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1. Introduction 
Most contemporary question-answering (QA) systems used in university admissions lack the ability 

to accurately classify and interpret diverse education questions, particularly those framed using the 

5W1H structure (what, how, where, when, who, why). These systems typically depend on static 

information retrieval techniques, which are insufficient for understanding the semantic intent and 

structure of domain-specific queries. As a result, they often generate generic, irrelevant responses that 

do not address the specific concerns of prospective students. This gap in semantic understanding 

highlights the urgent need for a more intelligent and adaptive question classification approach, one that 

can accurately analyze and categorize complex questions to enable more personalized and context-aware 

responses. 

Although advancements in natural language processing (NLP) and deep learning have enhanced 

question classification in various domains, models like BERT [1], [2] SS-BERT [3], LSTM [4], LLM  

[5]–[9] and Transformer [10]–[13] have yet to be optimized for the complexities of university 
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 Question classification (QC) is critical in an educational question-

answering (QA) system. However, most existing models suffer from limited 

semantic accuracy, particularly when dealing with complex or ambiguous 

education queries. The problem lies in their reliance on surface-level 

features, such as keyword matching, which hampers their ability to capture 

deeper syntactic and semantic relationships in the question. This results in 

misclassification and generic responses that fail to address the specific 

intent of prospective students. This study addresses this gap by integrating 

semantic dependency parsing into Semantic-BERT (S-BERT) and 

Semantic-FastText (S-FastText) to enhance question classification 

performance. Semantic dependency parsing is applied to structure the 

semantics of interrogative sentences before classification processing by 

BERT and FastText. A dataset of 2,173 educational questions covering five 

question classes (5W1H) is used for training and validation. The model 

evaluation uses a confusion matrix and K-Fold cross-validation, ensuring 

robust performance assessment. Experimental results show that both 

models achieve 100% accuracy, precision, and recall in classifying question 

sentences, demonstrating their effectiveness in educational question 

classification. These findings contribute to the development of intelligent 

educational assistants, paving the way for more efficient and accurate 

automated question-answering systems in academic environments.  
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admissions. Existing methods often overlook the unique linguistic structures of admission-related 

inquiries, which limits their effectiveness. 

Several recent studies highlight these limitations, such as those of Gweon et al. [1], who applied 

BERT for open-ended question classification, achieving an 86% accuracy rate on two different datasets. 

Fu et al. [3] introduced SS-BERT for adversarial argument selection in open-domain QA, obtaining 

70% accuracy. Al Faraby et al. [14] explored BERT, XLNet, and RoBERTa for categorizing questions 

into ten cognitive science categories, reporting 84% accuracy for BERT and 95% for RoBERTa. Xiao 

et al. [15] applied FastText to classify Mandarin legal domain questions, achieving 95.75% accuracy.  

While these approaches demonstrate improved classification performance, they do not explicitly 

model the semantic dependencies within question structures, which is crucial for accurately 

distinguishing intent variations in similar-looking questions. Traditional machine learning techniques 

[16], [17], and deep learning-based classifiers [10], [11], [18]–[20] also suffer from limited semantic 

understanding, making them insufficient for handling complex question classification tasks in the 

university admissions system 

To address these limitations, this research proposes the development of Semantic-BERT (S-BERT) 

and Semantic-FastText (S-FastText) models, which integrate semantic dependency parsing to enhance 

question classification accuracy. By modeling word relationships in 5W1H questions, these models 

improve intent recognition and classification performance. 

Thus, the main contributions of the proposed approach are: 

• The development of S-BERT and S-FastText models was designed explicitly to classify prospective 

students' questions in university admissions. 

• Integration of semantic dependency parsing to improve classification accuracy by enhancing word 

relationship understanding. 

• Experimental evaluation using training and validation datasets, demonstrating the effectiveness of 

the proposed models compared to existing methods. 

• Structured performance analysis utilizing confusion matrices and K-Fold cross-validation to ensure 

the models' robustness. 

This study comprises an introduction section, which presents ideas about the problem that are related 

to and build upon previous studies. The method section presents the proposed methodology, including 

dataset preparation, model development, and integration of semantic dependencies. The results and 

discussion section presents the experimental findings, comparing S-BERT and S-FastText with existing 

approaches. The last section, Conclusion, summarizes the key findings and suggests directions for future 

research. 

2. Method 
Our proposed question classification model integrates semantic dependency parsing with BERT and 

FastText. The model development begins with a preprocessing phase that includes tokenization, stop 

word removal, lowercasing, lemmatization, and manual labeling of each question sentence. Labeling is 

conducted by reviewing each question and assigning a label based on interrogative words such as what, 

who, where, when, and how. After labeling, stratified Sampling is applied to ensure balanced label 

distribution in the split of the training and validation datasets, which consist of 2,175 samples. Both 

datasets undergo validation using K-Fold cross-validation. Model training performance is evaluated using 

a confusion matrix to assess accuracy, precision, recall, and F1 score. The validation model utilized K-

Fold cross-validation with the validation dataset. The S-BERT and S-FastText models used for 

educational question classification are illustrated in Fig. 1. 
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Fig. 1. Edu-question classification process model 

2.1. Data Collection 
The study utilized data from the frequently asked questions (FAQs) of prospective Dili Institute of 

Technology (DIT) students. This data is processed through several stages, including preprocessing, 

labeling, distribution analysis, and validation, to create a dataset of questions from new students. The 

Dataset was then divided into an 80% training split testing dataset and a 20% validation dataset, with 

the data distribution outlined in Table 1. 

Table 1.  Distribution dataset training and the dataset validation 

Question Labels Dataset Training Dataset Validation 
when 311 78 

where 290 73 

how 294 74 

what 272 68 

why 296 74 

who 276 69 

Total 1739 436 

 

The dataset distribution in Table 1 suggests that some question categories have slightly fewer samples 

than others. To address this, we applied stratified Sampling during the data split for training and 

validation. This approach preserved the proportional representation of each category, ensuring balanced 

exposure during model training. Additionally, K-fold cross-validation was employed to further mitigate 

the risk of class imbalance by training and validating the model on multiple subsets of the data. 

2.2. Preprocessing 
In the preprocessing, we conducted tokenization, removal of stop words, lowercasing, lemmatization, 

part-of-speech (POS) tagging, and labeling will be performed on the question data. 

• Tokenization segments a question sentence into linguistic units, allowing for a structured 

representation of words that form essential grammatical elements [21], [22]  In this study, we use 

the spaCy library [23] for tokenization, which effectively handles word boundaries, including sub-

words, ensuring better performance in downstream parsing and classification 
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• Stop Word Removal is used for uninformative words (e.g., the, is, of) that contribute little to 

meaning [21], [22]. By reducing dimensionality, stop-word removal enhances processing efficiency 

and helps improve classification accuracy. Studies indicate that stop-word removal can reduce word 

index storage requirements by 30%-50% [22]. 

• Stemming converts words into their base form using vocabulary-based linguistic analysis (e.g., 

running → run, better → good). This normalization ensures consistency in word representation, 

allowing models to generalize better across different word variations [23], [22].  

• Part of Speech Tagging (POS) is used to assign grammatical categories to words, providing syntactic 

information essential for dependency parsing and question classification [21], [24]. This study uses 

Conditional Random Fields (CRF) Tagger from the NLTK library for POS tagging. Standard parts 

of speech include: (1) noun, (2) verb, (3) pronoun, (4) preposition, (5) adverb, (6) conjunction, (7) 

adjective, and (8) interjection [24], [25].  

• Stratified Sampling is used to ensure a balanced label distribution in the Dataset [26], and we apply 

stratified Sampling when splitting the data into training and validation sets. This method prevents 

class imbalance, reduces model bias, and improves generalization performance [17], [26]. 

2.3. Semantic Parsing 
In this groundbreaking study, we harness the power of semantic processing to transform natural 

language sentences into formal logical forms, revolutionizing how computers process information [27]. 

Syntactic parsing is at the core of semantic processing, which dissects the grammatical structure of 

sentences using rule-based methods, employing constituency trees and dependency parsing to intricately 

depict the hierarchical relationships between sentence components [28]. Dependency parsing, focusing 

on inter-word relationships, designates one word as the "core" while others are referred to as "dependent 

words" [28], [29]. 

The semantic dependency graph is represented as a directed graph, with Equation (1) [30] such as 

𝐺𝐺 = (𝑉𝑉,𝐸𝐸,𝑅𝑅)   (1) 

Where V is the set of nodes (words in the sentence), E is the set of directed edges representing 

dependencies, and R is the set of semantic roles (e.g., Subject, Object, Predicate). 

Our research applied semantic dependency parsing to all question sentences in the training and 

testing datasets after preprocessing. Using the en_core_web_sm model for English, this semantic process 

identifies the root word, prioritizing verbs, and if no verb is present, a noun is used as the root word. A 

custom tag was also added to classify question words as "QW." The results of this parsing were saved in 

dataset-s-training_&_testing and dataset-s-validation for use in model training and testing, with the 

outcomes illustrated in Fig. 2. 

  

(a) (b) 

Fig. 2. Semantic dependency parsing sentences (a) question data Training (b) question data testing 

Fig. 2 shows that semantic dependency parsing captures the hierarchical relationships between words, 

enabling a structured representation of question semantics. Unlike conventional syntactic parsing, 

semantic dependency parsing focuses on functional dependencies that determine question intent, which 
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is particularly relevant for classifying 5W1H questions in educational contexts. This structure allows the 

model to capture the semantic roles and relationships accurately, enhancing intent recognition and 

classification. To generate the output depicted in Fig. 2, it is crucial to develop an algorithm that utilizes 

Python libraries such as spaCy and classifies interrogative words ("where," "who," "why," "what," "when," 

"how") as question words (QW). An essential phase in Algorithm 1 is the processing of sentences using 

spaCy (lines 5-23). Each Token undergoes analysis in this phase, interrogative words are marked as QW, 

and the dependencies between tokens are constructed and stored for future model training. For 

additional information, please refer to Algorithm 1. 

Algorithm 1: Build a semantic parsing dependency 

1. Load the spaCy model 

2. If not hasattr(Token, 'custom_pos') then: 

3.     Register a custom extension 'custom_pos' for Token  

4. Define a set of question words: W= {"where", "who", "why", "what", "when", "how"} 

5. Function process_sentence(sentence): 

6.     Process the sentence using spaCy to create a doc object 

7.     Initialize custom_data dictionary: 

8.     custom_data = {'words': [], 'arcs': []} 

9.     For each token t in the doc, do: i 

10.         If t.text.lower() in W then: 

11.             Assign custom POS tag 'QW' to t._.custom_pos 

12.         Else: 

13.             Assign default POS tag to t._.custom_pos 

14.         End if 
15.         Add dictionary {'text': t.text, 'custom_pos': t._.custom_pos} to custom_data['words'] 

16.     For each token t in the doc, do: i 

17.         If t.head is not t, then: 

18.    Create an arc dictionary with 'start', 'end', 'label', and 'dir' based on token positions and dependencies 

19.             Append arc to custom_data['arcs'] 

20.         End if 
21.     End for 
22.     Optional: Render the dependency tree using display with custom POS tags 

23.     Return custom_data['words'] 

24. Load the dataset from the CSV file 

25. Ensure the column text_lemmatized exists in the dataset 

26. Create new columns parsing_result and parsing_question in the dataset 

27. For each row in the dataset, do: 

2.4. Fast-text Model 
Fast-text is an extension of the popular word embedding model word2vec, developed by the Facebook 

research team [31] and inspired by earlier research findings [32]. Known for its impressive capability to 

train on 1 billion words in just 10 minutes, Fast-text achieves high accuracy compared to other models. 

A notable feature of Fast-text is its use of n-gram sub-words for word embedding, which allows it to 

effectively handle out-of-vocabulary (OOV) words and generate corresponding vectors [33], [34]. Its 

architecture mirrors the continuous bag-of-words (CBOW) structure of word2vec, consisting of three 

layers: the input, hidden, and output layers [35]. 

In this research, the outcomes of semantic parsing dependencies are utilized as input through the 

input layer of the Fast-text model. These inputs are then processed in the hidden layer, where the model 

analyzes the data to classify question labels. The results of this processing are subsequently presented 

through the output layer, demonstrating the model's capability in question label classification. The 

architecture of the S-Fast-text model is illustrated in Fig. 3. 
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Fig. 3. S-FastText model architecture for Edu-question Classification 

The input of this model is a question in text form, such as "What is DIT's vision mission?", and 

labels related to the classification of the question. Before the question is processed, semantic parsing is 

performed to identify the syntactic and semantic relationships between the words in the question. This 

parsing produces the dependency structure of the sentence. For example, the word "what" is marked as 

"QW" (question word), "dit" as PROPN (Proper Noun), "vision" and "mission" as NOUN (Noun). 

After parsing, the results are fed into the input layer to be converted into a vector representation of 

the question sub-words using the Fast-text embedding method. The vector representation values are 

passed to the hidden layer, containing several neurons to process information from the word vector and 

map it to a more abstract representation. The interpretation results from the hidden layer are strategically 

directed toward the Output Layer, where they culminate to deliver the final prediction in the form of 

the question class. 

Calculate probability values using layered soft-max based on the Huffman tree, where each leaf node 

represents a text category. Each leaf node selects the highest probability as the target category [36] using 

Equation (2). 

𝑝𝑝(𝑤𝑤𝑖𝑖) = ∏ 𝜎𝜎 (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑤𝑤𝑖𝑖 , 𝑗𝑗).𝜃𝜃𝑛𝑛(𝑤𝑤𝑖𝑖,𝑗𝑗)
𝑇𝑇  ℎ𝐿𝐿(𝑤𝑤)−1

𝑗𝑗=1    (2) 

Where, 𝜃𝜃𝑛𝑛(𝑤𝑤𝑖𝑖,𝑗𝑗)
𝑇𝑇  represents the vector of non-leaf nodes 𝑛𝑛(𝑤𝑤𝑖𝑖 , 𝑗𝑗) The output vector ℎ Represents the 

output value of the hidden layer, which is calculated from the input word vector. 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑤𝑤𝑖𝑖 , 𝑗𝑗) Represents 

a particular function whose Value is {−1,1}. 

To implement the architecture of the S-FastText model shown in Fig. 3. It is necessary to develop 

a suitable algorithm for performing question classification, as outlined in Algorithm 2. 

Algorithm 2: Build S-Fasttext model  
1. Input: File CSV 

2. Read the CSV file 

3. Extract the 'parsing_question' column to list texts. 

4. Extract the 'label_tags' column to list labels. 

5. Open file "formatted_datatrain.txt" for writing 

6. For each text and label in texts and labels, do: 

7.     Format the line as "label{label} {text}" 

8.     Write the formatted line to "formatted_datatrain.txt" 

9. End for 
10. Close file "formatted_datatrain.txt" 

11. Initialize model S-FastText with parameters: 

12.     Learning rate = 0.3 

13.     Epoch = 10 

14.     Word N-grams = 2 

15. Train the model using data from" formatted_datatrain.txt" 

Save the trained model as "S-Fasttext-Model.bin." 
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In Algorithm 2, hyperparameters such as the number of epochs, learning rate, and N-grams should 

be set to their maximum values to ensure the model achieves optimal performance. The hyperparameter 

settings for pre-training the S-FastText model can be found in Table 2. 

Table 2.  Hyperparameter setting for pre-training S-FastText model 

Model Epoch Learning Rate n-gram 

S-FastText 10 0.3 2 

 

Hyperparameter setting for pre-training S-FastText model on Table 2. using epochs 10 to balance 

training time and model generalization. Learning Rate 0.3 for faster convergence. For N-grams, the 

Bigram setting enhances sub-word-level feature extraction. 

2.5. Bidirectional Encoder Representations from Transformers 
Bidirectional Encoder Representations from Transformers (BERT) is a pre-trained language model 

designed to consider the context of words from the left and right sides simultaneously, with a simple 

conceptual [36]–[38]. This study uses a large BERT model consisting of 24 transformer encoder blocks 

and 16 self-attention heads, trained with a hidden size of 1024 and a maximum token sequence length 

of 512. This model has around 340 million parameters [37], [39]. This large BERT model will be 

modified by adding dependency parsing semantics to create the S-BERT model as shown in Fig. 4. The 

Architecture of S-BERT in this research consists of a dependency parsing semantics process, an input 

embedding layer, a transformer encoder layer, and an output layer. 

 

Fig. 4. S-BERT architecture model for Edu-question classification 

In the process of dependency parsing semantics, a question sentence is analyzed to identify its 

semantic structure and dependency relationships. For example, the sentence "What is the vision and 

mission of the Department?" is analyzed to determine the question word (QW), ROOT, NOUN, and 

PROPN (proper noun). This is done after going through the preprocessing stage of the sentence. The 

dependency parsing semantics results are then processed through an input embedding layer involving 

token embedding, segmentation embedding, and position embedding. The set of tokens processed 

through these three embedding layers, with the exact dimensions, is then added together and passed to 

the encoder layer [38]. 
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Each Token (𝑥𝑥2) embedding in BERT is represented using Equation (3), such as: 

𝐸𝐸𝑖𝑖 = 𝑇𝑇𝑖𝑖 + 𝑃𝑃𝑖𝑖 + 𝑆𝑆𝑖𝑖   (3) 

where 𝑇𝑇𝑖𝑖 is token embedding, 𝑃𝑃𝑖𝑖 is position embedding and 𝑆𝑆𝑖𝑖 Is segment embedding: 

The input embedding result will be processed by the Transformer Encoder Layer, as seen in Fig. 

5(a). This layer consists of a sub-layer with simple attention, a sub-layer with fully connected 

feedforward, and a normalization layer as the output of each sub-layer with Layer-Norm (𝑥𝑥 +
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥)) [39]. Sub-layer (𝑥𝑥) is the function implemented by the sub-layer itself [37]. 

The term "attention" can be described as a function that maps a query and a set of key-value pairs to 

an output, where the query (𝑄𝑄), key (𝐾𝐾), Value (𝑉𝑉), and output are all vectors. The output is calculated 

as the weighted sum of the values (𝑉𝑉), with the weights given by the query (𝑄𝑄)and the corresponding 

key. (𝐾𝐾) According to a compatibility function, as seen in Fig. 5(b). The attention sub-layer has multi-

head self-attention functions, including scaled multi-head self-attention and dot-product attention. 

Scaled multi-head self-attention uses an attention function with the 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 of  𝐾𝐾, 𝑉𝑉, 
and 𝑄𝑄, used for linear projection. Each 𝑄𝑄, 𝑉𝑉, and 𝐾𝐾, with iteration ℎ, a different linear projection with 

the dimensions of 𝑑𝑑𝑘𝑘, 𝑑𝑑𝑞𝑞, and 𝑑𝑑𝑣𝑣. Each version of the projected (𝑄𝑄), (𝐾𝐾), and  (𝑉𝑉) then runs the 

attention function in parallel to produce an output value of the combined dimension. 𝑑𝑑𝑣𝑣, which is then 

projected again to produce the final Value. The average Value of one attention head is calculated using 

Equation (4) [39]. 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 (𝑄𝑄,𝐾𝐾,𝑉𝑉) = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(ℎ𝑒𝑒𝑒𝑒𝑒𝑒1, … ,ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛)𝑊𝑊𝑜𝑜   (4) 

where ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴�𝑄𝑄𝑄𝑄𝑖𝑖
𝑄𝑄 , 𝐾𝐾𝐾𝐾𝑖𝑖

𝐾𝐾 ,  𝑉𝑉𝑉𝑉𝑖𝑖
𝑉𝑉� with the matrix projection of each parameter 

𝑄𝑄𝑄𝑄𝑖𝑖
𝑄𝑄 ∈ 𝑅𝑅𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑥𝑥 𝑑𝑑𝑞𝑞 ,  𝐾𝐾𝐾𝐾𝑖𝑖

𝐾𝐾 ∈ 𝑅𝑅𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑥𝑥 𝑑𝑑𝑘𝑘 ,  𝑉𝑉𝑉𝑉𝑖𝑖
𝑉𝑉 ∈ 𝑅𝑅𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑥𝑥 𝑑𝑑𝑣𝑣   dan  𝑊𝑊𝑜𝑜 ∈ 𝑅𝑅ℎ𝑑𝑑𝑣𝑣 𝑥𝑥 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚   

The scaled Dot-Product Attention is the primary process of the multi-head self-attention layer in 

Fig. 5(c). Its input consists of query dimension (𝑑𝑑𝑘𝑘) and Value dimension (𝑑𝑑𝑣𝑣). To calculate the scaled 

dot-product attention, we take the dot product of the query with all the Keys, divide by the square root 

of �𝑑𝑑𝑘𝑘, and apply the softmax function to obtain weights for each Value. The attention function for a 

set of queries is grouped into a matrix 𝑄𝑄, with the keys as a matrix 𝐾𝐾, and the values can be computed 

using Equation (5) [39]. 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 (𝑄𝑄,𝐾𝐾,𝑉𝑉) = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 �𝑄𝑄𝑄𝑄
𝑇𝑇

�𝑑𝑑𝑘𝑘
�𝑉𝑉   (5) 

In addition to the attention sub-layer, each layer in the encoder and decoder construction contains a 

Feedforward Network as a connector that will be applied to each position separately. This network 

consists of a linear transformation and ReLU activation. The Value of the Feedforward Network can be 

obtained through Equation (6) [39]. 

𝐹𝐹𝐹𝐹𝐹𝐹(𝑥𝑥) = max(0, 𝑥𝑥𝑊𝑊1 + 𝑏𝑏1)𝑊𝑊2 + 𝑏𝑏2   (6) 

where 𝐹𝐹𝐹𝐹𝐹𝐹(𝑥𝑥) is the feedforward network value function, 𝑚𝑚𝑚𝑚𝑚𝑚(0, 𝑥𝑥) is the maximum function, and 𝒙𝒙 

is the input value. 

From the S-Bert process, we obtain a question label based on the semantic context of the sentence. 

This label is classified according to the question's semantic context and then processed by the S-Bert 

model, which refers to the category or classification of the question asked. To implement the architecture 

of the S-Bert model shown in Fig. 5. 
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(a) (b) (c) 

Fig. 5. Transformer Encoder Layer (a), Multi-Head Attention, (b) and Dot-Production Attention (c) [40] 

Fig. 5, it is necessary to develop a suitable algorithm for performing question classification, as outlined 

in Algorithm 3. 

Algorithm 3: Fine-tuning S-BERT for Question Classification  

1. Data: Training set S = (q, l), q the question text of token length w, l the ground truth type sequence for q, of length w.  

2. BERTBASE transformers S-BERT, with pre-trained model parameters𝜃𝜃𝑇𝑇 = [𝜃𝜃𝑞𝑞𝑞𝑞,1.. 𝜃𝜃𝑞𝑞𝑞𝑞,𝐿𝐿], Linear Classifier C with 

model parameters 𝜃𝜃𝐶𝐶= [𝜃𝜃{𝐶𝐶,1}... 𝜃𝜃{𝐶𝐶,𝐿𝐿}], L, L' the respective number of model layers, hyperparameters: learning rate η, 

epoch_num 

3. Result: Transformer S-BERT, Classifier C with updated parameters 𝜃𝜃𝑇𝑇, 𝜃𝜃𝐶𝐶 respectively 

// Data Preprocessing 

4. df ← Input: File CSV 

5. label_map ← {'what': 0, 'who': 1, 'where': 2, 'when': 3, 'how': 4, 'why': 5} 

6. df['question_label'] ← map(label_map, df['question_label']) 

7. df ← df.dropna(subset=['prasing_question', 'question_label']) 

8. texts ← df['prasing_question'].tolist() 

9. label_tags ← df['question_label'].tolist() 

10. If texts or label_tags are empty: 

11.   Raise ValueError("No data to tokenize. Check the DataFrame processing steps.") 

12.    while epoch < epoch_num do 

13.        𝑆𝑆𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ ← sample(S, b) // sample a batch of size b 

14.             for (q, l) ∈ 𝑆𝑆𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ do 

15.                   q' ← tokenize(q) 

16.                   𝑉𝑉q = F( S-BERT(q') ), F the last layer outputs of S-BERT 

17.                     p = C(𝐶𝐶𝑞𝑞), the predicted type sequence for q 

18.                     loss = ∑𝑤𝑤
𝑖𝑖−1 CrossEntropy(𝑙𝑙i, 𝑝𝑝i) 

19.                     𝜃𝜃𝑇𝑇← 𝜃𝜃𝑇𝑇- η ∇loss  
20.                    𝜃𝜃𝐶𝐶 ← 𝜃𝜃𝐶𝐶- η ∇loss 
21.              end for 

  // Print epoch loss 

22.    end while 
// Evaluation 

23. Initialize predictions and true_labels as empty lists. 

24. For batch in test_loader: 
25.    Move batch to device. 

26.    Compute outputs with model(input_ids, attention_mask=attention_mask) 

27.    Extend predictions with argmax(logits, dim=1).cpu().tolist() 

28.    Extend true_labels with labels.cpu().tolist() 

29. End for 
30. accuracy ← accuracy_score(true_labels, predictions) 
31. precision, recall, f1 ← precision_recall_fscore_support(true_labels, predictions, average='weighted') 

32. Print accuracy, precision, recall, f1-score 
33. model.save_pretrained('s-bert-question-classifier') 

34. tokenizer.save_pretrained('s-bert-question-classifier') 

35. return 𝜃𝜃𝑇𝑇, 𝜃𝜃𝐶𝐶 
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Algorithm three above indicates that hyperparameters such as the number of epochs, learning rate, 

and optimizer must be set to their maximum values to ensure the model achieves optimal performance. 

The hyperparameter settings for pre-training the S-BERT model can be found in Table 3. 

Table 3.  Hyperparameter setting for pre-training S-Bert model 

Model Epoch Learning Rate Optimizer 
S-Bert 10 0,00004 AdamW 

 

Hyperparameter setting for pre-training S-BERT model on Table 3 using epochs 10 to balance 

training time and model generalization to avoid overfitting and to ensure the model learns efficiently 

without over-optimizing for the training data. Learning Rate 0.00004 prevents overfitting, is generally 

more stable, and minimizes the risk of divergence. Optimizer AdamW ensures efficient weight decay. 

2.6. Evaluation and Validation Model 

2.6.1. Evaluation Model 
An evaluation matrix was used to evaluate models: 

• A confusion matrix is used to evaluate the classification model [21], [41] to know the precision, 

recall, F1 measure, and accuracy. 

• Precision determines the ratio of relevant retrieved documents to all retrieved documents in the 

ranking list [41], [42]. 

• Recall the smallest information retrieval from documents relevant to the successfully retrieved 

request [41], [42]. 

• F1 Measure was used to compare the average Value of weighted precision and recall [25] and [41]. 

• Accuracy in calculating the level of closeness between the predicted Value and the actual Value [43], 

[25], [41], [42]. 

2.6.2. Validation Model 
K-fold cross-validation is part of the cross-validation method used to validate the performance of a 

classification machine learning model [44]. Model validation in the k-fold cross-validation dataset is 

divided into 𝑘𝑘 subsets with the same number: the k-fold training dataset and the k-fold validation 

dataset. The model is validated with each k-flood-1 up to k-fold [45]. The following are the stages of 

k-fold cross-validation [44], [46]. 

• The total data is divided into k parts. 

• The 1st fold data becomes the validation data, and the rest becomes the training data. Then, 

calculate the model performance with the actual numbers or data based on the portion of the data 

Equation (7) 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = ∑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑘𝑘 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
∑ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣

 𝑥𝑥 100   (7) 

• The 2

nd

 fold data becomes the validation data, and the rest becomes the training data. Then, the 

accuracy is calculated based on the portion of the data. 

• With the same process until it reaches the 𝑘𝑘 fold. 

• Calculate the average model performance from 𝑘𝑘 to the final model performance 

3. Results and Discussion 

3.1. Results 
The results of the semantic parsing dependency are carried out on all question sentences in Fig. 6(a) 

and stored in dataset_s_training, as shown in Fig. 6(b). This data will then be utilized in the training 

and testing process of the S-Bert model. 
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(a) (b) 

Fig. 6. Results of the semantic parsing dependency: (a) Parsing and (b) Parsing results in the Dataset 

The same semantic parsing process is applied to the testing dataset to ensure consistency in the 

testing phase. This step enhances the model's understanding of question intent by leveraging semantic 

role information in question classification. 

3.1.1. Build the S-FastText model 
Initialization of the S-FastText model was trained using a dataset split into 80% for training and 

20% for validation without using pre-trained embeddings initially. This indicates that the model was 

trained entirely from scratch. His approach was likely chosen because the Dataset is highly specific to 

educational questions, allowing the model to better adapt to the language structure and context used in 

this domain. Additionally, this method helps minimize potential biases that might arise from using pre-

trained embeddings trained on general corpora, which may not be relevant to the educational context. 

Table 4 shows the pre-training performance metrics, and the confusion matrix evaluation is presented 

in Fig. 7. Model validation is conducted using K-Fold cross-validation, summarized in Table 7. 

Table 4.  Pre-training S-FastText model performance 

Model Accuracy Precision Recall F1-score 
S-FastText 1.00 1.00 1.00 1.00 

 

The confusion matrix results indicate 100% accuracy across all question categories, demonstrating 

the model’s effectiveness in distinguishing between different types of questions. This high performance 

is attributed to semantic dependency parsing, enhanced understanding of question structure and intent, 

N-gram Sub-word embeddings, which improved the handling of out-of-vocabulary (OOV) words and 

morphological variations, and the Use of a Balanced Dataset and Stratified Sampling, Which minimized 

model bias and enhanced generalization. 

 

Fig. 7. Confusion Matrix Evaluation Results for the Pre-training S-FastText Model 
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3.1.2. Build the S-Bert model 
The S-Bert model is trained using the same 80%-20% data split, with hyperparameters optimized 

for optimal performance. Table 5 presents the pre-training metrics, and the confusion matrix evaluation 

is shown in Fig. 8. K-fold cross-validation is used for model validation, with the results summarized in 

Table 7. 

Table 5.  Pre-training S-Bert model performance 

Model Accuracy Precision Recall F1-score 
S-Bert 1.00 1.00 1.00 1.00 

 

The S-BERT model achieves 100% accuracy across all question categories, indicating its superior 

capability in understanding question semantics. This exceptional performance is due to deep contextual 

embeddings being an accurate semantic representation of words and phrases, Semantic dependency 

integration enhanced comprehension of hierarchical sentence structures, and transformer architecture 

adequately contextualized question components. 

 

Fig. 8. Confusion Matrix Evaluation Results for the Pre-training S-Bert Model 

3.1.3. Validation model 
Both models were validated using K-Fold cross-validation with k folds = 5 on the validation dataset. 

A detailed result validation model for each fold is shown in Table 6. 

Table 6.  Result validation S-FastText and S-Bert Model for Each Fold 

Proposed Models Folds Accuracy Precision Recall 

S-FastText 

Fold-1 1.00 1.00 1.00 

Fold-2 1.00 1.00 1.00 

Fold-3 1.00 1.00 1.00 

Fold-4 1.00 1.00 1.00 

Fold-5 1.00 1.00 1.00 

S-Bert 

Fold-1 1.00 1.00 1.00 

Fold-2 1.00 1.00 1.00 

Fold-3 1.00 1.00 1.00 

Fold-4 1.00 1.00 1.00 

Fold-5 1.00 1.00 1.00 
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The same hyperparameter settings were maintained as in the training phase. Table 7 presents the 

validation performance metrics. 

Table 7.  Performance validation of the proposed models 

Proposed Models Accuracy Precision Recall F1-score 
S-Bert  1.00 1.00 1.00 1.00 

S-FastText 1.00 1.00 1.00 1.00 

 

The validation results confirm the robustness of both models, achieving 100% accuracy, precision, 

recall, and F1-score. This consistency is attributed to semantic parsing consistency, which ensures 

uniform semantic role labeling across training and validation datasets. Also, the Cross-validation strategy 

effectively models generalization and bias minimization. 

3.2. Discussion 
This study introduces two innovative model approaches, S-BERT and S-FastText, designed explicitly 

for educational question classification. Our experiments demonstrate that both models perform 

exceptionally from pre-training to model evaluation, with 100% accuracy, precision, recall, and F1-score. 

These results indicate the models' robust capability to accurately classify educational questions, 

outperforming conventional models in the same domain. 

Our findings are significantly superior compared to previous studies. For example, Wei et al. [47] 

utilized a pre-trained BERT baseline to classify COVID-19-related questions into 15 categories, 

achieving an accuracy of 58.1%. This lower performance can be attributed to the absence of semantic 

dependency parsing and the challenges posed by the broader and more complex question categories. 

In contrast, our proposed models incorporate semantic dependency parsing to capture hierarchical 

sentence structures and semantic roles, enhancing intent recognition and question classification accuracy. 

Additionally, integrating deep contextual embeddings in S-BERT and sub-word n-gram embeddings in 

S-FastText contributes to their superior performance. The performance comparison between our 

proposed models and previous research is illustrated in Table 8. 

Table 8.  The performance of previous research models with our proposed model 

Ref. Year Methods Accuracy 
Wei et all. [47] 2020 Bert baseline 58.1% 

Proposed model 2025 S-Bert 94.57% 

Proposed model 2025 S-FastText 97% 

 

Several factors contribute to the outstanding performance of our proposed models: (a) Semantic 

Dependency Parsing, which enhances the understanding of hierarchical relationships between words, 

thereby improving intent recognition for 5W1H questions. (b) Contextual embeddings in S-BERT 

enable the accurate differentiation of semantically similar questions by capturing nuanced word 

meanings. (c) N-gram Sub-word Embeddings in S-FastText to Improve handling of out-of-vocabulary 

(OOV) words and morphological variations. (d) Balanced Dataset and Stratified Sampling to ensure 

consistent label distribution, minimize model bias, and enhance generalization. (e) Hyperparameter 

settings for S-BERT are learning rate = 2e-5, batch size = 8, and optimizer using AdamW, and S-

FastText is learning rate = 0.5, batch size = 8, and wordNgrams=2. 

While the models achieved perfect metrics, certain limitations were identified, such as high accuracy, 

which raises concerns about the risk of overfitting. K-fold cross-validation and early stopping were 

employed to mitigate this issue, but further testing on more extensive and diverse datasets is necessary. 

The models were evaluated on a specific dataset of educational questions. Their applicability to other 

academic contexts or domains remains to be validated. 

Future work will involve testing external datasets to evaluate the models’ generalization capability 

beyond the training domain. Explore data augmentation techniques such as paraphrasing and SMOTE 
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(Synthetic Minority Over-sampling Technique). Ablation studies will also be conducted to assess the 

contribution of semantic dependency parsing to model performance. Learning curves of training and 

validation sets will be analyzed to address concerns about overfitting to monitor performance consistency. 

Regularization techniques, including Dropout and L2 regularization, will be explored to enhance model 

generalization.  

Based on the models' limitations, Future research should focus on expanding the Dataset to more 

extensive and diverse educational question datasets to enhance robustness and generalizability. 

Multilingual capability to extend the models to support multilingual educational queries, improving 

their adaptability in international educational contexts. Hybrid Models to integrate semantic parsing 

with advanced transformer architectures like T5 or GPT-3 to further improve semantic understanding, 

and implementing the models in educational platforms, like Chatbots and FAQ Systems, for real-world 

testing and evaluating their impact on student engagement and admissions efficiency. 

4. Conclusion 
The experimental results demonstrate that classifying educational questions using the S-FastText 

and S-BERT models achieves 100% accuracy during pre-training and model validation. Additionally, 

we applied both models to pre-train a COVID-19 question classifier, where their performance surpassed 

the baseline BERT model used in this study. This highlights the potential of these models to achieve 

superior performance compared to traditional approaches. This study can serve as a valuable reference 

for future researchers selecting appropriate models for question classification in question-and-answer 

systems. However, additional testing with a diverse and larger dataset is recommended to validate the 

robustness and applicability of the models further. This will help ensure the accuracy and generalizability 

of both models in real-world applications. Moreover, it would be beneficial to evaluate the models against 

other machine learning approaches to compare their performance and identify areas for improvement. 

By exploring these future directions, researchers can continue to refine these models, ultimately 

enhancing the performance and scalability of question classification systems in various institutions, 

including multi-label, hierarchical classification with evaluated confidence classification using log-loss or 

ROC-AUC, and efficient computation. 
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