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1. Introduction 
The Solar Power Plant has been the subject of several studies in the world of ICT [1], [2]. The solar 

module is a critical component of Solar Power Plant systems [3]–[5], designed to  directly convert solar 

radiation into electrical energy, to meet human needs [6], [7]. These modules are engineered to endure 

extreme environmental conditions such as intense heat, rainstorms, and strong winds. Their operational 

lifespan is estimated to reach 25 years, with an annual power loss of approximately 0.8% [8], [9]. 

However, without proper maintenance, they remain prone to various types of surface damage [10]. 

Common surface defects include broken or crack [11], [12], hotspots [13], [14], burn [15], snail 

tracks [16], microcracks [17], [18], and accumulated dust or dirt [19], [20]. Certain issues, such as 

delamination or deglazing, may begin as minor faults but eventually evolve into more severe defects, thus 
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 Solar modules are essential components of a solar power plant, that are 

designed to withstand scorching heat, storms, strong winds, and other 

natural influences. However, continuous usage can cause defects in solar 

modules, preventing them from producing electrical energy optimally. This 

paper proposes the development of a deep learning-based system for 

identifying and classifying solar module surface defects in solar power 

plants. Module surface condition are classified into five categories: clean, 

dirt, burn, crack, and snail track. The dataset used consists of 8,370 images, 

including primary image data acquired directly from the mini solar power 

plant at the Renewable Energy Laboratory of PLN Institute of Technology, 

and secondary image data obtained from public repositories. The limitation 

in the number of images in each category was overcome using data 

augmentation techniques. The proposed classification model combines 

Deep Convolutional Neural Networks (DCNN) with transfer learning 

models (DenseNet201, MobileNetV2, and EfficientNetB0) to perform 

supervised image classification. Training and testing results on the three 

models demonstrated that the combination of DCNN + DenseNet201 

provided the best performance, with a classification accuracy of 97.85%, 

compared to 97.25% accuracy for DCNN + EfficientNetB0 and 94.98% for 

DCNN + MobileNetV2. This research shows that DCNN-based image 

classification reliably diagnoses solar module defects and supports using 

RGB images for surface defect classification. Applying the developed system 

to solar power plant maintenance management can help in accelerating the 

process of identifying panel defects, determining defect types, and 

performing panel maintenance or repairs, while ensuring optimal power 

production.  
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reducing the efficiency and lifespan of the module [21]. To prevent such degradation, continuous 

performance monitoring and predictive maintenance are essential [22], [23]. 

Currently, visual inspections are predominantly manual and reliant on human observation, which is 

inherently subjective, time-consuming, and error-prone. As an alternative, deep learning has shown 

significant potential in managing visual challenges, including tasks of classification, detection, and 

forecasting in real-life applications [24]–[26]. Convolutional Neural Networks (CNNs) are among the 

most effective deep learning architectures for processing visual data [27]–[29]. They can analyze images 

to uncover underlying structures and visual elements [30], [31]. making them suitable for monitoring 

and detecting damage or interference in solar modules [32]. 

To enhance classification efficiency and reduce training time, transfer learning is often used to adapt 

pretrained models (commonly Imagenet) to solve challenges on other datasets [33], [34].  CNN 

architectures such as DenseNet121 [35], [36], MobileNetV2 [37], [38], and EfficientNetB0 [39], 

[40]They have achieved high accuracy in various image classification domains and are promising for 

adaptation to solar module defect detection. 

Several prior studies have examined CNN-based defect detection in photovoltaic modules [41]. One 

research explicitly focused on crack detection using electroluminescence (EL) images [42]. Various defect 

types, such as microcracks and potential-induced degradation (PID), were investigated using six different 

CNN architectures applied to EL inputs [43].  Thermal imaging was utilized to identify faults during 

the manufacturing stage [44]. while multispectral CNNs were employed to detect surface defects [45]. 

Other studies developed CNN-based models to recognize specific surface anomalies, including dust and 

discoloration [46]. Enhancing generalization and addressing overfitting concerns, several data 

augmentation techniques were introduced during the training phase [47]. 

 However, a clear gap remains in research utilizing real-world RGB imagery of solar modules 

captured under diverse field conditions. While most prior work relies on controlled laboratory 

environments using EL or thermal imagery, this research addresses the need for RGB-based classification 

under natural conditions, focusing on five common surface failures: clean, dirt, burn, crack, and snail 

track. The dataset combines field-acquired images and publicly available sources enhanced through 

structured data augmentation techniques to mitigate class imbalance and improve model generalization. 

This research aims to develop a CNN-based classification model using transfer learning on these RGB 

datasets and to evaluate model performance through hyperparameter tuning to identify the most effective 

architecture for accurate surface defect classification. 

2. Method 
The purpose of this work is to develop a deep learning approach using CNNs with transfer learning 

to automate the classification of solar module surface faults.  

Fig. 1 illustrates the research stages conducted to achieve the research’s objectives. The initial step 

involved acquiring RGB images corresponding to five types of surface conditions: clean, dirt, burn, crack, 

and snail track, from both primary and secondary sources. Primary data were collected directly from the 

mini solar power plant at the Renewable Energy Laboratory of PLN Institute of Technology, while 

secondary data were obtained from public repositories such as Kaggle [48] and Roboflow [49]. During 

the data preparation phase, the images were cleaned to remove noise and artifacts, augmented to address 

data imbalance, normalized to a pixel value range of [0,1], resized to 224×224 pixels, and then divided 

into training, validation, and testing subsets. Next, three pretrained CNN architectures (DenseNet201, 

MobileNetV2, and EfficientNetB0) were employed using a transfer learning approach. The final 

classification layers of these models were modified to accommodate the five target classes, and several 

hyperparameter tuning scenarios were applied to optimize their performance. The models were evaluated 

using accuracy, precision, recall, and F1-score, with the best-performing model selected as the final 

classifier for detecting surface defects in solar modules. 
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Fig. 1. The research stage 

2.1. Image Acquisition 
The data acquisition and analysis phase began with collecting surface condition of the solar module, 

from both primary and secondary. Primary data were obtained from the mini solar power plant at PLN 

Institute of Technology using both monocrystaline and polycrystaline solar modules Images of the solar 

module surface conditions were captured using a high-resolution camera, from various viewpoints, at 

different height, and under various natural lighting conditions such as direct sunlight, overcast skies, 

and mild partial shading. This approach aimed to increase the diversity and representativeness of the 

dataset. Secondary data were sourced from Kaggle and Roboflow in .jpg, .jpeg, and .png formats using 

the RGB color space [50]. The surface conditions of the solar modules were categorized into five classes: 

clean, dirt, burn, crack, and snail track. The initial dataset consisted of 3,800 images, comprising 1,290 

primary images and 2,510 secondary images. 

2.2. Data Preparation 
Some primary and secondary data were cleaned of errors, inconsistencies, and anomalies which may 

influence the precision and consistency of the analytical outcomes. Image cleaning was applied to remove 

photos that displayed module arrays or circuits, as well as those affected by excessive shadows, strong 

reflections, or glare that obscured the true surface condition. Such lighting artifacts were treated as noise 

rather than meaningful variations, ensuring consistent and reliable visual input for surface defect 

classification. A total of 198 images were removed during the cleaning process, decreasing the dataset 

size from 3,800 to 3,602. 

The number of each category indicates a data imbalance problem. The imbalance of data in this 

research was addressed by using augmentation techniques, which can also balance the amount of data, 

improve data quality, and feature representation [51]. In each augmentation iteration, an image 

underwent one to three randomly selected transformations to create various new image versions. After 

augmentation, the data were accumulated and saved, aiming to equalize the sample count across 

categories by matching the largest original class size. 

To address class imbalance, augmentation techniques were applied, including Gaussian blur (σ ∈ [0, 

1.0]), random rotation (±20°), Gaussian noise (0 – 5% intensity), brightness adjustment (80 – 120% 

scale), and horizontal flipping (50% probability). Each category was balanced to 1,674 images post-

augmentation. 

The next step was data normalization [52], where pixel values were normalized by rescaling them 

from their original 0–255 range to the 0–1 interval [53]. Since each pixel in a color image has an intensity 

value across three channels (Red, Green, Blue), normalization was performed by dividing each value by 

255. This step is essential for accelerating convergence during training [54]. 
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The dataset's image size varies. Hence, it be equalized to 224×224 [55]. Image size equalization aims 

to ensure consistency of input images during the model training process, therefore speeding up the 

training process, reducing data complexity and computational load, and allowing models to focus on 

important features, increasing models' ability to generalize to new data. 

The dataset was split into three parts: 80% for training, 10% for testing, and the rest allocated for 

validation. The validation set size was computed proportionally based on the remaining data after 

extracting the training set. 

Two experiments were conducted. In the initial experiment, the original dataset comprising 3,602 

images was utilized and systematically divided into 2,881 training samples, 360 testing samples, and 361 

validation samples. In contrast, the second experiment employed an augmented dataset totaling 8,370 

images, which was partitioned into 6,696 for training, 837 for testing, and 837 for validation. A detailed 

breakdown of the dataset allocation is provided in Table 1. 

Table 1.  Data Split 

No Description Number of 
Datasets 

Data 
Training 

Data 
Validation 

Data 
Testing 

1 The original dataset 3602 2881 361 360 

2 Datasets using augmentation 8370 6696 837 837 

 

2.3. CNN with Transfer Learning 
The next stage after the dataset preparation stage is the CNN model architecture. At this stage several 

experiments were carried out using three CNN models, namely DenseNet201, MobilenetV2, and 

EfficientNetB0 to obtain the optimal model in classifying solar module defects. The selection of 

DenseNet201, MobileNetV2, and EfficientNetB0 in this research was based on the distinct advantages 

offered by each architecture in image classification tasks. DenseNet201 was chosen for its deep network 

structure and efficient feature propagation through direct connections between layers, making it well-

suited for capturing complex patterns in solar module surface images [56]. MobileNetV2 is a compact 

and efficient architecture, well-suited for implementation on devices with limited computational 

resources [57]. EfficientNetB0 achieves a compromise between performance and efficiency through its 

advanced compound scaling strategy [58]. All three models have demonstrated strong performance in 

transfer learning scenarios, particularly when applied to mid-sized datasets as used in this research. 

Each of the pretrained CNN architectures (DenseNet201, MobileNetV2, and EfficientNetB0) was 

modified to perform five-class classification by substituting the original top layers with a customized 

classification head. This newly designed head comprised additional convolutional and max-pooling 

layers, integrated with dropout for regularization, and concluded with a dense layer employing softmax 

activation. These architectural adjustments were consistently implemented across all models to maintain 

uniformity and enable a fair comparative analysis. 

A total of 12 experiments were conducted by combining architectural modifications and 

hyperparameter tuning to evaluate performance and mitigate overfitting. The configuration of the 

modified DenseNet201 architecture used in the experiments is summarized in Table 2. 

Table 2.  DenseNet201 CNN Model Architecture with Pretained Model 

Layer Output Shape 1-2 Number of 
Parameters 

Output Shape 3-4 Number of 
Parameters 

DenseNet201 (None, 7, 7, 1920) 18321984 (None, 4, 4, 1920) 18321984 

Conv2D (None, 7, 7, 32) 552992 (None, 4, 4, 32) 552992 

MaxPooling2D (none3, 3, 32) 0 (None, 2, 2, 32) 0 

Dropout (none, 3, 3, 32) 0 (None, 2, 2, 32) 0 

Flatten (none, 288) 0 (None, 128) 0 

Dense (none, 5) 1445 (None, 5) 645 
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2.4. Training 
After defining the model architectures with structural modifications, each CNN model 

(DenseNet201, MobileNetV2, and EfficientNetB0) was trained on both original and augmented datasets. 

The training phase aimed to optimize model performance across multiple configurations by adjusting 

image resolution, batch size, learning rate, and dropout rate. 

The training procedure utilized the Adam optimization algorithm with two distinct learning rate 

configurations (0.0001 and 0.00001). Categorical cross-entropy was employed as the loss function, as it 

is suitable for multiclass classification tasks. To mitigate overfitting, dropout layers with rates of 0.2 and 

0.5 were incorporated, alongside the application of early stopping based on validation loss monitoring. 

Each model was trained for 25 epochs using batch sizes of either 32 or 64. 

Each model was trained on RGB images normalized to the [0,1] range and resized to either 224×224 

or 128×128 pixels. An 80-10-10 split was applied to the dataset, allocating samples for training, 

validation, and testing, respectively. 

Four experimental configurations were designed to evaluate the effect of data balancing and 

hyperparameter variation: 

• Experiment 1: No data augmentation; image size: 224×224, batch size: 64, dropout : 0.2, learning 

rate: 0.0001. 

• Experiment 2: Augmented dataset; image size: 224×224, batch size: 64, dropout: 0.2, learning rate: 

0.0001. 

• Experiment 3: Augmented dataset; image size: 128×128, batch size: 32, dropout: 0.2, learning rate: 

0.0001. 

• Experiment 4: Augmented dataset; image size: 128×128, batch size: 32, dropout: 0.5, learning rate: 

0.00001. 

Each CNN model was evaluated under all four experimental settings, resulting in a total of 12 

experiments. Training progress was monitored using training and validation accuracy and loss curves, 

enabling observation of learning behavior and convergence patterns. The most optimal model from each 

configuration was selected based on the combination of highest validation accuracy and lowest validation 

loss, reflecting strong generalization performance. 

2.5. Testing 
After training, each model was evaluated on the testing subset. Performance metrics included 

accuracy, precision, recall, and F1-score, calculated from the confusion matrix [59]. These metrics were 

used to identify the most effective model configuration for solar module surface defect classification. 

3. Results and Discussion 
The dataset used in this research consists of RGB images representing five types of surface conditions 

in solar modules: clean, dirt, burn, crack, and snail track Fig. 2. displays representative samples from 

each category used for model development. A sample dataset of solar panel images categorized into five 

classes: Burn, Clean, Crack, Dirt, and Snail Track. Each row displays representative examples of these 

conditions, showing the visual differences and defects that may occur in photovoltaic modules. The Burn 

category highlights panels with localized burn marks, while Clean panels appear undamaged and clear. 

The Crack category shows fractures across the cells, and Dirt panels are covered with dust or debris that 

obstructs sunlight. Finally, Snail Track panels exhibit dark discoloration lines resembling snail trails. 

This dataset provides a diverse collection of labeled images useful for training and evaluating machine 

learning models in solar panel defect detection. 
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Fig. 2. Sample dataset consisting of five categories 

3.1. Training Results 
The accuracy and loss of training from DenseNet201, MobilenetV2, and EfficientNetB0 using epochs 

25 is shown in Table 3. The accuracy and loss values obtained during training and validation for the pre-

trained models DenseNet201, MobileNetV2, and EfficientNetB0 across four experiments each. Overall, 

the results indicate strong training performance, with most experiments achieving near-perfect training 

accuracy (>98%), although the gap between training and validation values varies. DenseNet201 generally 

shows high accuracy and low loss, with Experiment 2 achieving the best validation accuracy (97.37%) 

and a small accuracy gap (2.57%). MobileNetV2 also performs well, though some experiments, such as 

1 and 3, display a higher gap between training and validation (6–8%), suggesting potential overfitting. 

EfficientNetB0 achieves competitive results, with Experiment 2 showing the highest validation accuracy 

(95.94%) and a small gap, while Experiment 4 records a drop in both training and validation accuracy 

(85.53% and 87.60%, respectively). In summary, DenseNet201 demonstrates the most stable and 

consistently high validation performance, while EfficientNetB0 and MobileNetV2 deliver strong but 

slightly more variable results. 
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Table 3.  Accuracy and Loss Value of Training 

Pre-trained 
Model Experiments Train 

Loss 
Train 
Acc 

Valid 
Loss 

Valid 
Acc 

GAP 
Loss GAP Acc 

DenseNet201 1 0.02 99.93% 0.21 92.24% 0.19 7.69% 

DenseNet201 2 0.01 99.94% 0.08 97.37% 0.07 2.57% 

DenseNet201 3 0.01 99.84% 0.14 95.91% 0.13 3.93% 

DenseNet201 4 0.30 89.77% 0.29 90.53% 0.01 0.76% 

MobilenetV2 1 0.01 99.83% 0,27 91.41% 0.26 8.42% 

MobilenetV2 2 0.01 99.96% 0.18 93.79% 0.17 6.17% 

MobilenetV2 3 0.01 99.81% 0.28 93.22% 0.28 6.59% 

MobilenetV2 4 0.31 89.42% 0.35 88.19% 0.04 1.23% 

EfficientNetB0  1 0.07 98.54% 0.29 91.41% 0.22 7.13% 

EfficientNetB0  2 0.03 99.33% 0.09 95.94% 0.06 3.39% 

EfficientNetB0  3 0.05 98.58% 0.15 95.56% 0.11 3.02% 

EfficientNetB0  4 0.41 85.53% 0.36 87.60% 0.06 2.07% 

 

Based on Table 3, the highest training accuracy (99.96%) was achieved by MobilenetV2 in experiment 

2. However, its relatively large validation accuracy GAP (6.17%) indicates potential overfitting. In 

contrast, DensetNet201 in experiment 2 achieved a high validation accuracy of 97.37% with a smaller 

accuracy GAP (2.57%), demonstrating better generalization. The GAP metric, which represents the 

discrepancy between training and validation accuracy, is used to assess the model’s ability to generalize 

to unseen data.  

A lower GAP value indicates consistent performance across training and validation sets, suggesting 

minimal overfitting. In contrast, a higher GAP reflects potential overfitting, where the model has likely 

memorized the training data instead of learning generalizable patterns, thereby diminishing its 

effectiveness on new inputs. Among the three architectures, DenseNet201 showed the most consistent 

performance across different scenarios, balancing high accuracy with robust generalization. Furthermore, 

a comparison of the training result graphs of the three pre-training models with several trials is shown 

in Table 4. 

The training results of three pre-trained models: DenseNet201, MobileNetV2, and EfficientNetB0, 

across four experimental runs each. For every experiment, the corresponding training and validation 

graphs are shown in terms of loss and accuracy. The loss graphs demonstrate a consistent downward 

trend across epochs, with varying convergence speeds depending on the model and experiment, while 

the accuracy graphs show the learning progression toward higher performance, generally stabilizing after 

several epochs. DenseNet201 and EfficientNetB0 exhibit smoother convergence with relatively balanced 

training and validation curves, whereas MobileNetV2 shows fluctuations in some experiments but still 

achieves strong accuracy. Overall, these results provide a visual comparison of each model’s training 

behavior and performance stability across multiple runs. 

Based on Table 4, the DenseNet201 models consistently demonstrates fast and stable convergence, 

with low validation loss and high, consistent validation accuracy, particularly in experiments 3 and 4. 

This indicates that the model effectively learns relevant features without significant overfitting. 

Meanwhile, MobileNetV2 shows a reasonable trend of increasing accuracy but with slight fluctuations 

in the loss values, especially in experiments 2 and 3, suggesting decent performance that is, however, not 

as optimal as DenseNet201. EfficientNetB0 exhibits balanced performance, with steadily decreasing loss 

curves and progressively improving validation accuracy across experiments, although it does not reach 

the same level of accuracy as DenseNet201. Overall, these results suggest that the DenseNet201 

architecture outperforms the other two in handling the task of solar module surface defect classification. 
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Table 4.  Graph of Training Results 

Pre-trained Model Experiments Graph Loss Graph Accuracy 

DenseNet201 1 

  

DenseNet201 2 

 

 

 

 

DenseNet201 3 

  

DenseNet201 4 

 

 

 

MobilenetV2 1 

 

 

 

MobilenetV2 2 

 

 

 

MobilenetV2 3 

 

  

MobilenetV2 4 

 

 
 

EfficientNetB0 1 

  

EfficientNetB0 2 

  

EfficientNetB0 3 

 

 

 

EfficientNetB0 4 
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3.2. Testing Results 
To evaluate generalization, all trained models were tested using the testing subset. The testing results 

is shown  in Table 5, consisting of accuracy, precision, recall and F1 score values. 

Table 5.  Testing Results Using Transfer Learning of 3 Pre-trained CNN Models 

Pre-trained Model Experiments Accuracy Precision Recall F1 Score 
DenseNet201 1 94.17 94.17 94.17    94.17 

DenseNet201 2 97.85 97.82 97.79 97.81 

DenseNet201 3 93.44 93.44 93.44 93.44 

DenseNet201 4 89.58 90.53 89.58 90.05 

MobilenetV2 1 92.78 92.78 92.78 92.78 

MobilenetV2 2 94.98 94.98 94.98 94.98 

MobilenetV2 3 88.76 88.76 88.76 88.76 

MobilenetV2 4 85.71 86.73 85.71 86.22 

EfficientNetB0 1 91.94 91.94 91.94 91.94 

EfficientNetB0 2 97.25 97.25 97.25 97.25 

EfficientNetB0 3 94.61 94.61 94.61 94.61 

EfficientNetB0 4 87.47 87.57 87.47 87.52 

 

According to Table 5, the test results of the three models using datasets with augmentation to balance 

the number of datasets have higher accuracy, precision, recall, and F1-score values compared to datasets 

without augmentation. The percentage increase in evaluation results is 2% to 5%. Other experiments 

by changing hyperparameters produce evaluation results of 2% to 10%. Despite similar accuracy, 

DenseNet201 provided more stable precision and recall, likely due to its dense connectivity that improves 

feature reuse and learning depth. MobileNetV2 delivers strong performance with minimal complexity, 

making it suitable for use in resource-constrained environments, despite its lower accuracy compared to 

the other two model presets. 

In terms of model efficiency, MobileNetV2 offers the smallest model size and fastest inference time, 

making it attractive for edge deployment despite its slightly lower classification accuracy. DenseNet201, 

although achieving the highest accuracy (97.85%), has a relatively larger parameter count and longer 

inference time. EfficientNetB0 provides a balance between performance and computational cost. These 

trade-offs should be considered based on the computational resources available in practical deployment 

scenarios. 

Table 6 highlights a clear performance gap across models. Deep learning approaches, particularly 

DenseNet201 and EfficientNetB0, achieved the highest metrics across all categories, with most scores 

around or above 97%. These results significantly outperform traditional machine learning methods such 

as SVM (73.60%) and Random Forest (81.51%), underscoring the latter's limitations in modeling 

complex visual patterns and texture-based defects. While the shallow CNN demonstrated reasonable 

performance (84.53%), it lagged behind deeper transfer learning models. This gap affirms the 

effectiveness of leveraging pre-trained architectures that are capable of capturing rich hierarchical features 

essential for distinguishing subtle morphological differences in solar module surface defects. Overall, the 

results validate the superiority of deep learning, particularly transfer learning, in handling high-

dimensional image data for surface defect classification tasks. 

Table 6.  Performance Comparison Across Models 

Model Accuracy Precision Recall F1 Score 
SVM 73.60 74.43 73.60 73.22 

Random Forest 81.51 81.46 81.51 81.39 

Shallow CNN 84.53 85.33 84.53 84.34 

DenseNet201 97.85 97.82 97.79 97.81 

MobilenetV2 94.98 94.98 94.98 94.98 

EfficientNetB0 97.25 97.25 97.25 97.25 
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Fig. 3 presents the confusion matrix illustrating the classification performance of the best-performing 

model. The diagonal elements indicate correct predictions for each defect category, with burn, clean, 

and dirt showing particularly strong results, achieving 167, 169, and 187 true positives, respectively. 

Crack and snail track classes also demonstrate solid performance with 139 and 157 correct classifications, 

though minor misclassifications occurred across several categories. 

 

Fig. 3. Confusion matrix the highest accuracy in testing  

The model achieved strong overall performance but struggled with consistent misclassification of the 

crack class. As illustrated in Fig. 4, although some cracks were correctly identified (a), others were 

mislabeled as clean (b), dirt (c), or snail track (d). These errors likely stem from various factors: the crack 

in (b) appears subtle and low-contrast, making it easily mistaken for a clean surface; the image in (c) 

shows a crack pattern that blends with textural noise, resembling dirt; while (d) presents visual traits 

similar to snail tracks, such as diffuse patterns and irregular edges. These cases highlight the model’s 

difficulty in distinguishing fine-grained structural anomalies, particularly under variable lighting and 

surface noise conditions. Although lighting metadata was not available for explicit evaluation, the results 

suggest the need for more robust feature extraction techniques, such as edge enhancement, texture 

descriptors, or multi-scale representations, to improve crack detection under real-world conditions. 

    

(a) (b) (c) (d) 

Fig. 4. Examples of misclassified images: (a) correctly classified crack, (b) crack mislabeled as clean, (c) crack 

mislabeled as dirt, (d) crack mislabeled as snail track 

   While traditional thermal imaging and EL methods are widely used for defect detection, they often 

require specialized equipment and are sensitive to environmental conditions. In contrast, the RGB-based 
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classification approach proposed in this research offers a cost-effective and scalable alternative, 

particularly suitable for early-stage detection using standard imaging devices in field environments. 

Despite achieving high classification performance, this study has not evaluated computational 

efficiency metrics such as training time, inference speed, and model size. These aspects are crucial for 

real-world deployment, particularly in edge-based or embedded systems for solar module monitoring. 

Future research will include a thorough assessment of these efficiency parameters to determine the 

feasibility of implementing the proposed models in practical environments. 

The CNN-based classification model developed in this research can be effectively integrated into 

existing solar power plant monitoring systems to improve inspection accuracy and maintenance 

efficiency. By utilizing drone or fixed camera systems already deployed in many solar farms, images of 

solar module surfaces can be captured routinely and analyzed automatically using the trained model. 

Integration with edge computing devices, such as NVIDIA Jetson or Raspberry Pi, enables on-site image 

processing, reducing latency and the need for high-bandwidth data transmission. This real-time 

detection allows maintenance teams to quickly identify and respond to surface defects such as cracks, 

burns, or dirt accumulation. 

Furthermore, the model’s output can be linked to Supervisory Control and Data Acquisition 

(SCADA) systems or IoT dashboards, allowing operators to monitor module conditions visually and 

receive automated alerts for detected anomalies. Maintenance requests can be generated and prioritized 

based on defect type and severity through integration with Computerized Maintenance Management 

Systems (CMMS). Over time, the system can support predictive maintenance by tracking recurring 

defect patterns. This practical integration offers a scalable and cost-effective solution for improving the 

reliability, responsiveness, and operational efficiency of solar power plants. 

4. Conclusion 
This research developed a classification model for solar module surface defects using Deep 

Convolutional Neural Networks (CNNs) with transfer learning. The model categorized five visually 

observable defect types : clean, dirt, burn, crack, and snail track, using a combination of field-acquired 

and public RGB datasets. To address data imbalance, augmentation techniques were applied. Among 

the three evaluated models: DenseNet201, MobileNetV2, and EfficientNetB0. DenseNet201 achieved 

the highest accuracy of 97.01% with a 224×224 image size, batch size of 64, dropout rate of 0.2, and 

learning rate of 0.0001. The findings highlight the capability of CNN-based image classification to 

enhance solar module inspection processes. The proposed model can be integrated into solar plant 

monitoring systems to support faster, more accurate identification of surface anomalies, thereby 

enhancing preventive maintenance and operational reliability. Research efforts moving forward will be 

directed toward advancing the deployment of the proposed system in practical settings. A key limitation 

of the current research is the reliance on RGB imagery without direct comparison to thermal imaging 

for real-time fault detection, this will be explored in future work. To improve detection accuracy, 

automated hyperparameter optimization will be implemented, reducing manual tuning efforts. Dataset 

limitations will be addressed through GAN-based augmentation, simulating diverse lighting conditions 

and rare defect patterns. For real-world deployment, model efficiency will be optimized for edge devices 

(e.g., NVIDIA Jetson), coupled with user-friendly diagnostic interfaces. Additionally, future work will 

include a comprehensive evaluation of computational efficiency metrics (such as training time, inference 

speed, and model size) to ensure the model’s feasibility for real-time deployment in embedded solar 

monitoring systems. These steps aim to bridge the gap between laboratory validation and field 

implementation in solar power plants. 
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