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ARTICLE INFO ABSTRACT

Question classification (QC) is critical in an educational question-

Article history answering (QA) system. However, most existing models suffer from limited
Received January 23, 2025 semantic accuracy, particularly when dealing with complex or ambiguous
Revised May 7, 2025 education queries. The problem lies in their reliance on surface-level
Accepted May 14, 2025 features, such as keyword matching, which hampers their ability to capture
Available online May 31, 2025 deeper syntactic and semantic relationships in the question. This results in

misclassification and generic responses that fail to address the specific
intent of prospective students. This study addresses this gap by integrating
Question classification semantic dependency parsing into Semantic-BERT (S-BERT) and
Semantic parsing Semantic-FastText (.S—FastText) to ephaqce question classification
S-Bert performance. Semantic dependency parsing is applied to structure the
semantics of interrogative sentences before classification processing by
BERT and FastText. A dataset of 2,173 educational questions covering five
question classes (5W1H) is used for training and validation. The model
evaluation uses a confusion matrix and K-Fold cross-validation, ensuring
robust performance assessment. Experimental results show that both
models achieve 100% accuracy, precision, and recall in classifying question
sentences, demonstrating their effectiveness in educational question
classification. These findings contribute to the development of intelligent
educational assistants, paving the way for more efficient and accurate
automated question-answering systems in academic environments.
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1. Introduction

Most contemporary question-answering (QA) systems used in university admissions lack the ability
to accurately classify and interpret diverse education questions, particularly those framed using the
5WI1H structure (what, how, where, when, who, why). These systems typically depend on static
information retrieval techniques, which are insufficient for understanding the semantic intent and
structure of domain-specific queries. As a result, they often generate generic, irrelevant responses that
do not address the specific concerns of prospective students. This gap in semantic understanding
highlights the urgent need for a more intelligent and adaptive question classification approach, one that
can accurately analyze and categorize complex questions to enable more personalized and context-aware
responses.

Although advancements in natural language processing (NLP) and deep learning have enhanced
question classification in various domains, models like BERT [1], [2] SS-BERT [3], LSTM [4], LLM
[5]-[9] and Transformer [10]-[13] have yet to be optimized for the complexities of university
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admissions. Existing methods often overlook the unique linguistic structures of admission-related
inquiries, which limits their effectiveness.

Several recent studies highlight these limitations, such as those of Gweon et al. [1], who applied
BERT for open-ended question classification, achieving an 86% accuracy rate on two different datasets.
Fu et al. [3] introduced SS-BERT for adversarial argument selection in open-domain QA, obtaining
70% accuracy. Al Faraby et al. [14] explored BERT, XLNet, and RoBERTa for categorizing questions
into ten cognitive science categories, reporting 84% accuracy for BERT and 95% for RoBERTa. Xiao
et al. [15] applied FastText to classify Mandarin legal domain questions, achieving 95.75% accuracy.

While these approaches demonstrate improved classification performance, they do not explicitly
model the semantic dependencies within question structures, which is crucial for accurately
distinguishing intent variations in similar-looking questions. Traditional machine learning techniques
[16], [17], and deep learning-based classifiers [10], [11], [18]—[20] also suffer from limited semantic
understanding, making them insufficient for handling complex question classification tasks in the
university admissions system

To address these limitations, this research proposes the development of Semantic-BERT (S-BERT)
and Semantic-FastText (S-FastText) models, which integrate semantic dependency parsing to enhance
question classification accuracy. By modeling word relationships in 5W1H questions, these models
improve intent recognition and classification performance.

Thus, the main contributions of the proposed approach are:

*  The development of S-BERT and S-FastText models was designed explicitly to classify prospective
students' questions in university admissions.

*  Integration of semantic dependency parsing to improve classification accuracy by enhancing word
relationship understanding.

e Experimental evaluation using training and validation datasets, demonstrating the eftectiveness of
the proposed models compared to existing methods.

*  Structured performance analysis utilizing confusion matrices and K-Fold cross-validation to ensure
the models' robustness.

This study comprises an introduction section, which presents ideas about the problem that are related
to and build upon previous studies. The method section presents the proposed methodology, including
dataset preparation, model development, and integration of semantic dependencies. The results and
discussion section presents the experimental findings, comparing S-BERT and S-FastText with existing
approaches. The last section, Conclusion, summarizes the key findings and suggests directions for future
research.

2. Method

Our proposed question classification model integrates semantic dependency parsing with BERT and
FastText. The model development begins with a preprocessing phase that includes tokenization, stop
word removal, lowercasing, lemmatization, and manual labeling of each question sentence. Labeling is
conducted by reviewing each question and assigning a label based on interrogative words such as what,
who, where, when, and how. After labeling, stratified Sampling is applied to ensure balanced label
distribution in the split of the training and validation datasets, which consist of 2,175 samples. Both
datasets undergo validation using K-Fold cross-validation. Model training performance is evaluated using
a confusion matrix to assess accuracy, precision, recall, and F1 score. The validation model utilized K-
Fold cross-validation with the validation dataset. The S-BERT and S-FastText models used for
educational question classification are illustrated in Fig. 1.
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2.1. Data Collection

The study utilized data from the frequently asked questions (FAQs) of prospective Dili Institute of
Technology (DIT) students. This data is processed through several stages, including preprocessing,
labeling, distribution analysis, and validation, to create a dataset of questions from new students. The
Dataset was then divided into an 80% training split testing dataset and a 20% validation dataset, with
the data distribution outlined in Table 1.

Table 1. Distribution dataset training and the dataset validation

Question Labels Dataset Training Dataset Validation
when 311 78
where 290 73
how 294 74
what 272 68
why 296 74
who 276 69
Total 1739 436

The dataset distribution in Table 1 suggests that some question categories have slightly fewer samples
than others. To address this, we applied stratified Sampling during the data split for training and
validation. This approach preserved the proportional representation of each category, ensuring balanced
exposure during model training. Additionally, K-fold cross-validation was employed to further mitigate
the risk of class imbalance by training and validating the model on multiple subsets of the data.

2.2. Preprocessing

In the preprocessing, we conducted tokenization, removal of stop words, lowercasing, lemmatization,
part-of-speech (POS) tagging, and labeling will be performed on the question data.

*  Tokenization segments a question sentence into linguistic units, allowing for a structured
representation of words that form essential grammatical elements [21], [22] In this study, we use
the spaCy library [23] for tokenization, which effectively handles word boundaries, including sub-
words, ensuring better performance in downstream parsing and classification
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*  Stop Word Removal is used for uninformative words (e.g., the, is, of) that contribute little to
meaning [21], [22]. By reducing dimensionality, stop-word removal enhances processing efficiency
and helps improve classification accuracy. Studies indicate that stop-word removal can reduce word
index storage requirements by 30%-50% [22].

*  Stemming converts words into their base form using vocabulary-based linguistic analysis (e.g.,
running — run, better — good). This normalization ensures consistency in word representation,
allowing models to generalize better across different word variations [23], [22].

*  Part of Speech Tagging (POS) is used to assign grammatical categories to words, providing syntactic
information essential for dependency parsing and question classification [21], [24]. This study uses
Conditional Random Fields (CRF) Tagger from the NLTK library for POS tagging. Standard parts
of speech include: (1) noun, (2) verb, (3) pronoun, (4) preposition, (5) adverb, (6) conjunction, (7)
adjective, and (8) interjection [24], [25].

*  Stratified Sampling is used to ensure a balanced label distribution in the Dataset [26], and we apply
stratified Sampling when splitting the data into training and validation sets. This method prevents
class imbalance, reduces model bias, and improves generalization performance [17], [26].

2.3. Semantic Parsing

In this groundbreaking study, we harness the power of semantic processing to transform natural
language sentences into formal logical forms, revolutionizing how computers process information [27].
Syntactic parsing is at the core of semantic processing, which dissects the grammatical structure of
sentences using rule-based methods, employing constituency trees and dependency parsing to intricately
depict the hierarchical relationships between sentence components [28]. Dependency parsing, focusing
on inter-word relationships, designates one word as the "core" while others are referred to as "dependent

words" [28], [29].
The semantic dependency graph is represented as a directed graph, with Equation (1) [30] such as

G =(V,E,R) (D

Where Vis the set of nodes (words in the sentence), E is the set of directed edges representing
dependencies, and R is the set of semantic roles (e.g., Subject, Object, Predicate).

Our research applied semantic dependency parsing to all question sentences in the training and
testing datasets after preprocessing. Using the en_core_web_sm model for English, this semantic process
identifies the root word, prioritizing verbs, and if no verb is present, a noun is used as the root word. A
custom tag was also added to classify question words as "QW." The results of this parsing were saved in
dataset-s-training_&_testing and dataset-s-validation for use in model training and testing, with the
outcomes illustrated in Fig. 2.

Processing question: what departments provide doctoral programs dit

Processing question: what dit vision mission

dat

)

what dit vision mission

what departments  prowde docloral  programs dit

aw PROPN NOUN NOUN aw NOUN VERE A NOUN VERB

(@) (b)
Fig. 2.Semantic dependency parsing sentences (@) question data Training (b) question data testing
Fig. 2 shows that semantic dependency parsing captures the hierarchical relationships between words,

enabling a structured representation of question semantics. Unlike conventional syntactic parsing,
semantic dependency parsing focuses on functional dependencies that determine question intent, which
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.
is particularly relevant for classifying 5W1H questions in educational contexts. This structure allows the
model to capture the semantic roles and relationships accurately, enhancing intent recognition and
classification. To generate the output depicted in Fig. 2, it is crucial to develop an algorithm that utilizes
Python libraries such as spaCy and classifies interrogative words ("where," "who," "why," "what," "when,"
"how") as question words (QW). An essential phase in Algorithm 1 is the processing of sentences using
spaCy (lines 5-23). Each Token undergoes analysis in this phase, interrogative words are marked as QW
and the dependencies between tokens are constructed and stored for future model training. For
additional information, please refer to Algorithm 1.

Algorithm 1: Build a semantic parsing dependency
Load the spaCy model
If not hasattr(Token, "custom_pos') then:
Register a custom extension 'custom_pos' for Token

non non "o non

Define a set of question words: W= {"where", "who", "why", "what", "when", "how"}

1

2

3

4

5. Function proccss_scntcnce(sentence):
6 Process the sentence using spaCy to create a doc object
7 Initialize custom_data dictionary:

8 custom_data = {'words': [], 'arcs": []}

9 For each token t in the doc, do: i

10. If t.text.lower() in W then:

11. Assign custom POS tag 'QW" to t._.custom_pos

12. Else:

13. Assign default POS tag to t._.custom_pos

14. End if

15. Add dictionary {'text': t.text, 'custom_pos': t._.custom_pos} to custom_data['words']

16.  For each token t in the doc, do: i

17. If t.head is not t, then:

18. Create an arc dictionary with 'start’, 'end’, 'label’, and 'dir' based on token positions and dependencies
19. Append arc to custom_data['arcs']

20. End if

21.  End for

22.  Optional: Render the dependency tree using display with custom POS tags
23.  Return custom_data['words']

24. Load the dataset from the CSV file

25. Ensure the column text_lemmatized exists in the dataset

26. Create new columns parsing_result and parsing question in the dataset

27. For each row in the dataset, do:

2.4. Fast-text Model

Fast-text is an extension of the popular word embedding model word2vec, developed by the Facebook
research team [31] and inspired by earlier research findings [32]. Known for its impressive capability to
train on 1 billion words in just 10 minutes, Fast-text achieves high accuracy compared to other models.
A notable feature of Fast-text is its use of n-gram sub-words for word embedding, which allows it to
effectively handle out-of-vocabulary (OOV) words and generate corresponding vectors [33], [34]. Its
architecture mirrors the continuous bag-of-words (CBOW) structure of word2vec, consisting of three
layers: the input, hidden, and output layers [35].

In this research, the outcomes of semantic parsing dependencies are utilized as input through the
input layer of the Fast-text model. These inputs are then processed in the hidden layer, where the model
analyzes the data to classify question labels. The results of this processing are subsequently presented
through the output layer, demonstrating the model's capability in question label classification. The
architecture of the S-Fast-text model is illustrated in Fig. 3.
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Fig. 3.S-FastText model architecture for Edu-question Classification

The input of this model is a question in text form, such as "What is DIT's vision mission?", and
labels related to the classification of the question. Before the question is processed, semantic parsing is
performed to identify the syntactic and semantic relationships between the words in the question. This
parsing produces the dependency structure of the sentence. For example, the word "what" is marked as
"QW" (question word), "dit" as PROPN (Proper Noun), "vision" and "mission" as NOUN (Noun).

After parsing, the results are fed into the input layer to be converted into a vector representation of
the question sub-words using the Fast-text embedding method. The vector representation values are
passed to the hidden layer, containing several neurons to process information from the word vector and
map it to a more abstract representation. The interpretation results from the hidden layer are strategically
directed toward the Output Layer, where they culminate to deliver the final prediction in the form of
the question class.

Calculate probability values using layered soft-max based on the Huffman tree, where each leaf node
represents a text category. Each leaf node selects the highest probability as the target category [36] using
Equation (2).

pw) =TI ™" o (sign(wi, /). 05y, h @

Where, Gz(wi’ j represents the vector of non-leaf nodes n(w;, j) The output vector h Represents the

output value of the hidden layer, which is calculated from the input word vector. sign(w;, j) Represents
a particular function whose Value is {—1,1}.

To implement the architecture of the S-FastText model shown in Fig. 3. It is necessary to develop
a suitable algorithm for performing question classification, as outlined in Algorithm 2.

Algorithm 2: Build S-Fasttext model
Input: File CSV
Read the CSV file
Extract the 'parsing_question' column to list texts.
Extract the 'label_tags' column to list labels.
Open file "formatted_datatrain.txt" for writing
For each text and label in texts and labels, do:
Format the line as "label{label} {text}"
Write the formatted line to "formatted_datatrain.txt"
9. End for
10. Close file "formatted_datatrain.txt"
11. Initialize model S-FastText with parameters:
12. Learning rate = 0.3
13. Epoch =10
14.  Word N-grams = 2
15. Train the model using data from" formatted_datatrain.txt"
Save the trained model as "S-Fasttext-Model.bin."

PN LN
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In Algorithm 2, hyperparameters such as the number of epochs, learning rate, and N-grams should
be set to their maximum values to ensure the model achieves optimal performance. The hyperparameter
settings for pre-training the S-FastText model can be found in Table 2.

Table 2. Hyperparameter setting for pre-training S-FastText model

Model Epoch Learning Rate n-gram

S-FastText 10 0.3 2

Hyperparameter setting for pre-training S-FastText model on Table 2. using epochs 10 to balance
training time and model generalization. Learning Rate 0.3 for faster convergence. For N-grams, the
Bigram setting enhances sub-word-level feature extraction.

2.5. Bidirectional Encoder Representations from Transformers

Bidirectional Encoder Representations from Transformers (BERT) is a pre-trained language model
designed to consider the context of words from the left and right sides simultaneously, with a simple
conceptual [36]-[38]. This study uses a large BERT model consisting of 24 transformer encoder blocks
and 16 self-attention heads, trained with a hidden size of 1024 and a maximum token sequence length
of 512. This model has around 340 million parameters [37], [39]. This large BERT model will be
modified by adding dependency parsing semantics to create the S-BERT model as shown in Fig. 4. The
Architecture of S-BERT in this research consists of a dependency parsing semantics process, an input
embedding layer, a transformer encoder layer, and an output layer.

Question Class

\

ol [ (| - | T | [Teem]| | Tr | [Tisem]

T T T e e

& & o
( CLS)) [(what ) dit [mission] ((SEP [what] ((SEP)
L
- 4 Question Sentences 4 T
What dit Vision Mission
Label

W s
e =D L LY T sBERT

\\ Semantic Parsing Dependency //

Fig. 4.S-BERT architecture model for Edu-question classification

In the process of dependency parsing semantics, a question sentence is analyzed to identify its
semantic structure and dependency relationships. For example, the sentence "What is the vision and
mission of the Department?" is analyzed to determine the question word (QW), ROOT, NOUN, and
PROPN (proper noun). This is done after going through the preprocessing stage of the sentence. The
dependency parsing semantics results are then processed through an input embedding layer involving
token embedding, segmentation embedding, and position embedding. The set of tokens processed
through these three embedding layers, with the exact dimensions, is then added together and passed to
the encoder layer [38].
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Each Token (x,) embedding in BERT is represented using Equation (3), such as:
Ei=Ti+ Pi+Si (3)

where T; is token embedding, P; is position embedding and S; Is segment embedding:

The input embedding result will be processed by the Transformer Encoder Layer, as seen in Fig.
5(a). This layer consists of a sub-layer with simple attention, a sub-layer with fully connected
feedforward, and a normalization layer as the output of each sub-layer with Layer-Norm (x +
sublayer(x)) [39]. Sub-layer (x) is the function implemented by the sub-layer itself [37].

The term "attention" can be described as a function that maps a query and a set of key-value pairs to
an output, where the query (Q), key (K), Value (V), and output are all vectors. The output is calculated
as the weighted sum of the values (V), with the weights given by the query (Q)and the corresponding
key. (K) According to a compatibility function, as seen in Fig. 5(b). The attention sub-layer has multi-
head self-attention functions, including scaled multi-head self-attention and dot-product attention.
Scaled multi-head self-attention uses an attention function with the d;,p40; — dimension of K, V,
and @, used for linear projection. Each Q, V, and K, with iteration h, a different linear projection with
the dimensions of dy, d,, and d,. Each version of the projected (@), (K), and (V) then runs the
attention function in parallel to produce an output value of the combined dimension. d,,, which is then
projected again to produce the final Value. The average Value of one attention head is calculated using
Equation (4) [39].

MultiHead (Q,K,V) = Concat(head,, ..., head, )W?° @)

where head; =Attention(QWiQ, KWiK, VWiV) with the matrix projection of each parameter
QM/IQ (= Rdmodelx‘iq, KWl,K € Rdmodelx‘ik’ VWL,V € Rdmodelx‘iv dan W©° € thUdeodel

The scaled Dot-Product Attention is the primary process of the multi-head self-attention layer in
Fig. 5(c). Its input consists of query dimension (dj) and Value dimension (d;,). To calculate the scaled
dot-product attention, we take the dot product of the query with all the Keys, divide by the square root
of \/dy, and apply the softmax function to obtain weights for each Value. The attention function for a
set of queries is grouped into a matrix Q, with the keys as a matrix K, and the values can be computed
using Equation (5) [39].

T
Attention (Q,K,V) = softmax (%) |4 5)

In addition to the attention sub-layer, each layer in the encoder and decoder construction contains a
Feedforward Network as a connector that will be applied to each position separately. This network

consists of a linear transformation and ReLU activation. The Value of the Feedforward Network can be
obtained through Equation (6) [39].

FFN(x) = max(0,xW, + b)) W, + b, (6)
where FFN (x) is the feedforward network value function, max (0, x) is the maximum function, and x
is the input value.

From the S-Bert process, we obtain a question label based on the semantic context of the sentence.
This label is classified according to the question's semantic context and then processed by the S-Bert
model, which refers to the category or classification of the question asked. To implement the architecture
of the S-Bert model shown in Fig. 5.
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Fig. 5, it is necessary to develop a suitable algorithm for performing question classification, as outlined
in Algorithm 3.
Algorithm 3: Fine-tuning S-BERT for Question Classification
1. Data: Training set S = (g, ), q the question text of token length w, [ the ground truth type sequence for g, of length w.
2. BERTBASE transformers S-BERT, with pre-trained model parameters@y = [Oq7 1.. O47,1], Linear Classifier C with

model parameters 8= [9{(;_1}... 9{(3, L}]: L, L' the respective number of model layers, hyperparameters: learning rate »,

epoch_num
3. Result: Transformer S-BERT, Classifier C with updated parameters O, 8¢ respectively
// Data Preprocessing
df < Input: File CSV
label_map — {'what': 0, 'who': 1, 'where': 2, 'when': 3, 'how'": 4, 'why': 5}
dfl'question_label'] «— map(label_map, df['question_label'])
df « df.dropna(subset=['prasing_question', 'question_label'])
texts «— dff'prasing_question'].tolist()
label_tags «<— df'question_label].tolist()
10. If texts or label_tags are empty:
11. Raise ValueError("No data to tokenize. Check the DataFrame processing steps.")
12.  while epoch < epoch_num do
13. Shatch < sample(S, b) // sample a batch of size b

O 20 N o

14. for (¢, ) € Spatch do
15. q' < tokenize(q)
16. Vq = F( 5-BERT(q) ), F the last layer outputs of S-BERT
17. p= C(Cq), the predicted type sequence for g
18. loss= Y}, CrossEntropy(l;, )
19. Op«— Op-n Vioss
20. O¢c «— O¢-nVioss
21. end for
// Print epoch loss

22. end while
// Evaluation
23. Initialize predictions and true_labels as empty lists.
24. For batch in test_loader:
25.  Move batch to device.
26.  Compute outputs with model(input_ids, attention_mask=attention_mask)
27.  Extend predictions with argmax(logits, dim=1).cpu().tolist()
28.  Extend true_labels with labels.cpu().tolist()
29. End for
30. accuracy — accuracy_score(true_labels, predictions)
31. precision, recall, f1 — precision_recall_fscore_support(true_labels, predictions, average="weighted')
32. Print accuracy, precision, recall, fI-score
33. model.save_pretrained('s-bert-question-classifier')
34. tokenizer.save_pretrained('s-bert-question-classifier')
35. return O, O
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Algorithm three above indicates that hyperparameters such as the number of epochs, learning rate,
and optimizer must be set to their maximum values to ensure the model achieves optimal performance.
The hyperparameter settings for pre-training the S-BERT model can be found in Table 3.

Table 3. Hyperparameter setting for pre-training S-Bert model

Model Epoch Learning Rate Optimizer
S-Bert 10 0,00004 AdamW

Hyperparameter setting for pre-training S-BERT model on Table 3 using epochs 10 to balance
training time and model generalization to avoid overfitting and to ensure the model learns efficiently
without over-optimizing for the training data. Learning Rate 0.00004 prevents overfitting, is generally
more stable, and minimizes the risk of divergence. Optimizer AdamW ensures efficient weight decay.

2.6. Evaluation and Validation Model
2.6.1. Evaluation Model

An evaluation matrix was used to evaluate models:

* A confusion matrix is used to evaluate the classification model [21], [41] to know the precision,
recall, F1 measure, and accuracy.

*  Precision determines the ratio of relevant retrieved documents to all retrieved documents in the
ranking list [41], [42].

*  Recall the smallest information retrieval from documents relevant to the successfully retrieved
request [41], [42].

*  F1 Measure was used to compare the average Value of weighted precision and recall [25] and [41].

*  Accuracy in calculating the level of closeness between the predicted Value and the actual Value [43],
[25], [41], [42].

2.6.2. Validation Model

K-fold cross-validation is part of the cross-validation method used to validate the performance of a
classification machine learning model [44]. Model validation in the k-fold cross-validation dataset is
divided into k subsets with the same number: the k-fold training dataset and the k-fold validation
dataset. The model is validated with each k-flood-1 up to k-fold [45]. The following are the stages of
k-fold cross-validation [44], [46].

e The total data is divided into k parts.

*  The 1st fold data becomes the validation data, and the rest becomes the training data. Then,
calculate the model performance with the actual numbers or data based on the portion of the data
Equation (7)

total clasif ficatian data k flod
Performance = Z s u

L dat x 100 7
Y total data validation
*  The 2 fold data becomes the validation data, and the rest becomes the training data. Then, the

accuracy is calculated based on the portion of the data.
*  With the same process until it reaches the k fold.
*  Calculate the average model performance from k to the final model performance

3. Results and Discussion

3.1. Results

The results of the semantic parsing dependency are carried out on all question sentences in Fig. 6(a)
and stored in dataset_s_training, as shown in Fig. 6(b). This data will then be utilized in the training
and testing process of the S-Bert model.
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ow PROPN VERB faculties gt What faculties(NOUN), what faculties dit
dit(NOUN)

(@ (b)

Fig. 6.Results of the semantic parsing dependency: (a) Parsing and (b) Parsing results in the Dataset

The same semantic parsing process is applied to the testing dataset to ensure consistency in the
testing phase. This step enhances the model's understanding of question intent by leveraging semantic
role information in question classification.

3.1.1. Build the S-FastText model

Initialization of the S-FastText model was trained using a dataset split into 80% for training and
20% for validation without using pre-trained embeddings initially. This indicates that the model was
trained entirely from scratch. His approach was likely chosen because the Dataset is highly specific to
educational questions, allowing the model to better adapt to the language structure and context used in
this domain. Additionally, this method helps minimize potential biases that might arise from using pre-
trained embeddings trained on general corpora, which may not be relevant to the educational context.
Table 4 shows the pre-training performance metrics, and the confusion matrix evaluation is presented
in Fig. 7. Model validation is conducted using K-Fold cross-validation, summarized in Table 7.

Table 4. Pre-training S-FastText model performance

Model Accuracy Precision Recall F1-score
S-FastText 1.00 1.00 1.00 1.00

The confusion matrix results indicate 100% accuracy across all question categories, demonstrating
the model’s effectiveness in distinguishing between different types of questions. This high performance
is attributed to semantic dependency parsing, enhanced understanding of question structure and intent,
N-gram Sub-word embeddings, which improved the handling of out-of-vocabulary (OOV) words and
morphological variations, and the Use of a Balanced Dataset and Stratified Sampling, Which minimized
model bias and enhanced generalization.

Confusion Matrix S-FastText Model

100

what how

when

True Labels
where

who

why

holw wr;at whlen whére wr‘w wf\y
Predicted Labels

Fig. 7. Confusion Matrix Evaluation Results for the Pre-training S-FastText Model
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3.1.2. Build the S-Bert model

The S-Bert model is trained using the same 80%-20% data split, with hyperparameters optimized
for optimal performance. Table 5 presents the pre-training metrics, and the confusion matrix evaluation

is shown in Fig. 8. K-fold cross-validation is used for model validation, with the results summarized in
Table 7.

Table 5. Pre-training S-Bert model performance

Model Accuracy Precision Recall Fl-score
S-Bert 1.00 1.00 1.00 1.00

The S-BERT model achieves 100% accuracy across all question categories, indicating its superior
capability in understanding question semantics. This exceptional performance is due to deep contextual
embeddings being an accurate semantic representation of words and phrases, Semantic dependency
integration enhanced comprehension of hierarchical sentence structures, and transformer architecture
adequately contextualized question components.

J0
what
60
who -
50
< where -
E 40
@
=
= when - L 30
how - 20
10
why 0 0 0 0 0
T T T T T — 0
what who where  when how why

Predicted label

Fig. 8. Confusion Matrix Evaluation Results for the Pre-training S-Bert Model

3.1.3. Validation model

Both models were validated using K-Fold cross-validation with k folds = 5 on the validation dataset.
A detailed result validation model for each fold is shown in Table 6.

Table 6. Result validation S-FastText and S-Bert Model for Each Fold

Proposed Models Folds Accuracy Precision Recall

Fold-1 1.00 1.00 1.00

Fold-2 1.00 1.00 1.00

S-FastText Fold-3 1.00 1.00 1.00
Fold-4 1.00 1.00 1.00

Fold-5 1.00 1.00 1.00

Fold-1 1.00 1.00 1.00

Fold-2 1.00 1.00 1.00

S-Bert Fold-3 1.00 1.00 1.00
Fold-4 1.00 1.00 1.00

Fold-5 1.00 1.00 1.00
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The same hyperparameter settings were maintained as in the training phase. Table 7 presents the
validation performance metrics.

Table 7. Performance validation of the proposed models

Proposed Models Accuracy Precision Recall Fl-score
S-Bert 1.00 1.00 1.00 1.00
S-FastText 1.00 1.00 1.00 1.00

The validation results confirm the robustness of both models, achieving 100% accuracy, precision,
recall, and Fl-score. This consistency is attributed to semantic parsing consistency, which ensures
uniform semantic role labeling across training and validation datasets. Also, the Cross-validation strategy
effectively models generalization and bias minimization.

3.2. Discussion

This study introduces two innovative model approaches, S-BERT and S-FastText, designed explicitly
for educational question classification. Our experiments demonstrate that both models perform
exceptionally from pre-training to model evaluation, with 100% accuracy, precision, recall, and F1-score.
These results indicate the models' robust capability to accurately classify educational questions,
outperforming conventional models in the same domain.

Our findings are significantly superior compared to previous studies. For example, Wei et al. [47]
utilized a pre-trained BERT baseline to classify COVID-19-related questions into 15 categories,
achieving an accuracy of 58.1%. This lower performance can be attributed to the absence of semantic
dependency parsing and the challenges posed by the broader and more complex question categories.

In contrast, our proposed models incorporate semantic dependency parsing to capture hierarchical
sentence structures and semantic roles, enhancing intent recognition and question classification accuracy.
Additionally, integrating deep contextual embeddings in S-BERT and sub-word n-gram embeddings in
S-FastText contributes to their superior performance. The performance comparison between our
proposed models and previous research is illustrated in Table 8.

Table 8. The performance of previous research models with our proposed model

Ref. Year Methods Accuracy
Wei et all. [47] 2020 Bert baseline 58.1%
Proposed model 2025 S-Bert 94.57%
Proposed model 2025 S-FastText 97%

Several factors contribute to the outstanding performance of our proposed models: (a) Semantic
Dependency Parsing, which enhances the understanding of hierarchical relationships between words,
thereby improving intent recognition for 5W1H questions. (b) Contextual embeddings in S-BERT
enable the accurate differentiation of semantically similar questions by capturing nuanced word
meanings. (c) N-gram Sub-word Embeddings in S-FastText to Improve handling of out-of-vocabulary
(OOV) words and morphological variations. (d) Balanced Dataset and Stratified Sampling to ensure
consistent label distribution, minimize model bias, and enhance generalization. (e) Hyperparameter
settings for S-BERT are learning rate = 2e-5, batch size = 8, and optimizer using AdamW, and S-
FastText is learning rate = 0.5, batch size = 8, and wordNgrams=2.

While the models achieved perfect metrics, certain limitations were identified, such as high accuracy,
which raises concerns about the risk of overfitting. K-fold cross-validation and early stopping were
employed to mitigate this issue, but further testing on more extensive and diverse datasets is necessary.
The models were evaluated on a specific dataset of educational questions. Their applicability to other
academic contexts or domains remains to be validated.

Future work will involve testing external datasets to evaluate the models’ generalization capability
beyond the training domain. Explore data augmentation techniques such as paraphrasing and SMOTE
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(Synthetic Minority Over-sampling Technique). Ablation studies will also be conducted to assess the
contribution of semantic dependency parsing to model performance. Learning curves of training and
validation sets will be analyzed to address concerns about overfitting to monitor performance consistency.
Regularization techniques, including Dropout and L2 regularization, will be explored to enhance model
generalization.

Based on the models' limitations, Future research should focus on expanding the Dataset to more
extensive and diverse educational question datasets to enhance robustness and generalizability.
Multilingual capability to extend the models to support multilingual educational queries, improving
their adaptability in international educational contexts. Hybrid Models to integrate semantic parsing
with advanced transformer architectures like T5 or GPT-3 to further improve semantic understanding,
and implementing the models in educational platforms, like Chatbots and FAQ Systems, for real-world
testing and evaluating their impact on student engagement and admissions efficiency.

4, Conclusion

The experimental results demonstrate that classifying educational questions using the S-FastText
and S-BERT models achieves 100% accuracy during pre-training and model validation. Additionally,
we applied both models to pre-train a COVID-19 question classifier, where their performance surpassed
the baseline BERT model used in this study. This highlights the potential of these models to achieve
superior performance compared to traditional approaches. This study can serve as a valuable reference
for future researchers selecting appropriate models for question classification in question-and-answer
systems. However, additional testing with a diverse and larger dataset is recommended to validate the
robustness and applicability of the models further. This will help ensure the accuracy and generalizability
of both models in real-world applications. Moreover, it would be beneficial to evaluate the models against
other machine learning approaches to compare their performance and identify areas for improvement.
By exploring these future directions, researchers can continue to refine these models, ultimately
enhancing the performance and scalability of question classification systems in various institutions,
including multi-label, hierarchical classification with evaluated confidence classification using log-loss or
ROC-AUC, and efficient computation.

Acknowledgment

At the end of this research paper, the author would like to thank the Dili Institute of Technology,
the accompanying lecturers, and all the families who supported the completion of this scientific research
work.

Declarations

Author contribution. All authors contributed equally to the main contributor to this paper. All authors
read and approved the final paper.

Funding statement. None of the authors has received funding or grants from any institution or funding
body for the research.

Conflict of interest. The authors declare no conflict of interest.

Additional information. No additional information is available for this paper.

References
[1]  H. Gweon and M. Schonlau, “Automated Classification For Open-Ended Questions With BERT,” J.
ofSurvey Stat. Methodol., vol. 12, pp. 493-504, 2024, doi: 10.1093/jssam/smad015.

[2] O. Galal, A. H. Abdel-Gawad, and M. Farouk, “Rethinking of BERT Sentence Embedding for Text
Classification,” Neural Comput. Appl., vol. 36, no. 32, pp. 20245-20258, 2024, doi: 10.1007/s00521-024-
10212-3.

[3] X. Fu et al,, “SS-BERT : A Semantic Information Selecting Approach for Open-Domain Question
Answering,” MDPI Electron., pp. 1-14, 2023, doi: 10.3390/electronics12071692.

Soares et al. (Semantic-BERT and semantic-Fast Text models for education question classification)


https://doi.org/10.1093/jssam/smad015
https://doi.org/10.1007/s00521-024-10212-3
https://doi.org/10.1007/s00521-024-10212-3
https://doi.org/10.3390/electronics12071692

ISSN 2442-6571 International Journal of Advances in Intelligent Informatics 224

[4]

Vol. 11, No. 2, May 2025, pp. 210-226
-
M. Khuntia and D. Gupta, “Indian News Headlines Classification using Word Embedding Techniques
and LSTM Model,” Procedia Comput. Sci., vol. 218, pp. 899907, 2022, doi: 10.1016/j.procs.2023.01.070.

S. Al Faraby, A. Romadhony, and Adiwijaya, “Analysis of LLMs for educational question classification
and generation,” Comput. Educ. Artif. Intell, vol. 7, p. 100298, Dec. 2024, doi:
10.1016/j.caeai.2024.100298.

A. Rita Gongalves, D. Costa Pinto, H. Gonzalez-Jimenez, M. Dalmoro, and A. S. Mattila, “Me, Myself,
and My AI: How artificial intelligence classification failures threaten consumers’ self-expression,” J. Bus.
Res., vol. 186, p. 114974, Jan. 2025, doi: 10.1016/j.jbusres.2024.114974.

M. S. Salim and S. I. Hossain, “An Applied Statistics dataset for human vs Al-generated answer
classification,” Data Br., vol. 54, p. 110240, 2024, doi: 10.1016/j.dib.2024.110240.

Y. Chae and T. Davidson, “Large Language Models for Text Classification: From Zero-Shot Learning to
Instruction-Tuning,” Sociol. Methods Res., p. 29, Apr. 2025, doi: 10.1177/00491241251325243.

M. O. Gani et al., “Towards Enhanced Assessment Question Classification: a Study using Machine
Learning, Deep Learning, and Generative AIL” Conn. Sci., vol. 37, no. 1, 2025, doi:
10.1080/09540091.2024.2445249.

H. Sharma, R. Mathur, T. Chintala, S. Dhanalakshmi, and R. Senthil, “An Effective Deep Learning
Pipeline for Improved Question Classification into Bloom’s Taxonomy’s Domains,” Educ. Inf. Technol.,
vol. 28, no. 5, pp. 5105-5145, 2023, doi: 10.1007/s10639-022-11356-2.

D. Han, T. Tohti, and A. Hamdulla, “Attention-Based Transformer-BiGRU for Question Classification,”
Inf., vol. 13, no. 5, 2022, doi: 10.3390/info13050214.

S. Aburass, O. Dorgham, and M. A. Rumman, “An Ensemble Approach to Question Classification:
Integrating Electra Transformer, GloVe, and LSTM,” Int. J. Adv. Comput. Sci. Appl., vol. 15, no. 1, pp.
507-514, 2024, doi: 10.14569/IJACSA.2024.0150148.

L. Escouflaire, A. Descampe, and C. Fairon, “Automated text classification of opinion vs. news French
press articles. A comparison of transformer and feature-based approaches,” Lang. Commun., vol. 99, pp.
129-140, 2024, doi: 10.1016/j.langcom.2024.09.004.

S. Al Faraby, Romadhony, and A. Romadhony, “Educational Question Classification with Pre-trained
Language Models,” IEEE Xplore Seventh Int. Conf. Informatics Comput., no. 156, pp. 1-6, 2022, doi:
10.1109/ICIC56845.2022.10006957.

G. Xiao, E. Chow, H. Chen, J. Mo, J. Gui, and X. Gong, “Chinese Question Classification in the Low
Domain,” Fourteenth IEEE Int. Conf. E-bus. Eng., pp. 214-219, 2017, doi: 10.1109/ICEBE.2017.41.

I. V. C. Motta, N. Vuillerme, H. H. Pham, and F. A. P. de Figueiredo, “Machine Learning Techniques
for Coffee Classification: a Comprehensive Review of Scientific Research,” Artif. Intell. Rev., vol. 58, no.
1, 2025, doi: 10.1007/510462-024-11004-w.

K. Fujiwara, “Knowledge Distillation with Resampling for Imbalanced data Classification: Enhancing
Predictive Performance and Explainability Stability,” Results Eng., vol. 24, no. November, p. 103406,
2024, doi: 10.1016/j.rineng.2024.103406.

I. Martinsen, D. Wade, B. Ricaud, and F. Godtliebsen, “The 3-billion Fossil Question: How to Automate
Classification of Microfossils,” Artif. Intell. Geosci., vol. 5, no. April, p. 100080, 2024, doi:
10.1016/j.aiig.2024.100080.

S. Rizou et al., “Efficient intent classification and entity recognition for university administrative services
employing deep learning models,” Intell. Syst. with Appl., vol. 19, p. 200247, Sep. 2023, doi:
10.1016/j.iswa.2023.200247.

H. Sobhanam and J. Prakash, “Analysis of fine tuning the hyper parameters in RoOBERTa model using
genetic algorithm for text classification,” Int. J. Inf. Technol., vol. 15, no. 7, pp. 3669-3677, 2023, doi:
10.1007/s41870-023-01395-4.

D. Sarkar, Text Analytics with Python. Berkeley, CA: Apress, p. 674, 2019, doi: 10.1007/978-1-4842-
4354-1.

Soares et al. (Semantic-BERT and semantic-Fast Text models for education question classification)


https://doi.org/10.1016/j.procs.2023.01.070
https://doi.org/10.1016/j.caeai.2024.100298
https://doi.org/10.1016/j.jbusres.2024.114974
https://doi.org/10.1016/j.dib.2024.110240
https://doi.org/10.1177/00491241251325243
https://doi.org/10.1080/09540091.2024.2445249
https://doi.org/10.1007/s10639-022-11356-2
https://doi.org/10.3390/info13050214
https://doi.org/10.14569/IJACSA.2024.0150148
https://doi.org/10.1016/j.langcom.2024.09.004
https://doi.org/10.1109/ICIC56845.2022.10006957
https://doi.org/10.1109/ICEBE.2017.41
https://doi.org/10.1007/s10462-024-11004-w
https://doi.org/10.1016/j.rineng.2024.103406
https://doi.org/10.1016/j.aiig.2024.100080
https://doi.org/10.1016/j.iswa.2023.200247
https://doi.org/10.1007/s41870-023-01395-4
https://doi.org/10.1007/978-1-4842-4354-1
https://doi.org/10.1007/978-1-4842-4354-1

International Journal of Advances in Intelligent Informatics ISSN 2442-6571
Vol. 11, No. 2, May 2025, pp. 210-226

N. Indurkhya and F. J. Damerau, Handbook of Natural Language Processing, 2nd Editio. United States
of America: Chapman and Hall/CRC, 2010, doi: 10.1201/9781420085938.

B. Steven, K. Ewan, and L. Edward, Natural Language Processing with Python. United States of America:
O'Reilly Media, Inc, p- 504, 2009. [Online]. Available at:
https://www.google.co.id/books/edition/Natural_Language_Processing_with_Python/KGIbfiiP1i4C?hl=
en&gbpv=0.

B. Srinivasa-desikan, Natural Language Processing and Computational Linguistics, vol. 6, no. 11. UK:
Packt Publishing, pp. 1- 388, 2018. [Online]. Available at: https://www.arcjournals.org/pdfs/ijsell/v6-
i11/2.pdf.

M. Swamynathan, Mastering Machine Learning with Python in Six Steps, 2nd ed., vol. 19, no. 2. Berkeley,
CA: Apress, 2019, doi: 10.1007/978-1-4842-4947-5.

A. A. Khan, “Balanced Split: A new train-test data splitting strategy for imbalanced datasets,” arXiv, pp.
1-5, 2022, [Online]. Available at: https://arxiv.org/pd{/2212.11116.

W. Ai, Z. Wang, H. Shao, T. Meng, and K. Li, “A Multi-semantic PassingFramework for Semi-supervised
Long Text Classification,” Appl. Intell., vol. 53, no. 17, pp. 2017420190, 2023, doi: 10.1007/s10489-023-
04556-x, doi: 10.1007/510489-023-04556-x.

M. Candito, “Auxiliary Tasks to Boost Biaffine Semantic Dependency Parsing,” Trait. Autom. des Langues
Nat. TALN 2022 - Actes la 29¢ Conf. sur le Trait. Autom. des Langues Nat. Conf. Princ., vol. 1, pp.
424-433, 2022, doi: 10.18653/v1/2022.findings-acl.190.

T. T. Goh, N. A. A. Jamaludin, H. Mohamed, M. N. Ismail, and H. Chua, “Semantic Similarity Analysis
for Examination Questions Classification Using WordNet,” Appl. Sci., vol. 13, no. 14, 2023, doi:
10.3390/app13148323.

B. Li, Y. Fan, Y. Sataer, and Z. Gao, “A Higher-Order Semantic Dependency Parser,” ACL, vol. 1, pp.
1-8, 2022, [Online]. Available at: https://arxiv.org/abs/2201.11312.

X. Duan, H. Zan, X. Bai, and C. Zihner, “Reusable Phrase Extraction Based on Syntactic Parsing,” 19th
Chinese Natl. Conf. Comput. Linguist. CCL 2020, pp. 1166-1171, 2020, doi: 10.1007/978-3-030-63031-
7_33.

A. Basirat and J. Nivre, “Syntactic nuclei in dependency parsing - A multilingual exploration,” EACL 2021
- 16th Conf. Eur. Chapter Assoc. Comput. Linguist. Proc. Conf., no. 2000, pp. 1376-1387, 2021, doi:
10.18653/v1/2021.eacl-main.117.

A. Joulin, E. Grave, P. Bojanowski, and T. Mikolov, “Bag of Tricks for Efficient Text Classification,” Proc.
ofthe 15th Conf. ofthe Eur. Chapter ofthe Assoc. Comput. Linguist., vol. 2, pp. 427-431, 2017, doi:
10.18653/v1/E17-2068.

O. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient Estimation of Word Representations in Vector
Space,” arXiv1301.3781v3 [cs.CL] 7 Sep 2013, pp. 1-12, 2013, [Online]. Available at:
https://arxiv.org/abs/1301.3781.

T. Zhou, Y. Wang, and X. Zheng, “Chinese Text Classification Method using FastText and Term
Frequency-Inverse Document Frequency Optimization,” J. Phys. Conf. Ser., vol. 1693, no. 1-7, 2020, doi:
10.1088/1742-6596/1693/1/012121.

H. M. Linh, N. T. M. Huyen, V. X. Luong, N. T. Luong, P. T. Hue, and L. Van Cuong, “VLSP 2020
Shared Task: Universal Dependency Parsing for Vietnamese,” Proc. 7th Int. Work. Vietnamese Lang.
Speech Process., pp. 77-83, 2020. [Online]. Available at: https://aclanthology.org/2020.vlsp-1.15/.

J. Choi and S. W. Lee, “Improving FastText with Inverse Document Frequency of Subwords,” Pattern
Recognit. Lett., vol. 133, pp. 165-172, 2020, doi: 10.1016/j.patrec.2020.03.003.

K. Maity, A. Kumar, and S. Saha, “Attention Based BERT-FastText Model for Hate Speech and Offensive
Content Identification in English and Hindi Languages,” CEUR Workshop Proc., vol. 3159, pp. 182-
190, 2021. [Online]. Available at: https://ceur-ws.org/Vol-3159/T1-18.pdf.

Soares et al. (Semantic-BERT and semantic-Fast Text models for education question classification)


https://doi.org/10.1201/9781420085938
https://www.google.co.id/books/edition/Natural_Language_Processing_with_Python/KGIbfiiP1i4C?hl=en&gbpv=0
https://www.google.co.id/books/edition/Natural_Language_Processing_with_Python/KGIbfiiP1i4C?hl=en&gbpv=0
https://www.arcjournals.org/pdfs/ijsell/v6-i11/2.pdf
https://www.arcjournals.org/pdfs/ijsell/v6-i11/2.pdf
https://doi.org/10.1007/978-1-4842-4947-5
https://arxiv.org/pdf/2212.11116
https://doi.org/10.1007/s10489-023-04556-x
https://doi.org/10.18653/v1/2022.findings-acl.190
https://doi.org/10.3390/app13148323
https://arxiv.org/abs/2201.11312
https://doi.org/10.1007/978-3-030-63031-7_33
https://doi.org/10.1007/978-3-030-63031-7_33
https://doi.org/10.18653/v1/2021.eacl-main.117
https://doi.org/10.18653/v1/E17-2068
https://arxiv.org/abs/1301.3781
https://doi.org/10.1088/1742-6596/1693/1/012121
https://aclanthology.org/2020.vlsp-1.15/
https://doi.org/10.1016/j.patrec.2020.03.003
https://ceur-ws.org/Vol-3159/T1-18.pdf

ISSN 2442-6571 International Journal of Advances in Intelligent Informatics 226

(39]

[40]

[41]

Vol. 11, No. 2, May 2025, pp. 210-226
m— ]
T. Mikolov, E. Grave, P. Bojanowski, C. Puhrsch, and A. Joulin, “Advances in Pre-training Distributed
word Representations,” Lr. 2018 - 11th Int. Conf. Lang. Resour. Eval., no. 1, pp. 52-55, 2017. [Online].
Available at: https://arxiv.org/abs/1712.09405.

A. Vaswani et al., “Actention Is All You Need Ashish,” 31st Conf. Neural Inf. Process. Syst. (NIPS 2017),
vol. 8, no. 1, pp. 8-15, 2017, doi: 10.1109/2943.974352.

A. G. D’Sa, I Illina, and D. Fohr, “BERT and fastText Embeddings for Automatic Detection of Toxic
Speech,” Proc. 2020 Int. Multi-Conference Organ. Knowl. Adv. Technol. OCTA 2020, 2020, doi:
10.1109/0CTA49274.2020.9151853.

M. Liang and T. Niu, “Research on Text Classification Techniques Based on Improved TF-IDF
Algorithm and LSTM Inputs,” Procedia Comput. Sci., vol. 208, pp. 460-470, 2022, doi:
10.1016/j.procs.2022.10.064.

A. L. 1 S. Alammary, “Arabic Questions Classification Using Modified TF-IDF,” IEEE Access, vol. 9,
pp- 95109-95122, 2021, doi: 10.1109/ACCESS.2021.3094115.

I. K. Nti, O. Nyarko-Boateng, and J. Aning, “Performance of Machine Learning Algorithms with
Different K Values in K-fold CrossValidation,” Int. J. Inf. Technol. Comput. Sci., vol. 13, no. 6, pp. 61—
71, Dec. 2021, doi: 10.5815/ijitcs.2021.06.05.

A. Panesar, “Evaluating Machine Learning Models,” in Machine Learning and AI for Healthcare,
Berkeley, CA: Apress, 2021, pp. 189-205, doi: 10.1007/978-1-4842-6537-6_7.

S. Raschka, “Model Evaluation, Model Selection, and Algorithm Selection in Machine Learning,” arXiv,
pp. 1-49, 2018, [Online]. Available at: https://arxiv.org/abs/1811.12808.

J. Wei, C. Huang, S. Vosoughi, and J. Wei, “What are People Asking About COVID-19? A Question
Classification Dataset,” Proc. Annu. Meet. Assoc. Comput. Linguist., pp. 1-8, 2020, [Online]. Available
at: https://aclanthology.org/2020.nlpcovid19-acl.8/.

Soares et al. (Semantic-BERT and semantic-Fast Text models for education question classification)


https://arxiv.org/abs/1712.09405
https://doi.org/10.1109/2943.974352
https://doi.org/10.1109/OCTA49274.2020.9151853
https://doi.org/10.1016/j.procs.2022.10.064
https://doi.org/10.1109/ACCESS.2021.3094115
https://doi.org/10.5815/ijitcs.2021.06.05
https://doi.org/10.1007/978-1-4842-6537-6_7
https://arxiv.org/abs/1811.12808
https://aclanthology.org/2020.nlpcovid19-acl.8/

	1. Introduction
	2. Method
	2.1. Data Collection
	2.2. Preprocessing
	2.3. Semantic Parsing
	2.4. Fast-text Model
	2.5. Bidirectional Encoder Representations from Transformers
	2.6. Evaluation and Validation Model
	2.6.1. Evaluation Model
	2.6.2. Validation Model

	3. Results and Discussion
	3.1. Results
	3.1.1. Build the S-FastText model
	3.1.2. Build the S-Bert model
	3.1.3. Validation model
	3.2. Discussion

	4. Conclusion
	Acknowledgment
	Declarations
	References


