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ABSTRACT

Solar modules are essential components of a solar power plant, that are
designed to withstand scorching heat, storms, strong winds, and other
natural influences. However, continuous usage can cause defects in solar
modules, preventing them from producing electrical energy optimally. This
paper proposes the development of a deep learning-based system for
identifying and classifying solar module surface defects in solar power
plants. Module surface condition are classified into five categories: clean,
dirt, burn, crack, and snail track. The dataset used consists of 8,370 images,
including primary image data acquired directly from the mini solar power
plant at the Renewable Energy Laboratory of PLN Institute of Technology,
and secondary image data obtained from public repositories. The limitation

in the number of images in each category was overcome using data
augmentation techniques. The proposed classification model combines
Deep Convolutional Neural Networks (DCNN) with transfer learning
models (DenseNet201, MobileNetV2, and EfficientNetB0) to perform
supervised image classification. Training and testing results on the three
models demonstrated that the combination of DCNN + DenseNet201
provided the best performance, with a classification accuracy of 97.85%,
compared to 97.25% accuracy for DCNN + EfficientNetB0 and 94.98% for
DCNN + MobileNetV2. This research shows that DCNN-based image
classification reliably diagnoses solar module defects and supports using
RGB images for surface defect classification. Applying the developed system
to solar power plant maintenance management can help in accelerating the
process of identifying panel defects, determining defect types, and
performing panel maintenance or repairs, while ensuring optimal power
production.

Transfer learning
The defect types
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1. Introduction

The Solar Power Plant has been the subject of several studies in the world of ICT [1], [2]. The solar
module is a critical component of Solar Power Plant systems [3]—-[5], designed to directly convert solar
radiation into electrical energy, to meet human needs [6], [7]. These modules are engineered to endure
extreme environmental conditions such as intense heat, rainstorms, and strong winds. Their operational
lifespan is estimated to reach 25 years, with an annual power loss of approximately 0.8% [8], [9].
However, without proper maintenance, they remain prone to various types of surface damage [10].

Common surface defects include broken or crack [11], [12], hotspots [13], [14], burn [15], snail
tracks [16], microcracks [17], [18], and accumulated dust or dirt [19], [20]. Certain issues, such as
delamination or deglazing, may begin as minor faults but eventually evolve into more severe defects, thus
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reducing the efficiency and lifespan of the module [21]. To prevent such degradation, continuous
performance monitoring and predictive maintenance are essential [22], [23].

Currently, visual inspections are predominantly manual and reliant on human observation, which is
inherently subjective, time-consuming, and error-prone. As an alternative, deep learning has shown
significant potential in managing visual challenges, including tasks of classification, detection, and
forecasting in real-life applications [24]—[26]. Convolutional Neural Networks (CNNs) are among the
most effective deep learning architectures for processing visual data [27]-[29]. They can analyze images
to uncover underlying structures and visual elements [30], [31]. making them suitable for monitoring
and detecting damage or interference in solar modules [32].

To enhance classification efficiency and reduce training time, transfer learning is often used to adapt
pretrained models (commonly Imagenet) to solve challenges on other datasets [33], [34]. CNN
architectures such as DenseNet121 [35], [36], MobileNetV2 [37], [38], and EfficientNetBO [39],
[40] They have achieved high accuracy in various image classification domains and are promising for
adaptation to solar module defect detection.

Several prior studies have examined CNN-based defect detection in photovoltaic modules [41]. One
research explicitly focused on crack detection using electroluminescence (EL) images [42]. Various defect
types, such as microcracks and potential-induced degradation (PID), were investigated using six different
CNN architectures applied to EL inputs [43]. Thermal imaging was utilized to identify faults during
the manufacturing stage [44]. while multispectral CNNs were employed to detect surface defects [45].
Other studies developed CNN-based models to recognize specific surface anomalies, including dust and
discoloration [46]. Enhancing generalization and addressing overfitting concerns, several data
augmentation techniques were introduced during the training phase [47].

However, a clear gap remains in research utilizing real-world RGB imagery of solar modules
captured under diverse field conditions. While most prior work relies on controlled laboratory
environments using EL or thermal imagery, this research addresses the need for RGB-based classification
under natural conditions, focusing on five common surface failures: clean, dirt, burn, crack, and snail
track. The dataset combines field-acquired images and publicly available sources enhanced through
structured data augmentation techniques to mitigate class imbalance and improve model generalization.
This research aims to develop a CNN-based classification model using transfer learning on these RGB
datasets and to evaluate model performance through hyperparameter tuning to identify the most effective
architecture for accurate surface defect classification.

2. Method

The purpose of this work is to develop a deep learning approach using CNNs with transfer learning
to automate the classification of solar module surface faults.

Fig. 1 illustrates the research stages conducted to achieve the research’s objectives. The initial step
involved acquiring RGB images corresponding to five types of surface conditions: clean, dirt, burn, crack,
and snail track, from both primary and secondary sources. Primary data were collected directly from the
mini solar power plant at the Renewable Energy Laboratory of PLN Institute of Technology, while
secondary data were obtained from public repositories such as Kaggle [48] and Roboflow [49]. During
the data preparation phase, the images were cleaned to remove noise and artifacts, augmented to address
data imbalance, normalized to a pixel value range of [0,1], resized to 224x224 pixels, and then divided
into training, validation, and testing subsets. Next, three pretrained CNN architectures (DenseNet201,
MobileNetV2, and EfficientNetB0) were employed using a transfer learning approach. The final
classification layers of these models were modified to accommodate the five target classes, and several
hyperparameter tuning scenarios were applied to optimize their performance. The models were evaluated
using accuracy, precision, recall, and F1-score, with the best-performing model selected as the final
classifier for detecting surface defects in solar modules.
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Fig. 1. The research stage

2.1. Image Acquisition

The data acquisition and analysis phase began with collecting surface condition of the solar module,
from both primary and secondary. Primary data were obtained from the mini solar power plant at PLN
Institute of Technology using both monocrystaline and polycrystaline solar modules Images of the solar
module surface conditions were captured using a high-resolution camera, from various viewpoints, at
different height, and under various natural lighting conditions such as direct sunlight, overcast skies,
and mild partial shading. This approach aimed to increase the diversity and representativeness of the
dataset. Secondary data were sourced from Kaggle and Roboflow in .jpg, .jpeg, and .png formats using
the RGB color space [50]. The surface conditions of the solar modules were categorized into five classes:
clean, dirt, burn, crack, and snail track. The initial dataset consisted of 3,800 images, comprising 1,290
primary images and 2,510 secondary images.

2.2. Data Preparation

Some primary and secondary data were cleaned of errors, inconsistencies, and anomalies which may
influence the precision and consistency of the analytical outcomes. Image cleaning was applied to remove
photos that displayed module arrays or circuits, as well as those affected by excessive shadows, strong
reflections, or glare that obscured the true surface condition. Such lighting artifacts were treated as noise
rather than meaningful variations, ensuring consistent and reliable visual input for surface defect
classification. A total of 198 images were removed during the cleaning process, decreasing the dataset
size from 3,800 to 3,602.

The number of each category indicates a data imbalance problem. The imbalance of data in this
research was addressed by using augmentation techniques, which can also balance the amount of data,
improve data quality, and feature representation [51]. In each augmentation iteration, an image
underwent one to three randomly selected transformations to create various new image versions. After
augmentation, the data were accumulated and saved, aiming to equalize the sample count across
categories by matching the largest original class size.

To address class imbalance, augmentation techniques were applied, including Gaussian blur (o € [0,
1.0]), random rotation (+20°), Gaussian noise (0 — 5% intensity), brightness adjustment (80 — 120%
scale), and horizontal flipping (50% probability). Each category was balanced to 1,674 images post-
augmentation.

The next step was data normalization [52], where pixel values were normalized by rescaling them
from their original 0-255 range to the 0—1 interval [53]. Since each pixel in a color image has an intensity
value across three channels (Red, Green, Blue), normalization was performed by dividing each value by
255. This step is essential for accelerating convergence during training [54].
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The dataset's image size varies. Hence, it be equalized to 224x224 [55]. Image size equalization aims
to ensure consistency of input images during the model training process, therefore speeding up the
training process, reducing data complexity and computational load, and allowing models to focus on
important features, increasing models' ability to generalize to new data.

The dataset was split into three parts: 80% for training, 10% for testing, and the rest allocated for
validation. The validation set size was computed proportionally based on the remaining data after
extracting the training set.

Two experiments were conducted. In the initial experiment, the original dataset comprising 3,602
images was utilized and systematically divided into 2,881 training samples, 360 testing samples, and 361
validation samples. In contrast, the second experiment employed an augmented dataset totaling 8,370
images, which was partitioned into 6,696 for training, 837 for testing, and 837 for validation. A detailed
breakdown of the dataset allocation is provided in Table 1.

Table 1. Data Split

.. Number of Data Data Data
No Description .. .. .
Datasets Training Validation Testing
1 The original dataset 3602 2881 361 360
2 Datasets using augmentation 8370 6696 837 837

2.3. CNN with Transfer Learning

The next stage after the dataset preparation stage is the CNN model architecture. At this stage several
experiments were carried out using three CNN models, namely DenseNet201, MobilenetV2, and
EfficientNetBO to obtain the optimal model in classifying solar module defects. The selection of
DenseNet201, MobileNetV2, and EfficientNetBO in this research was based on the distinct advantages
offered by each architecture in image classification tasks. DenseNet201 was chosen for its deep network
structure and efficient feature propagation through direct connections between layers, making it well-
suited for capturing complex patterns in solar module surface images [56]. MobileNetV2 is a compact
and efficient architecture, well-suited for implementation on devices with limited computational
resources [57]. EfficientNetBO0 achieves a compromise between performance and efficiency through its
advanced compound scaling strategy [58]. All three models have demonstrated strong performance in
transfer learning scenarios, particularly when applied to mid-sized datasets as used in this research.

Each of the pretrained CNN architectures (DenseNet201, MobileNetV2, and EfficientNetB0) was
modified to perform five-class classification by substituting the original top layers with a customized
classification head. This newly designed head comprised additional convolutional and max-pooling
layers, integrated with dropout for regularization, and concluded with a dense layer employing softmax
activation. These architectural adjustments were consistently implemented across all models to maintain
uniformity and enable a fair comparative analysis.

A total of 12 experiments were conducted by combining architectural modifications and
hyperparameter tuning to evaluate performance and mitigate overfitting. The configuration of the
modified DenseNet201 architecture used in the experiments is summarized in Table 2.

Table 2. DenseNet201 CNN Model Architecture with Pretained Model

Layer Output Shape 1-2 Number of Output Shape 3-4 Number of
Parameters Parameters
DenseNet201 (None, 7, 7, 1920) 18321984 (None, 4, 4, 1920) 18321984
Conv2D (None, 7, 7, 32) 552992 (None, 4, 4, 32) 552992
MaxPooling2D (none3, 3, 32) 0 (None, 2, 2, 32) 0
Dropout (none, 3, 3, 32) 0 (None, 2, 2, 32) 0
Flatten (none, 288) 0 (None, 128) 0
Dense (none, 5) 1445 (None, 5) 645
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2.4. Training

After defining the model architectures with structural modifications, each CNN model
(DenseNet201, MobileNetV2, and EfficientNetB0) was trained on both original and augmented datasets.
The training phase aimed to optimize model performance across multiple configurations by adjusting
image resolution, batch size, learning rate, and dropout rate.

The training procedure utilized the Adam optimization algorithm with two distinct learning rate
configurations (0.0001 and 0.00001). Categorical cross-entropy was employed as the loss function, as it
is suitable for multiclass classification tasks. To mitigate overfitting, dropout layers with rates of 0.2 and
0.5 were incorporated, alongside the application of early stopping based on validation loss monitoring.
Each model was trained for 25 epochs using batch sizes of either 32 or 64.

Each model was trained on RGB images normalized to the [0,1] range and resized to either 224x224
or 128x128 pixels. An 80-10-10 split was applied to the dataset, allocating samples for training,
validation, and testing, respectively.

Four experimental configurations were designed to evaluate the effect of data balancing and
hyperparameter variation:

e Experiment 1: No data augmentation; image size: 224x224, batch size: 64, dropout : 0.2, learning
rate: 0.0001.

e Experiment 2: Augmented dataset; image size: 224x224, batch size: 64, dropout: 0.2, learning rate:
0.0001.

e Experiment 3: Augmented dataset; image size: 128x128, batch size: 32, dropout: 0.2, learning rate:
0.0001.

e Experiment 4: Augmented dataset; image size: 128x128, batch size: 32, dropout: 0.5, learning rate:
0.00001.

Each CNN model was evaluated under all four experimental settings, resulting in a total of 12
experiments. Training progress was monitored using training and validation accuracy and loss curves,
enabling observation of learning behavior and convergence patterns. The most optimal model from each
configuration was selected based on the combination of highest validation accuracy and lowest validation
loss, reflecting strong generalization performance.

2.5. Testing

After training, each model was evaluated on the testing subset. Performance metrics included
accuracy, precision, recall, and F1-score, calculated from the confusion matrix [59]. These metrics were
used to identify the most effective model configuration for solar module surface defect classification.

3. Results and Discussion

The dataset used in this research consists of RGB images representing five types of surface conditions
in solar modules: clean, dirt, burn, crack, and snail track Fig. 2. displays representative samples from
each category used for model development. A sample dataset of solar panel images categorized into five
classes: Burn, Clean, Crack, Dirt, and Snail Track. Each row displays representative examples of these
conditions, showing the visual differences and defects that may occur in photovoltaic modules. The Burn
category highlights panels with localized burn marks, while Clean panels appear undamaged and clear.
The Crack category shows fractures across the cells, and Dirt panels are covered with dust or debris that
obstructs sunlight. Finally, Snail Track panels exhibit dark discoloration lines resembling snail trails.
This dataset provides a diverse collection of labeled images useful for training and evaluating machine
learning models in solar panel defect detection.

Cahyaningtyas et al. (Solar module defects classification using deep convolutional neural network)
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Fig. 2. Sample dataset consisting of five categories

3.1. Training Results

The accuracy and loss of training from DenseNet201, MobilenetV2, and EfficientNetB0 using epochs
25 is shown in Table 3. The accuracy and loss values obtained during training and validation for the pre-
trained models DenseNet201, MobileNetV2, and EfficientNetB0 across four experiments each. Overall,
the results indicate strong training performance, with most experiments achieving near-perfect training
accuracy (>98%), although the gap between training and validation values varies. DenseNet201 generally
shows high accuracy and low loss, with Experiment 2 achieving the best validation accuracy (97.37%)
and a small accuracy gap (2.57%). MobileNetV2 also performs well, though some experiments, such as
1 and 3, display a higher gap between training and validation (6-8%), suggesting potential overfitting.
EfficientNetB0 achieves competitive results, with Experiment 2 showing the highest validation accuracy
(95.94%) and a small gap, while Experiment 4 records a drop in both training and validation accuracy
(85.53% and 87.60%, respectively). In summary, DenseNet201 demonstrates the most stable and
consistently high validation performance, while EfficientNetBO and MobileNetV2 deliver strong but
slightly more variable results.

Cahyaningtyas et al. (Solar module defects classification using deep convolutional neural network)
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Table 3. Accuracy and Loss Value of Training

Pre-trained ) Train Train Valid Valid GAP
Model Experiments Loss Acc Loss Acc Loss GAP Acc

DenseNet201 1 0.02 99.93% 0.21 92.24% 0.19 7.69%
DenseNet201 2 0.01 99.94% 0.08 97.37% 0.07 2.57%
DenseNet201 3 0.01 99.84% 0.14 95.91% 0.13 3.93%
DenseNet201 4 0.30 89.77% 0.29 90.53% 0.01 0.76%
MobilenetV2 1 0.01 99.83% 0,27 91.41% 0.26 8.42%
MobilenetV2 2 0.01 99.96% 0.18 93.79% 0.17 6.17%
MobilenetV2 3 0.01 99.81% 0.28 93.22% 0.28 6.59%
MobilenetV2 4 0.31 89.42% 0.35 88.19% 0.04 1.23%
EfficientNetBO 1 0.07 98.54% 0.29 91.41% 0.22 7.13%
EfficientNetB0 2 0.03 99.33% 0.09 95.94% 0.06 3.39%
EfficientNetB0 3 0.05 98.58% 0.15 95.56% 0.11 3.02%
EfficientNetB0 4 0.41 85.53% 0.36 87.60% 0.06 2.07%

Based on Table 3, the highest training accuracy (99.96%) was achieved by MobilenetV2 in experiment
2. However, its relatively large validation accuracy GAP (6.17%) indicates potential overfitting. In
contrast, DensetNet201 in experiment 2 achieved a high validation accuracy of 97.37% with a smaller
accuracy GAP (2.57%), demonstrating better generalization. The GAP metric, which represents the
discrepancy between training and validation accuracy, is used to assess the model’s ability to generalize
to unseen data.

A lower GAP value indicates consistent performance across training and validation sets, suggesting
minimal overfitting. In contrast, a higher GAP reflects potential overfitting, where the model has likely
memorized the training data instead of learning generalizable patterns, thereby diminishing its
effectiveness on new inputs. Among the three architectures, DenseNet201 showed the most consistent
performance across different scenarios, balancing high accuracy with robust generalization. Furthermore,

a comparison of the training result graphs of the three pre-training models with several trials is shown
in Table 4.

The training results of three pre-trained models: DenseNet201, MobileNetV2, and EfficientNetBO,
across four experimental runs each. For every experiment, the corresponding training and validation
graphs are shown in terms of loss and accuracy. The loss graphs demonstrate a consistent downward
trend across epochs, with varying convergence speeds depending on the model and experiment, while
the accuracy graphs show the learning progression toward higher performance, generally stabilizing after
several epochs. DenseNet201 and EfficientNetB0 exhibit smoother convergence with relatively balanced
training and validation curves, whereas MobileNetV2 shows fluctuations in some experiments but still
achieves strong accuracy. Overall, these results provide a visual comparison of each model’s training
behavior and performance stability across multiple runs.

Based on Table 4, the DenseNet201 models consistently demonstrates fast and stable convergence,
with low validation loss and high, consistent validation accuracy, particularly in experiments 3 and 4.
This indicates that the model effectively learns relevant features without significant overfitting.
Meanwhile, MobileNetV2 shows a reasonable trend of increasing accuracy but with slight fluctuations
in the loss values, especially in experiments 2 and 3, suggesting decent performance that is, however, not
as optimal as DenseNet201. EfficientNetBO exhibits balanced performance, with steadily decreasing loss
curves and progressively improving validation accuracy across experiments, although it does not reach
the same level of accuracy as DenseNet201. Overall, these results suggest that the DenseNet201
architecture outperforms the other two in handling the task of solar module surface defect classification.
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3.2. Testing Results

To evaluate generalization, all trained models were tested using the testing subset. The testing results
is shown in Table 5, consisting of accuracy, precision, recall and F1 score values.

Table 5. Testing Results Using Transfer Learning of 3 Pre-trained CNN Models

Pre-trained Model Experiments Accuracy Precision Recall F1 Score
DenseNet201 1 94.17 94.17 94.17 94.17
DenseNet201 2 97.85 97.82 97.79 97.81
DenseNet201 3 93.44 93.44 93.44 93.44
DenseNet201 4 89.58 90.53 89.58 90.05
MobilenetV2 1 92.78 92.78 92.78 92.78
MobilenetV2 2 94.98 94.98 94.98 94.98
MobilenetV2 3 88.76 88.76 88.76 88.76
MobilenetV2 4 85.71 86.73 85.71 86.22

EfficientNetB0 1 91.94 91.94 91.94 91.94
EfficientNetB0O 2 97.25 97.25 97.25 97.25
EfficientNetB0 3 94.61 94.61 94.61 94.61
EfficientNetB0 4 87.47 87.57 87.47 87.52

According to Table 5, the test results of the three models using datasets with augmentation to balance
the number of datasets have higher accuracy, precision, recall, and F1-score values compared to datasets
without augmentation. The percentage increase in evaluation results is 2% to 5%. Other experiments
by changing hyperparameters produce evaluation results of 2% to 10%. Despite similar accuracy,
DenseNet201 provided more stable precision and recall, likely due to its dense connectivity that improves
feature reuse and learning depth. MobileNetV2 delivers strong performance with minimal complexity,
making it suitable for use in resource-constrained environments, despite its lower accuracy compared to
the other two model presets.

In terms of model efficiency, MobileNetV2 offers the smallest model size and fastest inference time,
making it attractive for edge deployment despite its slightly lower classification accuracy. DenseNet201,
although achieving the highest accuracy (97.85%), has a relatively larger parameter count and longer
inference time. EfficientNetBO provides a balance between performance and computational cost. These
trade-offs should be considered based on the computational resources available in practical deployment
scenarios.

Table 6 highlights a clear performance gap across models. Deep learning approaches, particularly
DenseNet201 and EfficientNetBO0, achieved the highest metrics across all categories, with most scores
around or above 97%. These results significantly outperform traditional machine learning methods such
as SVM (73.60%) and Random Forest (81.51%), underscoring the latter's limitations in modeling
complex visual patterns and texture-based defects. While the shallow CNN demonstrated reasonable
performance (84.53%), it lagged behind deeper transfer learning models. This gap affirms the
effectiveness of leveraging pre-trained architectures that are capable of capturing rich hierarchical features
essential for distinguishing subtle morphological differences in solar module surface defects. Overall, the
results validate the superiority of deep learning, particularly transfer learning, in handling high-
dimensional image data for surface defect classification tasks.

Table 6. Performance Comparison Across Models

Model Accuracy Precision Recall F1 Score
SVM 73.60 74.43 73.60 73.22
Random Forest 81.51 81.46 81.51 81.39
Shallow CNN 84.53 85.33 84.53 84.34
DenseNet201 97.85 97.82 97.79 97.81
MobilenetV2 94.98 94.98 94.98 94.98
EfficientNetB0 97.25 97.25 97.25 97.25

Cahyaningtyas et al. (Solar module defects classification using deep convolutional neural network)
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Fig. 3 presents the confusion matrix illustrating the classification performance of the best-performing
model. The diagonal elements indicate correct predictions for each defect category, with burn, clean,
and dirt showing particularly strong results, achieving 167, 169, and 187 true positives, respectively.
Crack and snail track classes also demonstrate solid performance with 139 and 157 correct classifications,
though minor misclassifications occurred across several categories.

Confusion Matrix

BURN

CLEAN

CRACK

Actual

DIRT

SNAIL_TRACK

CRACK

SNAIL_TRACK

Predicted

Fig. 3. Confusion matrix the highest accuracy in testing

The model achieved strong overall performance but struggled with consistent misclassification of the
crack class. As illustrated in Fig. 4, although some cracks were correctly identified (a), others were
mislabeled as clean (b), dirt (c), or snail track (d). These errors likely stem from various factors: the crack
in (b) appears subtle and low-contrast, making it easily mistaken for a clean surface; the image in (c)
shows a crack pattern that blends with textural noise, resembling dirt; while (d) presents visual traits
similar to snail tracks, such as diffuse patterns and irregular edges. These cases highlight the model’s
difficulty in distinguishing fine-grained structural anomalies, particularly under variable lighting and
surface noise conditions. Although lighting metadata was not available for explicit evaluation, the results
suggest the need for more robust feature extraction techniques, such as edge enhancement, texture
descriptors, or multi-scale representations, to improve crack detection under real-world conditions.

True: crack True: crock True: crock
Pred: clean Pred: dirt Pred: snoil trock

h
(© (d)

Fig. 4. Examples of misclassified images: (a) correctly classified crack, (b) crack mislabeled as clean, (c) crack
mislabeled as dirt, (d) crack mislabeled as snail track

While traditional thermal imaging and EL. methods are widely used for defect detection, they often
require specialized equipment and are sensitive to environmental conditions. In contrast, the RGB-based
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classification approach proposed in this research offers a cost-effective and scalable alternative,
particularly suitable for early-stage detection using standard imaging devices in field environments.

Despite achieving high classification performance, this study has not evaluated computational
efficiency metrics such as training time, inference speed, and model size. These aspects are crucial for
real-world deployment, particularly in edge-based or embedded systems for solar module monitoring.
Future research will include a thorough assessment of these efficiency parameters to determine the
feasibility of implementing the proposed models in practical environments.

The CNN-based classification model developed in this research can be effectively integrated into
existing solar power plant monitoring systems to improve inspection accuracy and maintenance
efficiency. By utilizing drone or fixed camera systems already deployed in many solar farms, images of
solar module surfaces can be captured routinely and analyzed automatically using the trained model.
Integration with edge computing devices, such as NVIDIA Jetson or Raspberry Pi, enables on-site image
processing, reducing latency and the need for high-bandwidth data transmission. This real-time
detection allows maintenance teams to quickly identify and respond to surface defects such as cracks,
burns, or dirt accumulation.

Furthermore, the model’s output can be linked to Supervisory Control and Data Acquisition
(SCADA) systems or IoT dashboards, allowing operators to monitor module conditions visually and
receive automated alerts for detected anomalies. Maintenance requests can be generated and prioritized
based on defect type and severity through integration with Computerized Maintenance Management
Systems (CMMS). Over time, the system can support predictive maintenance by tracking recurring
defect patterns. This practical integration offers a scalable and cost-effective solution for improving the
reliability, responsiveness, and operational efticiency of solar power plants.

4, Conclusion

This research developed a classification model for solar module surface defects using Deep
Convolutional Neural Networks (CNNs) with transfer learning. The model categorized five visually
observable defect types : clean, dirt, burn, crack, and snail track, using a combination of field-acquired
and public RGB datasets. To address data imbalance, augmentation techniques were applied. Among
the three evaluated models: DenseNet201, MobileNetV2, and EfficientNetB0. DenseNet201 achieved
the highest accuracy of 97.01% with a 224x224 image size, batch size of 64, dropout rate of 0.2, and
learning rate of 0.0001. The findings highlight the capability of CNN-based image classification to
enhance solar module inspection processes. The proposed model can be integrated into solar plant
monitoring systems to support faster, more accurate identification of surface anomalies, thereby
enhancing preventive maintenance and operational reliability. Research efforts moving forward will be
directed toward advancing the deployment of the proposed system in practical settings. A key limitation
of the current research is the reliance on RGB imagery without direct comparison to thermal imaging
for real-time fault detection, this will be explored in future work. To improve detection accuracy,
automated hyperparameter optimization will be implemented, reducing manual tuning efforts. Dataset
limitations will be addressed through GAN-based augmentation, simulating diverse lighting conditions
and rare defect patterns. For real-world deployment, model efficiency will be optimized for edge devices
(e.g., NVIDIA Jetson), coupled with user-friendly diagnostic interfaces. Additionally, future work will
include a comprehensive evaluation of computational efficiency metrics (such as training time, inference
speed, and model size) to ensure the model’s feasibility for real-time deployment in embedded solar
monitoring systems. These steps aim to bridge the gap between laboratory validation and field
implementation in solar power plants.
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