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1. Introduction 
The COVID-19 pandemic has accelerated the shift towards online shopping and significantly fueled 

the global expansion of the e-commerce sector [1], [2]. However, this rapid growth introduces several 

challenges, including the widespread presence of duplicate or highly similar products across different 

online retailers, which complicates catalog management and may erode customer trust [3]. To mitigate 

this issue, various text-based duplicate detection methods have been proposed that rely on analyzing 

product titles and descriptions [4]–[6]. Although these approaches demonstrate some effectiveness, they 

frequently fail to capture essential visual attributes, such as color, pattern, and shape features, that are 

often crucial for accurately distinguishing between visually similar items. 

To overcome the limitations of text-based methods, recent research has increasingly turned to image-

based techniques for enhancing product identification and catalog organization. Consequently, numerous 

studies have applied image recognition methods to improve the accuracy of product grouping in online 

marketplaces [7]–[10]. Clustering algorithms have also been adopted to automatically group similar 

items, thereby facilitating improved catalog management and search efficiency [11], [12]. In parallel, 

advancements in deep learning, particularly in Convolutional Neural Network (CNN) architectures, have 

significantly enhanced visual feature extraction capabilities [13]–[18]. Furthermore, transfer learning has 
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 Managing large and constantly evolving product catalogs is a significant 

challenge for e-commerce platforms, especially when visually similar 

products cannot be reliably distinguished using text-based methods. This 

study proposes a product grouping method that combines a fine-tuned 

EfficientNetV2M model with an adaptive Agglomerative Clustering 

strategy. Unlike conventional CNN-based approaches, which have limited 

scalability and a fixed number of clusters, the proposed method dynamically 

adjusts similarity thresholds and automatically forms clusters for unseen 

product variations. By linking deep visual feature extraction with adaptive 

clustering, the method enhances flexibility in handling product diversity. 

Experiments on the Shopee product image dataset show that it achieves a 

high Normalized Mutual Information (NMI) score of 0.924, outperforming 

standard baselines. These results demonstrate the method’s effectiveness in 

automating catalog organization and offer a scalable solution for inventory 

management and personalized recommendations in e-commerce platforms. 
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proven effective in reducing the computational cost and data labeling burden by leveraging pre-trained 

models on large datasets [19]–[24].  

Nevertheless, several limitations persist in the current literature. First, many studies rely on outdated 

CNN architectures such as VGG19, MobileNetV2, and ResNet-50 [25]–[27], which may lack the 

representational capacity to capture the nuanced visual features of contemporary product images. Second, 

existing clustering-based methods often assume a fixed number of clusters [28], [29], an assumption 

that is unrealistic in dynamic e-commerce environments where new product variants are introduced 

continuously. 

To address these limitations, this study proposes an automated, image-driven product grouping 

framework that combines deep transfer learning with adaptive hierarchical clustering. The approach 

leverages a fine-tuned EfficientNetV2M model to extract rich and discriminative visual features from 

product images, outperforming conventional Convolutional Neural Networks in capturing nuanced 

image details. These extracted features are then processed using an adaptive agglomerative clustering 

algorithm, which eliminates the need to predefine the number of clusters by dynamically determining 

optimal grouping thresholds based on data distribution. To evaluate the effectiveness of the clustering 

results, the framework utilizes the Normalized Mutual Information (NMI) metric, which measures the 

degree of alignment between the predicted clusters and the ground-truth product categories. 

2. Method 
To enhance the efficiency and accuracy of product clustering, this study proposes a method that 

leverages transfer learning with Convolutional Neural Networks (CNNs). By fine tuning a pre-trained 

CNN and incorporating task-specific layers, the model is better equipped to adapt to the unique visual 

characteristics of the target dataset. Once product image features are extracted, Agglomerative 

Hierarchical Clustering is employed to group visually similar products without requiring a predefined 

number of clusters. This strategy improves system flexibility in accommodating new product variations 

and increases scalability across a wide range of product categories. 

To illustrate the practical implementation of this approach, the following section details the end-to-

end workflow of the proposed method. As shown in Fig. 1, the process begins with the collection of 

product images to construct the training dataset.  

 

Fig. 1. Overall System Workflow Illustrating The Stages of Product Grouping Based on Image Features 
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These images are processed using the fine-tuned CNN model, resulting in vector representations 

(feature embeddings) for each image. During the testing phase, new product images undergo the same 

feature extraction process as existing ones. A threshold calibration step, based on a representative data 

subset, is then applied to determine grouping criteria. Finally, hierarchical clustering is performed on 

the resulting feature vectors, producing coherent product groups based on visual similarity.. 

2.1. Dataset 
The dataset employed in this research was sourced from Kaggle [30], a platform widely recognized 

for facilitating knowledge exchange, learning, and data science competitions. Kaggle offers a broad array 

of high-quality datasets, enabling users to address real-world problems, evaluate machine learning 

models, and devise innovative solutions [31]. The dataset used in this study originates from Shopee, a 

prominent e-commerce platform in Indonesia and across Southeast Asia [32], [33]. 

To ensure model generalizability across diverse retail categories, the dataset encompasses a broad 

range of product types, including food, clothing, footwear, beauty products, baby supplies, kitchenware, 

health equipment, home goods, electronics, and others. Representative examples of product variations 

are depicted in Fig. 2. The dataset comprises 5,169 unique product entries, from which 4,634 products 

categorized into 281 product labels were allocated for training a deep learning model designed to extract 

image features. This model employs transfer learning based on a pre-trained CNN, as described in 

subsection 2.2. 

 

Fig. 2. Sample Product Images Across Various Categories in The Dataset 

The remaining 535 products were reserved for the clustering stage. To determine appropriate 

parameter settings, a randomly selected subset of 103 samples was used for threshold calibration. The 

derived threshold was then applied to group the remaining 432 products, which were divided into four 

batches of 108 items each. Additional methodological specifics are provided in subsections 2.3 and 2.4. 

To optimize model performance and training efficiency, the 4,634-image dataset was partitioned into 

training and validation sets using an 80:20 split, yielding 3,707 images for training and 927 for validation. 

All images were resized to 384×384 pixels to maintain a balance between computational efficiency and 

the preservation of visual detail. Each image was processed in RGB format, retaining three color channels 

(red, green, and blue). This resolution proved effective in supporting both accurate feature extraction 

and reliable model evaluation. 
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2.2. Modified Convolutional Neural Network Model 
For this research, we employed a deep learning model provided by Keras Applications [34], [35]. 

Specifically, we utilized a modified version of EfficientNetV2M, a CNN architecture recognized for its 

compound scaling strategy, which simultaneously optimizes depth, width, and input resolution. This 

architectural advantage makes it particularly well-suited for large-scale product image classification tasks, 

where both high accuracy and computational efficiency are essential. Our previous study [36] identified 

EfficientNetV2M as the best-performing model among several alternatives, including VGG16 and 

MobileNetV2, thereby motivating its adoption in the present work. 

To tailor the model for classifying diverse e-commerce product images, several architectural 

modifications were introduced. The original classification head was replaced with a fully connected 

output layer corresponding to the number of product categories. To reduce the risk of overfitting, 

dropout regularization and batch normalization were incorporated into the modified layers. A transfer 

learning strategy was applied by freezing the early convolutional layers, preserving general feature 

representations, while fine-tuning the later blocks and classification head to capture domain-specific 

patterns. The model was trained using the Adam optimizer with a manually tuned constant learning 

rate. Empirical results indicated that training over 20 epochs with a batch size of 200 yielded stable 

convergence without signs of overfitting. 

The rationale behind these architectural and training choices is summarized in Table 1, which 

illustrates how the model was configured to strike a balance between efficiency and adaptability. This 

setup reflects a deliberate trade-off between leveraging pre-trained knowledge and adapting to domain-

specific data. By freezing 684 out of 698 layers of the EfficientNetV2M architecture, the model retains 

the general visual representations learned from large-scale datasets, while allowing fine-tuning of only 

14 layers to capture domain-specific nuances in e-commerce product images. This approach reduces 

computational cost and mitigates the risk of overfitting on a relatively limited training dataset. The 

decision to add four custom layers provides task-specific capacity without excessively increasing model 

complexity. Dropout was employed as a regularization technique to prevent overfitting, particularly 

important given the relatively small number of trainable parameters compared to the total model size. 

The choice of training the model for 20 epochs was based on empirical evaluation, ensuring sufficient 

convergence while avoiding over-training. Overall, this configuration was designed to maximize feature 

transfer efficiency, maintain model stability, and adapt the deep architecture to the visual diversity 

present in real-world e-commerce catalogs. 

Table 1.  Summary of Training Configuration and Model Setup 

Description Modified EfficientNetV2M 
Number of Layers 698 

Trainable layers 14 

Frozen Layer 684 

Total Parameters 108,531,269 

Trainable Parameters 57,612,689 

Added Layers 4 

Overfitting Handler Dropout 

Number of Epochs 20 

To validate the effectiveness of this setup, the model’s classification performance was evaluated using 

standard metrics, as summarized in Table 2. The results show that the model achieved an accuracy of 

84%, indicating a high level of agreement between the predicted labels and the ground truth. The 

weighted average F1-score, also at 84%, reflects a balanced performance across all classes, which is 

particularly important in the presence of class imbalance. A precision score of 86% suggests that the 

model effectively minimized false positives, while the recall value of 84% demonstrates its ability to 

capture the majority of actual positive cases. These outcomes indicate that the model performs reliably 

in general classification tasks and remains consistent even when distinguishing visually similar product 

categories, reinforcing its suitability for deployment in practical e-commerce scenarios. 
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Table 2.  Evaluation Metrics of The Proposed Model 

Description Value 
Accuracy 84% 

Weighted average F1-Score 84% 

Precision 86% 

Recall 84% 

 

These findings are consistent with prior research [37], [38], which demonstrates that CNN-based 

deep learning methods are highly effective in extracting meaningful visual features from product images. 

Furthermore, the use of transfer learning, which leverages pre-trained models trained on diverse image 

corpora, has been shown to improve classification performance across various domains significantly [39]–

[41]. 

To further assess the model’s discriminative capability in a multi-class setting, Fig. 3 presents a 3D 

visualization of the Receiver Operating Characteristic (ROC) curve, where the X-axis denotes the False 

Positive Rate (FPR), the Y-axis represents the True Positive Rate (TPR), and the Z-axis corresponds 

to the Area Under the Curve (AUC). This multi-dimensional perspective reveals the trade-offs between 

sensitivity and specificity across different thresholds. The visualization highlights the ten classes with 

the highest AUC scores, offering a focused view of the model’s ability to distinguish between visually 

similar product categories. 

 

Fig. 3. 3D ROC Curve Visualization of The Top 10 Classes with Highest AUC Scores 

To formally define the feature extraction process, Equation (1) provides a mathematical 

representation of the process: 

𝑍𝑍𝑖𝑖
𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖(𝑋𝑋𝑖𝑖

𝑖𝑖𝑖𝑖𝑖𝑖; 𝜃𝜃𝑐𝑐𝑐𝑐𝑐𝑐)   (1) 

where 𝑍𝑍𝑖𝑖
𝑖𝑖𝑖𝑖𝑖𝑖

 is image feature vector, 𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖 is CNN-based feature extraction function (EfficientNetV2M), 𝑋𝑋𝑖𝑖
𝑖𝑖𝑖𝑖𝑖𝑖

 

is Input image of the 𝑖𝑖-th product, and 𝜃𝜃𝑐𝑐𝑐𝑐𝑐𝑐 is Fine-tuned model parameters.  

Each product image is modeled as a three-dimensional tensor of size 𝐻𝐻×𝑊𝑊×𝐶𝐶, where H, W, and C 

represent the height, width, and number of color channels (RGB), respectively. These tensors are passed 

through the CNN, pre-trained on a large-scale dataset and fine-tuned for the current classification task, 

undergoing successive layers of convolution and pooling. The final output is a compact, high-

dimensional vector representation that serves as input for the downstream clustering operations discussed 

in the following section. 

2.3. Agglomerative Clustering 
In this study, we implemented Agglomerative Hierarchical Clustering to group products based on 

their visual features. This method was chosen for its ability to produce dendrograms, which not only 
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reveal hierarchical relationships among items but also offer flexibility in selecting the desired level of 

granularity a significant advantage when dealing with heterogeneous product categories [28], [42], [43]. 

Unlike flat clustering techniques such as k-means, Agglomerative Clustering does not require the 

number of clusters to be predefined. Instead, it iteratively merges the most similar clusters based on the 

chosen distance metrics and linkage criteria. However, the effectiveness of this approach is highly 

sensitive to the choice of these parameters [44]. Building upon our earlier findings [45], we systematically 

evaluated various combinations of distance measures (Euclidean, Manhattan, and Cosine) and linkage 

methods (Ward, Complete, Single, and Average). 

To identify optimal clustering configurations, we conducted a comparative evaluation of these 

combinations based on cluster coherence and external validation metrics. Our analysis revealed that two 

specific configurations consistently outperformed others: Cosine Similarity with Complete Linkage and 

Euclidean Distance with Ward Linkage. These findings corroborate our previous work [45] and were 

further supported by high NMI scores. Cosine Similarity was particularly effective in capturing 

directional relationships in high-dimensional vector spaces. In contrast, Euclidean Distance reflected 

spatial proximity, both of which are essential when assessing visual features encoded as embeddings [46]. 

To further examine the effect of feature quality on clustering outcomes, we compared visual 

representations extracted from two CNN models: the baseline Vanilla EfficientNetV2M (pre-trained on 

ImageNet) and the Modified EfficientNetV2M introduced in Section 2.2. A detailed comparison is 

provided in Table 3, which shows that the modified model yields more compact and semantically 

meaningful feature embeddings. These findings suggest that domain-specific fine-tuning improves the 

model’s ability to distinguish visual patterns, ultimately enhancing the quality and interpretability of 

product groupings. 

Table 3.  Comparison of Image Feature Distances Using Vanilla and Modified EfficientNetV2M 

Picture1 Picture2 Model Euclidean Distance Cosine Similarity 

 

 

Vanilla 

EfficientNetV2M 

258.79 0.52 

Modified 

EfficientNetV2M 

240.93 0.42 

 

 

Vanilla 

EfficientNetV2M 

406.52 0.07 

Modified 

EfficientNetV2M 

353.18 0.01 

  

Vanilla 

EfficientNetV2M 

386.20 0.09 

Modified 

EfficientNetV2M 

344.51 0.01 

 

  A more detailed analysis of these results is provided in Table 3, which compares the feature distances 

between image pairs using both model variants. The evaluation focuses on Euclidean distance and Cosine 

similarity to quantify the quality of the visual representations. In all three image pairs, the Modified 

EfficientNetV2M consistently produced lower values across both metrics when compared to the Vanilla 

version. These results indicate that the modified model is more effective at encoding meaningful visual 

distinctions, particularly in differentiating dissimilar product categories. For example, in the second and 

third image pairs comparing baby diapers with headphones the Modified EfficientNetV2M achieved 

notably lower Cosine similarity scores (0.01) compared to the Vanilla model (0.07 and 0.09, respectively), 
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signifying more apparent separation between unrelated items. Likewise, the reduced Euclidean distances 

for similar items, such as different diaper packages, reflect tighter intra-class clustering. Overall, these 

findings reinforce the benefit of domain-specific fine-tuning in enhancing the discriminative power of 

learned features and improving the reliability of subsequent clustering operations. 

2.4. Setting the Distance Threshold Parameters 
To determine the most suitable parameters for grouping products into clusters, we utilized a 

randomly selected subset of 103 product samples from the test dataset. The image features of these 

samples were extracted using the previously described Modified EfficientNetV2M model. These feature 

vectors were then used to construct a dendrogram using the Agglomerative Hierarchical Clustering 

method. 

This calibration step served as the basis for identifying a clustering threshold that reflects the inherent 

structure of the data. The threshold was established according to the known number of product groups 

within the subset and corresponds to a horizontal cut in the dendrogram that captures the natural 

separation between clusters (as indicated by the yellow dashed line in Fig. 4 and Fig. 5). This 

thresholding approach ensures that the resulting clusters align closely with the semantic structure of the 

dataset. 

Table 4 summarizes the optimal clustering thresholds identified for each combination of distance 

metric and linkage method across both the Vanilla and Modified EfficientNetV2M models. The results 

show that for both models, the best-performing linkage configurations were Cosine Similarity with 

Complete Linkage and Euclidean Distance with Ward Linkage. Notably, the Modified EfficientNetV2M 

required higher threshold values compared to the Vanilla model for both metrics, 0.975 versus 0.915 for 

Cosine Similarity, and 430 versus 450 for Euclidean Distance. This shift suggests that the modified 

model generates more compact and semantically coherent feature embeddings, allowing for tighter intra-

cluster grouping without compromising inter-cluster separability. The identification of these thresholds 

is critical for determining where to cut the dendrogram during agglomerative clustering, as they directly 

influence the granularity and accuracy of the resulting product groupings. These findings further support 

the effectiveness of the modified architecture in improving visual feature representation and its impact 

on downstream clustering performance. 

Table 4.  Best Clustering Thresholds for Each Distance Metric and Linkage Combination 

Model Metric Linkage Best Threshold 

Vanilla 

EfficientNetV2M 

Cosine Similarity Complete Linkage 0.915 

Euclidean Distance Ward Linkage 450 

Modified 

EfficientNetV2M 

Cosine Similarity Complete Linkage 0.975 

Euclidean Distance Ward Linkage 430 

 

To formalize the segmentation process, Equation (2) presents the mathematical formulation for 

cutting the dendrogram to obtain discrete cluster assignments: 

𝐶𝐶 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝐷𝐷, 𝑡𝑡)   (2) 

where 𝐶𝐶 is resulting set of clusters, 𝐷𝐷 is pairwise distance matrix between product images, and 𝑡𝑡 is 
distance threshold used to segment the dendrogram. 

This expression encapsulates the fundamental principle of Agglomerative Clustering: initially treating 

each product as an individual cluster and progressively merging the most similar pairs according to a 

chosen distance metric (e.g., Euclidean, Manhattan, Cosine) and linkage criterion (e.g., Complete, 

Average, Ward), until a complete dendrogram is constructed. By applying a cut at a specified threshold 

𝑡𝑡, the resulting clusters reflect underlying visual similarity without requiring a predefined number of 

groups. This threshold-based segmentation approach offers flexibility and adaptability, making it 

particularly suitable for dynamic product datasets where the number and type of items may vary over 
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time. Moreover, its data-driven nature enables the system to adapt to evolving inventories, making it 

ideal for practical e-commerce deployments where scalability and automation are essential. As such, the 

interpretability of dendrograms becomes a critical asset in evaluating both the structure and validity of 

the resulting clusters. 

The structure and behavior of the clustering process are visually represented in Fig. 4 and Fig. 5. In 

these dendrograms, the vertical axis indicates inter-cluster distances, while the horizontal axis 

corresponds to merged nodes, with each node representing the size of the resulting cluster. Default 

dendrogram links are shown in blue, and branches of the same color represent the final merged clusters. 

These visualizations highlight how varying parameter configurations influence clustering outcomes, as 

detailed in Table 4. 

To deepen the analysis, a comparative evaluation of clustering structures was conducted across both 

the baseline and modified models, focusing on how specific metric–linkage combinations affect the 

formation and separation of product groups. By visualizing the dendrograms produced under different 

parameter settings, the study aims to assess not only quantitative outcomes, such as threshold values and 

NMI scores, but also qualitative differences in cluster compactness and clarity. These visual comparisons 

offer valuable insights into the practical implications of model design choices, particularly in 

distinguishing fine-grained product variations within high-dimensional visual feature spaces. 

 

(a) 

 

(b) 

Fig. 4. Dendrogram of Vanilla EfficientNetV2M for 103 Test Samples : (a) Using Metric Cosine Similarity and 

Complete Linkage (b) Using Metric Euclidean Distance and Ward Linkage 

Fig. 4 illustrates the clustering behavior of the Vanilla EfficientNetV2M model using two 

configurations: (a) Cosine Similarity with Complete Linkage, and (b) Euclidean Distance with Ward 
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Linkage. These dendrograms visualize the hierarchical relationships among the 103 test samples, with 

the orange dashed line marking the threshold level determined during calibration. In subfigure (a), the 

clustering structure is relatively shallow, suggesting moderate intra-class compactness under cosine-

based similarity. In contrast, subfigure (b) exhibits deeper and more differentiated branches, indicating 

improved separation between clusters when using Euclidean distance and Ward linkage. This visual 

contrast reinforces the impact of the distance metric and linkage selection on clustering behavior, 

supporting the numerical differences in optimal threshold values previously shown. 

While Fig. 4 provides insight into the baseline model’s ability to structure data hierarchically, it also 

reveals certain limitations in capturing fine-grained visual distinctions among product categories. The 

relatively less compact cluster formations and broader inter-cluster spacing suggest that the Vanilla 

EfficientNetV2M, though pre-trained on large-scale datasets, lacks the specialization needed for high-

resolution discrimination in domain-specific contexts such as e-commerce. These observations raise an 

important question regarding the extent to which feature refinement, through model adaptation, can 

enhance clustering performance. To explore this, Fig. 5 presents the results of applying the same 

clustering procedures to embeddings generated by the Modified EfficientNetV2M model, thereby 

enabling a direct comparison between generic and fine-tuned representations. 

 

(a) 

 

(b) 

Fig. 5. Dendrogram of Modified EfficientNetV2M for 103 Test Samples: (a) Using Metric Cosine Similarity 

Fig. 5 displays the clustering results obtained using the Modified EfficientNetV2M model, offering 

a visual representation of how its fine-tuned feature embeddings influence the grouping structure. In 

subfigure (a), which uses Cosine Similarity and Complete Linkage, the resulting dendrogram shows a 

more precise separation between clusters, with more balanced branch heights and minimal overlap near 
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the threshold. This improved clustering structure suggests that the modified model produces 

representations that are not only compact within clusters but also better aligned across semantically 

similar items. Subfigure (b), which applies Euclidean Distance with Ward Linkage, reveals a more refined 

hierarchy compared to its Vanilla counterpart in Fig. 4, with multiple clusters forming below the 

threshold line, indicating early consolidation of well-separated groups. Notably, significant and 

consistent clusters, such as the one containing 22 samples, emerge more distinctly, highlighting the 

model’s improved ability to capture intra-class consistency. These patterns reinforce the earlier 

quantitative findings and illustrate how domain-specific fine-tuning enhances the clustering structure, 

making it more reflective of underlying semantic categories in e-commerce product data. 

2.5. Calculating Normalized Mutual Information Values 
To evaluate the quality of clustering results, we employed the NMI score, a widely used metric in 

cluster analysis for measuring the similarity between predicted clusters and ground truth labels [47]–

[49]. NMI quantifies the amount of shared information between two clusterings, producing values 

ranging from 0 to 1. A score of 0 indicates no mutual information, implying entirely dissimilar clusters, 

while a score of 1 denotes perfect agreement between the clusterings. 

This metric was selected due to its effectiveness in quantifying clustering performance across varying 

parameter configurations. In this study, NMI values were used to assess the consistency and accuracy of 

clustering outcomes under different distance and linkage combinations. Higher NMI scores suggest that 

the clustering algorithm effectively grouped similar data points and captured the latent structure in the 

dataset [50], [51]. Compared to alternative evaluation metrics, NMI has demonstrated greater reliability 

in assessing clustering accuracy and resolving cluster labeling challenges [52], [53]. 

The mathematical formulation used to compute the NMI score is provided in Equation (3) 

𝑁𝑁𝑁𝑁𝑁𝑁 = 2𝑥𝑥𝑥𝑥𝑥𝑥(𝐶𝐶,𝑌𝑌)
𝐻𝐻(𝐶𝐶)+𝐻𝐻(𝑌𝑌)

   (3) 

Where; 

𝑀𝑀𝑀𝑀(𝐶𝐶, 𝑌𝑌) = Denotes the Mutual Information between the predicted clusters C and the ground truth 

clusters Y. 

𝐻𝐻(𝐶𝐶) = Is the entropy of the predicted clusters 

𝐻𝐻(𝑌𝑌) = Is the entropy of the ground truth clusters 

In this Equation, Mutual Information (MI) reflects the shared information between the predicted 

and actual clusterings, while entropy measures the degree of uncertainty within each clustering. The 

NMI value reaches its upper bound of 1 when the clustering output perfectly matches the ground truth 

and falls to 0 when no overlap exists between the two distributions. 

Table 5 presents the NMI scores for various combinations of models, distance metrics, and linkage 

methods, providing a quantitative assessment of clustering quality. The Modified EfficientNetV2M 

consistently outperforms its Vanilla counterpart across both configurations, with the highest NMI score 

of 0.938 achieved when using Cosine Similarity and Complete Linkage. This score indicates a strong 

alignment between predicted clusters and ground truth labels, confirming the effectiveness of domain-

specific fine-tuning in enhancing feature discrimination. In contrast, the Vanilla EfficientNetV2M 

exhibits considerably lower NMI values, 0.752 with Cosine Similarity and 0.653 with Euclidean Distance, 

indicating that its general-purpose features are less effective in accurately grouping visually similar e-

commerce products. Notably, even within the same model architecture, Cosine Similarity paired with 

Complete Linkage consistently yields better performance than Euclidean Distance with Ward Linkage. 

This pattern implies that orientation-based similarity (as captured by cosine metrics) is more effective 

for high-dimensional feature spaces generated by deep CNNs. The results reinforce earlier visual and 

threshold-based findings, validating the superiority of the modified model and highlighting the critical 

role of metric–linkage pairing in optimizing clustering outcomes. 
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Table 5.  NMI Scores Across Different Models and Clustering Parameter Configurations 

Model Metric Linkage NMI Score 

Vanilla 

EfficientNetV2M 

Cosine Similarity Complete Linkage 0.752 

Euclidean Distance Ward Linkage 0.653 

Modified 

EfficientNetV2M 

Cosine Similarity Complete Linkage 0.938 

Euclidean Distance Ward Linkage 0.767 

3. Results and Discussion 
The experimental results demonstrate that the proposed method, combining the Modified 

EfficientNetV2M model for feature extraction with Agglomerative Hierarchical Clustering, delivers 

strong performance in organizing visually similar product images. As shown in Table 5, the best 

configuration, using Cosine Similarity and Complete Linkage, achieved an NMI score of 0.938, 

indicating a high degree of alignment between the predicted clusters and the actual product labels. 

Notably, the Modified EfficientNetV2M model significantly outperformed its Vanilla counterpart, 

highlighting its capacity to generate semantically richer feature embeddings. These findings suggest that 

fine-tuning the CNN on domain-specific data enhances the quality of visual representation, ultimately 

improving the effectiveness of clustering in unsupervised settings.  

To further assess the robustness and scalability of the system, we evaluated its performance under 

incremental data expansion, an essential consideration for real-world deployment. Specifically, we 

simulated a dynamic e-commerce scenario by progressively introducing new product data in four separate 

batches. As reported in Table 6, clustering performance improved consistently with each batch, 

culminating in an NMI score of 0.970 on Batch 4 using the Modified EfficientNetV2M model. This 

upward trend indicates that the system not only generalizes well to previously unseen data but also 

benefits from increased diversity, which enriches the learned feature space. Such adaptability is 

particularly valuable for e-commerce platforms where product catalogs evolve continuously. A detailed 

breakdown of the NMI scores for each configuration across the batches is provided in Table 6. 

Table 6.  NMI Scores for Each Clustering Batch Using The Top Two Model Parameter Configurations 

Model Metric Linkage Data Batch NMI Score 

Vanilla 

EfficientNetV2M 

Cosine Similarity Complete Linkage 

Batch-1 0.760 

Batch-2 0.805 

Batch-3 0.747 

Batch-4 0.836 

Euclidean Distance Ward Linkage 

Batch-1 0.809 

Batch-2 0.899 

Batch-3 0.886 

Batch-4 0.931 

Modified 

EfficientNetV2M 

Cosine Similarity Complete Linkage 

Batch-1 0.911 

Batch-2 0.921 

Batch-3 0.939 

Batch-4 0.925 

Euclidean Distance Ward Linkage 

Batch-1 0.812 

Batch-2 0.920 

Batch-3 0.883 

Batch-4 0.970 
 

Table 6 presents the NMI scores across four successive clustering batches for the top two model–

parameter configurations. The results demonstrate the superior performance and scalability of the 

Modified EfficientNetV2M model over its Vanilla counterpart. Notably, the Modified model, paired 

with Cosine Similarity and Complete Linkage, consistently outperformed all other configurations, 
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achieving remarkably high NMI scores, ranging from 0.911 in Batch 1 to 0.939 in Batch 3. Although 

there is a slight dip in Batch-4 (0.925), the model maintained strong consistency across all iterations, 

indicating stable and reliable clustering performance even as the dataset grew. 

Equally significant is the Modified model using Euclidean Distance with Ward Linkage, which 

achieved the highest single score of 0.970 in Batch-4. This peak score suggests that as more data is 

introduced, the model benefits from increased diversity and becomes better at capturing the latent 

structure of the visual feature space. In contrast, the Vanilla EfficientNetV2M yielded lower and more 

fluctuating scores in both configurations, with Cosine–Complete ranging between 0.747 and 0.836, and 

Euclidean–Ward from 0.809 to 0.931. While the Vanilla model still showed improved clustering as 

batches progressed, its gains were less pronounced, highlighting the limited capacity of non-fine-tuned 

architectures to adapt to domain-specific visual patterns. 

Overall, these results reinforce the advantage of domain-adapted models in scalable clustering tasks, 

particularly in dynamic e-commerce environments where product inventories are frequently updated. 

The steady improvement in NMI across batches for the Modified model also suggests its robustness in 

generalizing to unseen product images and maintaining high intra-class consistency without supervision. 

Table 7 presents the average NMI scores across all four clustering batches, providing a holistic view 

of each model’s performance under different parameter configurations. The Modified EfficientNetV2M 

model consistently outperformed the Vanilla version, achieving an average NMI of 0.924 with Cosine 

Similarity and Complete Linkage, the highest overall score. This configuration demonstrated both 

robustness and adaptability, reflecting the model’s enhanced capacity to capture consistent semantic 

groupings across diverse and expanding data subsets. Notably, even with Euclidean Distance and Ward 

Linkage, the modified model maintained strong performance (NMI average: 0.896), further highlighting 

its ability to generate compact yet discriminative visual embeddings suitable for hierarchical clustering. 

Table 7.  Average NMI Scores Across All Batches by Model and Clustering Parameter 

Model Metric Linkage NMI Average 

Vanilla 

EfficientNetV2M 

Cosine Similarity Complete Linkage 0.787 

Euclidean Distance Ward Linkage 0.881 

Modified 

EfficientNetV2M 

Cosine Similarity Complete Linkage 0.924 

Euclidean Distance Ward Linkage 0.896 

 

The strong alignment between this clustering configuration and the nature of e-commerce data is 

particularly noteworthy. Product images on e-commerce platforms often exhibit high intra-class 

variation (e.g., different angles, lighting conditions, or packaging updates) but low inter-class margins, 

making orientation-sensitive similarity measures, such as Cosine Similarity, especially advantageous. 

Combined with Complete Linkage, which emphasizes maximal pairwise distance within clusters, this 

method helps preserve cluster tightness and avoids premature merging of dissimilar items. Meanwhile, 

the Modified EfficientNetV2M, having been fine-tuned on domain-specific data, captures nuanced visual 

patterns more effectively than the generic Vanilla version. The match between the data and methods 

helps explain why the Cosine–Complete combination performs so well and consistently. In contrast, the 

Vanilla EfficientNetV2M model produced lower average NMI scores under both configurations. 

Although the Euclidean–Ward pairing yielded relatively strong results (0.881), it still lagged behind the 

modified model, underscoring the limitations of relying solely on pre-trained features without domain 

adaptation. The lowest performance was observed in the Vanilla model using Cosine–Complete (0.787), 

suggesting that without specialized tuning, this configuration lacks the necessary discriminative power 

to handle the complexity of real-world product data. Overall, these findings confirm that both the model 

architecture and clustering design must be carefully matched to the intrinsic structure of the dataset to 

enable scalable and reliable product grouping in dynamic e-commerce environments. 
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Beyond the quantitative metrics, the architectural advantages of the proposed approach further 

underscore its practical value. EfficientNetV2M’s compound scaling strategy, coupled with its greater 

representational capacity, enables it to capture fine-grained visual nuances that are often overlooked by 

shallower CNNs. When combined with transfer learning, the model adapts efficiently to domain-specific 

imagery with minimal supervision, an essential characteristic for deployment in large-scale, 

heterogeneous environments where labeled data is limited or incomplete. In contrast to conventional 

CNN models such as VGG16 or MobileNetV2, which were evaluated in our prior work [36], the 

Modified EfficientNetV2M consistently yielded more robust and generalizable representations, 

remarkably when fine-tuned on the target dataset. While earlier architectures may suffice for smaller, 

well-curated datasets, they often lack the depth and flexibility required to address the complexities of 

real-world e-commerce data. 

Moreover, our approach provides significant advantages over fully supervised models designed for 

static, closed-set classification. For instance, [54] reports a six-layer CNN trained from scratch on 1,050 

labeled product images for a fixed-label classification task, achieving an accuracy of 91.37%. While 

effective in constrained settings, such methods lack scalability in open-world environments, where new 

and unlabeled products are frequently introduced. In contrast, our unsupervised clustering framework 

accommodates these variations without requiring exhaustive labeling or prior knowledge of the number 

of classes, making it a more practical solution for dynamic, large-scale retail systems. From an application 

perspective, the proposed system delivers several tangible benefits for e-commerce operations. First, it 

facilitates catalog consolidation by automatically grouping visually similar or duplicate products, thereby 

reducing redundancy and simplifying inventory management. Additionally, the clustering of related 

items enhances product discovery, resulting in more relevant search results and a broader range of 

recommendations for users. Furthermore, the system significantly lowers annotation costs, as it relies 

on unsupervised clustering rather than fully labeled datasets, making it scalable and cost-effective for 

large and constantly evolving product catalogs. 

Table 8 and Table 9 present qualitative examples of clustering errors encountered by the Vanilla and 

Modified EfficientNetV2M models under their respective optimal parameter configurations. These 

misclassifications provide insight into the challenges of relying solely on visual similarity for unsupervised 

product grouping. As shown in Table 8, the Vanilla model often failed to distinguish semantically 

distinct items that share superficial visual characteristics. For instance, an electric stove was grouped with 

egg beaters due to similar metallic surfaces and rounded contours. At the same time, a liquid lipstick 

was mistakenly grouped with baby diapers, likely due to a similarity in color scheme or packaging 

structure. In some cases, such as antiseptic gel, both tested configurations failed to differentiate it from 

unrelated product categories, suggesting insufficient feature discrimination in the baseline model. 

Table 9 demonstrates that even the Modified EfficientNetV2M, while yielding stronger performance 

overall, was not immune to errors. Misclustering often occurred in categories with overlapping packaging 

or ambiguous visual forms. For example, a frozen detox drink was incorrectly grouped with sugar-dust 

coating products, possibly due to similar red-and-white packaging themes. Likewise, olive oil bottles 

were misclustered with clotheslines, indicating confusion caused by vertical alignments and shared 

structural layouts. In another instance, headsets and eyelash curlers, both comprising compact, curved 

forms, were misclassified under both linkage configurations, reflecting persistent difficulties in 

distinguishing geometrically similar but semantically unrelated objects. 

Despite these advances, the system exhibits apparent limitations, particularly in edge cases where 

visual ambiguity leads to semantically inconsistent clusters. These issues often arise in product domains 

characterized by subtle inter-class distinctions or high intra-class variability. Further analysis attributes 

these failures not only to model constraints but also to data-related factors. Low image quality, such as 

poor resolution, inconsistent lighting, and visually cluttered backgrounds, can obscure discriminative 

cues, impairing the CNN’s ability to encode meaningful representations. In other scenarios, class overlap 

or vague labeling contributed to model confusion, especially among consumer goods such as beauty 

accessories and kitchen utensils, where visual and functional boundaries are less well-defined. 
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Table 8.  Clustering Errors Using Vanilla EfficientNetV2M with Top Two Parameter Settings 

Types of 
Failure 

Miss Clustered 
Product Image Actual Group Cluster Result Group Cluster 

Recognition 

failed using 

Cosine 

Similarity - 

Complete 

Linkage. 

 

Electric Stove 

 

 

Egg Beater 

 

 

Recognition 

failed using 

Euclidean 

Distance -

Ward 

Linkage. 
 

 

Liquid Lipstick 

 

 

Baby Diapers 

 

 

Recognition 

Failed using 

Cosine 

Similarity - 

Complete 

Linkage 

and  

Euclidean 

Distance - 

Ward 

Linkage 

 

Antiseptic Gel 

 

 

Baby Diapers 

 

 

 

These findings highlight a fundamental limitation of vision-only clustering systems: their limited 

resilience in uncontrolled, real-world environments, such as user-generated e-commerce listings. In such 

contexts, image features alone may fail to convey category-relevant semantics, particularly when 

appearance-based similarity does not align with product function or taxonomy. To mitigate these issues, 

future work should consider multimodal strategies that incorporate auxiliary metadata, such as product 

names, category tags, or descriptions, into the clustering pipeline. Complementary techniques, including 

image enhancement, background subtraction, and outlier detection, can further enhance clustering 

robustness and aid in identifying ambiguous instances that require human verification. Such measures 

are essential for enhancing the system’s scalability and reliability in dynamic online retail environments. 
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Table 9.  Clustering Errors Using Modified EfficientNetV2M with Top Two Parameter Settings 

Types of 
Failure 

Miss Clustered 
Product Image Actual Group Cluster Result Group Cluster 

Recognition 

failed using 

Cosine 

Similarity - 

Complete 

Linkage. 
 

Frozen Detox 

 

 

Sugar-dust Coating 

 

 

Recognition 

failed using 

Euclidean 

Distance -

Ward 

Linkage. 

 

 

Olive Oil 

 

 

Clothesline 

 

 

Recognition 

Failed using 

Cosine 

Similarity - 

Complete 

Linkage and  

Euclidean 

Distance - 

Ward 

Linkage 

 

Headset 

 

 

Eyelash curler 

 

 

 

4. Conclusion 
Based on the findings of this research, several key conclusions can be drawn. The Modified 

EfficientNetV2M architecture demonstrated superior performance in extracting discriminative visual 

features compared to the Vanilla version, underscoring the importance of domain-specific fine-tuning 

in improving the quality of image representations for clustering tasks. Among the various clustering 

configurations explored, the combinations of Cosine Similarity with Complete Linkage and Euclidean 

Distance with Ward Linkage consistently produced the most coherent and semantically meaningful 

clusters. After determining the optimal clustering parameters, the model’s scalability was further 

validated by incrementally adding new product data. The results confirmed that newly introduced items 

could be successfully integrated into existing clusters or allocated to new ones, highlighting the system’s 

adaptability in dynamic inventory environments. The highest clustering performance was achieved by 

pairing the Modified EfficientNetV2M with Cosine Similarity and Complete Linkage, yielding a peak 

NMI score of 0.924 and outperforming all other configurations across evaluation batches. In practical e-
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commerce applications, the proposed approach offers tangible operational advantages. By automatically 

grouping visually similar or duplicate products, the system can enhance catalog organization and 

inventory management while reducing redundancy. From a user experience perspective, such clustering 

contributes to improved personalization, search relevance, and navigation, ultimately increasing user 

satisfaction by presenting more visually relevant alternatives. Additionally, the approach supports more 

effective marketing strategies by identifying product groupings that facilitate targeted promotions and 

more accurate customer segmentation, leading to enhanced engagement and higher conversion rates. 

Nonetheless, the consistency of clustering performance may vary across product categories, particularly 

in visually diverse domains such as fashion, where intra-class variability is high. To address these 

limitations, future research should explore the expansion of dataset size and diversity, the refinement of 

image feature extraction techniques, the integration of hybrid models, and the incorporation of auxiliary 

metadata such as product titles and descriptions to provide deeper semantic context and improve 

clustering accuracy. 
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