9.86
OHWSF (0’1 = 0.9915) 0.147 0.668848 0.729394 0.854045 10.38
Amazon Cell HWF (a=0.9) 0.227 0.027209 0.007451 0.086320 736.93
Phones Reviews HSF (6 = 1.0) 0.183 0.027040 0.007348 0.085722 742.16
OHWSF (g; = 0.000) 0.007 0.027040 0.007348 0.085722 742.16
HWF (a = 0.7) 0.227 0.719961 0.814329 0.902402 5.94
GoodBooks-10K HSF (9 = 1.0) 0.183 0.720632 0.817129 0.903952 5.84
OHWSF (0'1 =0.9695) 0.147 0.719944 0.814326 0.902400 5.94

4. Conclusion

This study proposed and rigorously evaluated the Optimization Hybrid Weighted Switching Filtering
(OHWSF) model, a novel hybrid recommender system designed to improve predictive accuracy and
mitigate data sparsity challenges. By integrating Hybrid Weighted Filtering (HWF) and Hybrid
Switching Filtering (HSF) with a dynamic optimization mechanism controlled by the tunable parameter
0,, OHWSF adaptively balances the contributions of SVD and SVD++ based on actual rating deviations.
'
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Experimental results across four benchmark datasets, ML-100K, ML-IM, Amazon Cell Phones
Reviews, and GoodBooks-10K, consistently demonstrate the superiority of OHWSF in achieving lower
error rates (MAE, MSE, RMSE) compared to traditional models (UBCF, IBCF), baseline matrix
factorization methods (SVD, SVD++), and standalone hybrid models. The performance gains were
particularly pronounced when optimal values for o and 8 were applied, with HWF achieving best results
in highly sparse scenarios (e.g., a = 0.9 on Amazon and a = 0.8 on GoodBooks). At the same time, HSF
performed better with lower thresholds (e.g., 8 = 1.0 across datasets). The OHWSF model effectively
leveraged this tuning, dynamically adjusting its internal weighting (o) to favor the more accurate
strategy per dataset. Moreover, OHWSF achieved significant computational efficiency, delivering top-
tier accuracy with a lower training time than complex models, such as SVD++. Future research should
explore several promising directions to build more adaptive and robust recommender systems. First,
incorporating context-aware factors such as temporal dynamics, user demographics, and session-based
behaviors could enhance personalization. Second, extending the OHWSF framework to integrate deep
learning-based embeddings or graph neural networks may enable richer user-item representations and
improved scalability in large-scale, heterogeneous data environments. Lastly, reinforcement learning-
based optimization mechanisms may enable real-time model updating and self-adaptive learning without
full retraining. These directions offer a pathway toward developing next-generation recommender
systems that are not only accurate and scalable but also dynamically responsive to user needs and evolving
data conditions.
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