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1. Introduction 
Social media platforms, including Facebook, X (formerly Twitter), Instagram, WhatsApp, and 

TikTok, have become valuable sources of data for sentiment analysis (SA) research [1]. Twitter data, in 

particular, has been widely used due to its concise format and diverse linguistic expressions, including 

multilingual and multicultural elements [2]. SA assigns polarity (positive, neutral, or negative) to tweets 

and is one of the most studied tasks in natural language processing (NLP) and machine learning (ML) 

[3], [4]. However, SA models are often language-specific and not easily transferable across languages [5]. 

Multilingual Sentiment Analysis (MSA) aims to analyze sentiment across languages, using resources 

from well-resourced languages to process data in low-resource ones [6]. Traditional word embeddings, 

such as Word2Vec and fastText, have failed to consider contextual variations; however, BERT, a state-

of-the-art (SOTA) pre-trained model, has significantly improved contextual understanding [7]. Despite 
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 With the increasing volume of multilingual user-generated content across 

social media platforms, effective sentiment analysis (SA) becomes crucial, 

especially for low-resource languages. However, traditional models relying 

on context-independent embeddings, such as Word2Vec, GloVe, and 

fastText, struggle to handle the complexity of multilingual sentiment 

classification. To address this, we propose an Automatic Multilingual 

Sentiment Detection (AMSD) framework that leverages the contextual 

capabilities of BERT for feature extraction and a Bidirectional Long Short-

Term Memory (Bi-LSTM) network for classification. Our method, termed 

Elite Opposition Cross-Entropy Weighted Bi-LSTM (EOCEWBi-

LSTM), integrates elite opposition-based learning to optimize 

hyperparameters and enhance classification accuracy. A weighted cross-

entropy loss function further refines the model's sensitivity to class 

imbalance, thereby improving its performance. The model is trained and 

evaluated on the NEP_EDUSET corpus, comprising 45,434 tweets in 

English, Hindi, and Tamil. Experimental results demonstrate notable 

improvements in precision, recall, F1-score, and accuracy, highlighting the 

effectiveness of EOCEWBi-LSTM in multilingual sentiment analysis, 

especially across both high-resource and low-resource languages. The 

experimental results show that the proposed EOCEWBi-LSTM achieves a 

high F1-score ratio of 93.83% and an accuracy ratio of 93.83% compared 

to other existing methods. EOCEWBi-LSTM provides an effective 

solution for multilingual sentiment analysis, especially for languages with 

limited resources. 
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its effectiveness, challenges remain in adapting pre-trained models, such as BERT, to multilingual 

environments [8]. The development of multilingual tools increasingly relies on artificial intelligence (AI) 

and deep learning (DL) techniques [9]. DL has been instrumental in advancing MSA, with techniques 

such as Convolutional Neural Networks (CNN) and LSTM networks being explored for improved 

classification [10]. 

Traditional models using static embeddings (e.g., Word2Vec, GloVe) or context-agnostic 

architectures lack the flexibility to handle polysemy and code-mixed text, which is common in 

multilingual social media content. Even recent multilingual extensions of BERT, such as mBERT and 

XLM-R, while promising, often require extensive fine-tuning and do not explicitly address issues like 

class imbalance or hyperparameter sensitivity in deep classifiers. To address these limitations, we propose 

a novel hybrid framework, EOCEWBi LSTM, that combines the contextual strength of BERT with a 

Bi-LSTM classifier optimized using Elite Opposition-Based Learning and a Weighted Cross-Entropy 

Loss. This approach enhances model performance on low-resource multilingual datasets by addressing 

both the quality of representation and the dynamics of training. 

This paper introduces an Automatic Multilingual Sentiment Detection (AMSD) approach for MSA, 

focusing on English (high-resource) and Hindi and Tamil (low-resource). AMSD employs BERT for 

contextual embeddings and an Elite Opposition Cross Entropy Weighted Bi-LSTM (EOCEWBi-

LSTM) for classification. This model refines hyperparameters by adjusting the weights and biases, 

thereby improving sentiment detection accuracy. This study was designed to answer several key questions 

related to the development of deep learning-based sentiment classification models, as follows: 

• Can BERT-enhanced contextual embeddings significantly improve sentiment classification in 

multilingual settings compared to traditional embeddings?  

• Can elite opposition-based optimization improve the performance of Bi-LSTM classifiers in 

imbalanced multilingual datasets?  

• How effectively does the proposed EOCEWBi-LSTM framework at  generalizing across different 

languages with varying resource availability? 

The contributions of this research include the creation of the NEP_Eduset dataset, which was mostly 

collected from platform X (formerly Twitter), the development of the EOCEWBi-LSTM model that 

integrates the elite opposition-based tuning method with BERT-enhanced Bi-LSTM to improve 

classification performance, and implementation using Python 3.7 and GPU resources from Google 

Collaboratory with the application of various deep learning classifiers on the dataset. Additionally, this 

research demonstrates the superiority of EOCEWBi-LSTM in capturing diverse sentiment tones across 

languages with greater accuracy. The paper is structured as follows: Section 2 reviews existing DL 

classification methods and research gaps, Section 3 details the methodology, Section 4 presents findings, 

and Section 5 summarizes contributions, limitations, and future research directions. 

2. Literature Review 
Sentiment analysis has been extensively studied using various ML and DL techniques. However, 

challenges persist in achieving high performance across multiple languages, especially in low-resource 

contexts. This review organizes related work into three major themes: (1) traditional ML approaches, 

(2) DL and pre-trained language models, and (3) multilingual and cross-lingual sentiment classification. 

A text classification method utilizing BERT and various enhancements for NLP, categorizing tweet 

sentiments as neutral, negative, or positive. Compared to models using Word2Vec, the results showed 

significant improvements in Accuracy (Acc), Precision (P), Recall (R), and F1-score, particularly with 

neural networks such as CNN, RNN, and Bi-LSTM [11]. Four DL models combining BERT with 

Bidirectional LSTM (Bi-LSTM) and Bidirectional Gated Recurrent Unit (Bi-GRU) were developed. 

The study optimized accuracy by fine-tuning pre-trained word embeddings. It examined the impact of 

hybridizing Bi-GRU and Bi-LSTM on DistilBERT and RoBERTa, with Bi-GRU layers yielding the 

best results [12]. Enhanced sentiment analysis by applying pre-processing techniques to remove noise 
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from tweets, such as URLs, mentions, and hashtags, was analyzed. Their BERT-based experiments in 

Italian and English identified optimal pre-processing methods, thereby advancing the state-of-the-art 

(SOTA) sentiment classification [13].  

A BERT-based model incorporating ML algorithms, including SGD, SVM, Decision Tree, Logistic 

Regression, Random Forest (RF), and XGBoost, was employed to detect hateful content and sentiment 

in tweets [14]. Mann et al. enhanced BERT models for sentiment analysis using the Kaggle SMILE 

dataset, improving text interpretation by leveraging surrounding contextual information [15]. Azzouza 

et al. employed a four-phase framework that utilized BERT-generated sentence representations, 

integrating classification models and pre-trained embeddings to enhance sentiment classification [16]. 

Prottasha et al. combined BERT with CNN-BiLSTM to enhance sentiment detection, comparing 

transfer learning (TL) approaches like GloVe, FastText, and Word2Vec [17].  

Jain et al. introduced a BERT-DCNN model with parallel Dilated CNN layers for sentiment analysis, 

preserving dimensional relevance while handling long-term dependencies [18]. Wadud et al. developed 

Deep-BERT, a hybrid CNN-BERT model for offensive text classification in Bengali and English [19]. 

Cam et al. proposed a Turkish SA model that integrates lexicon-based and ML classifiers, examining 

public sentiment in financial tweets [20]. Nandhini et al. introduced a multilingual BERT model 

classifying sentiments across multiple languages [21].  

A model DConvBLSTM-MuRIL was proposed for hate speech detection in Hinglish, Tamil-

English, and Malayalam-English, outperforming prior models [22]. Roy suggested an ensemble 

transformer-based model for sentiment classification in Kannada and Malayalam [23]. Aruna & 

Vetriselvi [24] demonstrated a cross-lingual transfer learning (TL) approach for Tamil sentiment 

analysis, yielding higher results in most cases compared to other models. Hossain et al. introduced 

AFuNet, an Attention-Based Fusion Network for low-resource language classification [25]. Nazir et al. 
[26] proposed transformer-based models, including BERT, RoBERTa, and XLMRoBERTa, for Tamil-

English YouTube comment sentiment analysis, leveraging synthetic oversampling techniques to enhance 

performance.  

Liu et al. [27] suggested the use of DL-based NLP in MSA. At the same time, Prova [28] proposed 

the GPT and DL-based Meta-Ensemble Model for Multilingual Emotion Classification in E-commerce 

Customer Reviews. Md Saef Ullah Miah et al. [29] recommended a multimodal approach to cross-

lingual sentiment analysis using an ensemble of transformers and LLM. Geethanjali and Valarmathi [30] 

presented modality-enriched and multilingual emotion recognition in social media using IChOA-CNN-

LSTM. Dhananjaya et al. [31] introduced the lexicon-based fine-tuning of multilingual language models 

for low-resource language sentiment analysis. 

Despite significant advancements in sentiment analysis, several limitations persist in existing 

approaches. Traditional models employing static word embeddings, such as Word2Vec and GloVe, are 

unable to capture contextual variations in meaning, which is particularly problematic in informal or 

multilingual text. While recent methods have incorporated contextualized models like BERT, their 

application has been limited mainly to high-resource languages, with limited effectiveness observed in 

low-resource settings such as Hindi and Tamil. Additionally, many studies overlook the issue of class 

imbalance in multilingual datasets, resulting in biased predictions and degraded performance. 

Furthermore, hyperparameter selection in deep learning (DL) models is often performed manually or 

through a simple grid search, which can be inefficient and suboptimal. These gaps highlight the need 

for a unified, optimized, and scalable framework that can generalize across languages and handle noisy, 

imbalanced real-world data. Motivated by these challenges, the present study introduces a BERT-

enhanced Bi-LSTM model integrated with elite opposition-based learning and weighted cross-entropy 

loss, designed to improve sentiment classification accuracy across both high- and low-resource languages. 

2.1. LSTM Classifier 
An LSTM retains all textual data throughout time. A bidirectional RNN integrates two RNNs, 

enabling them to convey data from both forward and backward sequences. LSTM has enhanced sequence 
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processing abilities and can identify long-range dependencies within sequences. An LSTM layer 

comprises a series of LSTM cells, with the sequential data input processed in a forward manner. The 

LSTM cell is illustrated in Fig. 1. 

 

Fig. 1. LSTM cell 

The following transformations are carried out while taking into account the current value xt, the 

previous hidden state ht−1, and the previous state Ct−1 in below equation (1-6). 

ft = σ(Wef. [ht−1, xt] + bf)   (1) 

it = σ(Wei. [ht−1, xt] + bi)   (2) 

C�t = tanh(WeC. [ht−1, xt] + bc)   (3) 

Ct = ft ∗ Ct−1 + it ∗ C�t   (4) 

ot = σ(Weo. [ht−1, xt] + bo)   (5) 

ht = ot ∗ tanh(Ct)   (6) 

In this case, σ represents the sigmoid function. Then, tanh is a representation of the hyperbolic 

tangent function. The forget gate is represented by ft. The input gate is indicated by it. The output gate 

is denoted by ot. The weight matrix is denoted as 𝑊𝑊𝑒𝑒, and the bias vector's value is 𝑏𝑏. The concatenation 

operator is [·]. The dot product is indicated by ∗. Since unidirectional LSTM can only take in data from 

the past, it can only remember information that has already occurred. Another option is to use a Bi-

LSTM, which allows for both forward and backwards processing of inputs. Because it integrates two 

latent states, this strategy is significantly more successful in the present and future, enabling one to learn 

from both past and future experiences. 

2.2. Bi-LSTM Classifier 
In Bi-LSTM, contextual data is analyzed in both backward and forward directions, facilitating the 

retention of knowledge from both past and future, as proposed by [32], [33]. The suggested framework 

illustrates the Bidirectional LSTM architecture in Fig. 2. In the equations (1-6), there are two hidden 

values, namely h�⃗ t−1 and h⃖�t−1 associated with the sequence in the Bi-LSTM: h�⃗ t−1 is involved in the 

forward calculation and  h⃖�t−1 is involved in the reverse calculation. In Equation (1-6), the bias vector is 

represented by b, and the weight matrix by we. It has a major impact on improving the accuracy of the 

SA. 
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Fig. 2. Bidirectional LSTM (Bi-LSTM) architecture 

3. Method 
Data collection and labeling constituted the preliminary phases of this classification study. The social 

media data that were extracted were meticulously labeled, and an expert in the corresponding specific 

domain verified the manual labeling. The datasets were then pre-processed intransitively, wherein 

spelling mistakes were corrected, missing points and noise were removed, and both feature extraction 

and dimensionality reduction were performed. After that, the dataset was divided into 70:30 training 

and testing subsets. Supervised learning is utilized to train and assess this model. The efficiency of the 

trained model was then tested on the assessment information and compared with the actual value. The 

overall process of the proposed system is illustrated in Fig. 3. 

 

Fig. 3. The overall process of the proposed system 

3.1. Data Pre-processing 
The dataset used in this study, NEP_EDUSET, consists of 45,434 tweets in English, Hindi, and 

Tamil, representing both high- and low-resource languages. Pre-processing is crucial for ensuring the 

consistency and quality of the input data. The following steps were applied. 
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3.1.1. Data Preparation 
This step is crucial in ML classification because the model's accuracy largely relies on the input fed 

to it. 

3.1.2. Handling Missing Values 
The first stage in the data processing step involved handling the missing values present in the dataset. 

The reason was either completely discarding the data points or low data availability. If a sample did not 

contain the required information, we discarded the entire row. In cases corresponding to the lack of 

information to some extent, the missing value was replaced with a string from a similar observation. 

This approach maintains the dataset in its original and holistic form for further analysis. 

3.1.3. Noise Eradication 
Subsequently, after imputing missing values, noise was removed from the dataset. Noise refers to text 

or characters from a different language, unrelated special symbols, and emoticons, all of which lack 

relevance to the language context. While emoticons express a wide range of emotions, their limited 

appearance in the dataset justified excluding them from the data cleaning process. During this noise-

reduction phase, punctuation, numbers, emoticons, and stopwords were removed. This process was 

crucial in enhancing the quality and relevance of the data, thereby facilitating more effective subsequent 

analysis. 

3.1.4. Spelling and Typographic Errors 
Some terms in the text data, taken from various users, are mistyped or misspelled, which is present 

in the dataset used. The AD (Available Dictionary) database was used to verify the building possibilities 

of each word and correct those errors. The sentiment corpus, represented a sSC =  d1, d2, d3, … , dn 

where d1, d2, d3, … , dn denotes the individual text entries, was scrutinized for spelling accuracy.This is 

done using a specified sentiment corpus, known as, for verifying the spelling of every text input (texts). 

Those words found in the corpus but not in the AD were marked as misspelled. Thereafter, the 

appropriate term was obtained from the AD and utilized to log in to the inappropriate term in the data 

collection. The quality of textual data is ensured at this stage for further processing. 

3.2.  Feature Extraction 
The methodology proposed by Misra utilizes feature extraction through word embedding to represent 

words contextually [34]. BERT receives tokens for embedding, which a CNN then processes to extract 

relevant features. The proposed EOCEWBi-LSTM module structures this information sequentially, and 

a Feed-forward Neural Network (FNN) computes the loss for accurate predictions. 

BERT, a bidirectional and unsupervised pre-trained language model, utilizes Transformer 

architecture to enhance semantic representation [35]. Unlike unidirectional models, BERT interprets 

text bi-directionally, allowing deeper contextual understanding. Vaswani et al. introduced an attention 

mechanism to track sentence semantics, while Rush highlighted how BERT's encoder layers comprising 

self-attention and feed-forward layers, process input sequences effectively [36]. 

BERT employs two key techniques: Next-sentence prediction (NSP) and Masked Language 

Modeling (MLM). MLM randomly masks 15% of tokens, replacing 80% with [MASK], 10% with 

random tokens, and leaving 10% unchanged. This allows the model to learn contextual relationships. 

NSP helps identify whether a given sentence follows another in a sequence, improving performance 

across tasks. 

The input undergoes tokenization, numericalization, and embedding. Tokenization assigns unique 

numbers, and sequences are padded for uniformity. During encoding, the input matrix takes dimensions 

(Input length) × (Embedding dimension) [33]. Multi-head attention enables multiple weighted 

computations to be performed in parallel, producing a concatenated matrix of dimensions Input_Length 

× (h * d_v). A final linear layer refines the output to Input_Length × Embedding_Dimension, ensuring 

optimized representations for NLP tasks. In mathematical terms, Equation (7). 
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Multihead(A, B, C) = Concat(head1, … , headh)w0   (7) 

where headi  =  Attention(Awi
A , Bwi

B , Cwi
C ) and A, B and C are placeholder for various input 

matrix. Every head corresponds to three distinct projections (matrix multiplication) identified by the 

matrix  present in a scaled Dot-Product mechanism.wi
B
with the dimension demb_dim × dB, wi

A
with 

the dimension demb_dim × dA,wi
C
with the dimensions demb_dim × dC. Each head estimate, therefore, 

projects the input matrix X through its respective weight matrix. Then, the resultant matrix is as follows 

as Equation (8). 

XWi
B  =  Bi with the dimension input_length×dB 

XWi
A  =  Ai with the dimension input_length ×dA 

XWi
C  =  Ci with the dimension input_length ×dC 

Ai , Bi and Ci to calculate the scaled dot product attentions, 

Attention(A, B, C) = softmax �AB
T

�dk
�C   (8) 

These different elements could include the query sequence (A), key-value pairs (B and C), and so on. 

The dot products of this projection is used to measure the similarity between token projections. Where 

mi and nj  are the 𝑖𝑖𝑖𝑖ℎ and 𝑗𝑗𝑗𝑗ℎ token’s projection via Biand Ai. Hence, the dot-product is represented 

in Equation (3). 

mi. nj = cos�mi, nj�‖mi‖2�nj�
2
   (9) 

It depicts the relationship between mi and nj. The resulting matrix is divided by the square root of 

dk for scaling and partitioning into elements. Softmax is applied to each row, ensuring values range 

between 0 and 1, summing to 1 in above Equation (9). Finally, Vimultiplies this value to determine the 

head [37]. The text sequence E is split into token embeddings, segment embeddings, and position 

embeddings. Adding vectors of the same dimension produces the text sequence T for model 

comprehension. BERT is built on the transformer's bidirectional language model [38], [39], using 

masked LM to predict missing words based on context. The trained word vector Tn and transformer 

structure Trm process input data. Token embedding divides words into unique tokens, adding special 

symbols ([CLS], [SEP]) to mark sentence boundaries. Segment embedding differentiates sentences, 

while position embedding represents word locations [37], as shown in Fig. 4. 

 

Fig. 4. BERT model structure diagram 
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3.3. Convolutional Neural Network (CNN) 
CNN is a type of deep feed-forward artificial neural networks. Generally, a CNN consists of one or 

more convolution layers with associated weights and pooling layer followed by a fully connected layer. It 

is used to extract the features of local correlation from local information [40]. 

3.3.1. Convolution Layer 
A kernel is used in the convolution layer to calculate a dot product (or convolutions) of every sliding 

window of the input text corpus, followed by an addition of a bias, which is fed forward through an 

activation function to form feature maps on the next layer. Suppose the input vectors for text samples is 

xi0  =  [x1, x2, . . . , xn], where n is the number of text samples. The output value is then computed 

utilizing Equation (10). 

Ci
l,j = h�bj + ∑ wm

j xi+m−1
0jM

m=1 �   (10) 

Here 𝑙𝑙 is the layer index, ℎ is the activation function that introduces non-linearity to this layer, and 

𝑏𝑏 is the bias terms for the 𝑗𝑗 feature maps. M is the kernel/filter size, 𝑤𝑤 is the weights for the 𝑗𝑗𝑗𝑗ℎ feature 

maps and 𝑚𝑚 filter index. 

3.3.2. Batch Normalization 
Intuitively, data is collected in batches for training. Due to the need to match the batch distributions 

with the network parameters during each training cycle, the model's convergence is significantly delayed 

because the distributions are not uniform and unstable. The concept of batch normalization is based on 

computing the μD and variance σD2  of every mini-batch of training data and normalizing the actual data 

to zero-mean and unity-variance. Furthermore, the shifted data is fed to it with weights and bias that 

enhance its expressive powers. The equations (11) - (14) present the calculations. The change to a batch 

normalization approach makes it much easier to coordinate updates across the layers of the neural 

network. 

μD = 1
m

(∑ xim
i=1 )   (11) 

σD2 = 1
m
∑ (xi − μD)2m
i=1    (12) 

x�l = xi−μD

�μD
2 +ϵ

   (13) 

yi = γx�l + β   (14) 

3.3.3. Max Pooling Layer 
The pooling layer is also known as a subsampling layer. The max-pooling approach is employed in 

this study to obtain the maximum value among neighboring inputs. Equation (15) defines the pooling 

of a feature map in a layer. 

pi
l,j = maxr∈Ri×T+r

l,j    (15) 

where R is the pooling window size, and T is the pooling stride. 

3.4. Elite Opposition Cross Entropy Weighted Bidirectional Long Short-Term Memory 
(EOCEWBi-LSTM) 

The core innovation of this study lies in the design of the Elite Opposition Cross Entropy Weighted 

Bi-LSTM (EOCEWBi-LSTM) classifier, which combines the sequential modeling capabilities of Bi-

LSTM with elite opposition-based learning (EOBL) for dynamic hyperparameter optimization. In the 

proposed work, if the error rate of the algorithm is higher due to the random selection of weights and 

bias in the classifier, it results in incorrect detection of MSA. Thus, the hyperparameters of the Bi-
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LSTM classifier are tuned using elite opposition-based learning (EOBL). The weighted cross-entropy 

function weights the negative class by the same weight. The positive class is weighted by a factor of 

1.Given the current values xt, the previous hidden states ht−1 and the previous states Ct−1, the 

subsequent changes are employed. 

ft = σ�EWe�f. [ht−1, xt] + Eb�f�   (16) 

it = σ�EWe�i. [ht−1, xt] + Eb�i�   (17) 

C�t = CE�EWe�c. [ht−1, xt] + Eb�c�   (18) 

Ct = ft ∗ Ct−1 + it ∗  C�t   (19) 

ot = σ�EWe�o. [ht−1, xt] + Ebo� �   (20) 

ht = ot ∗ CE(Ct)   (21) 

EWe�i, EWe�f, EWe�c, EWe�ois the elite opposition weight matrix, according to the input gate, forget 

gate, cell gate, and output gate.Eb�i, Eb�f, Eb�c, Eb�ois the elite opposition bias vector according to input 

gate, forgot gate, cell gate, and output gate in Equation (16) – (21). Finally, the sentiment analysis 

detection is performed by   Feed-forward Neural Network (FNN). It is characterized by a one-directional 

flow of data between its layers. The term "feed-forward" refers to a model where information flows in 

one direction, with no cycles or loops; the data moves only forward from the input nodes to the output 

nodes through the hidden nodes. 

3.4.1. EOBL 
The concept of EOBL involves generating opposites of the current particles located within the 

dimension of the best weight values of each feature vector based on the elite individual's current weights 

and bias. As a result, they will pull those particles to specific areas in the end, which is a better area for 

them to find a suitable label. Thus, the EOBL method would achieve a better diversity of weights bias 

and further promote the exploration of Bi-LSTM. For the weight and bias Xk  =  (xk1, xk2, … , xkD) in 

the current population Xi = (xi1, xi2, … , xiD); thus, the elite opposite location will be X�k  =
 (x�k1, x�k2, … , x�kD) formulated as Equation (22). 

x�k,j = F× �dyj + dzj� − xk,j   (22) 

where F ∈  [0, 1] and F is a generalization factor. dyjand dzj are dynamic boundaries and can be 

articulated as in Equation (23) 

dyj = min�xk,j� , dzj = max(xk,j)   (23) 

However, the resulting opposite can exceed the search boundary [yk, zk]. Random values are assigned 

to the relocated weight, and bias in [yk, zk], as in Equation (24), 

x�k,j = rand�yj + zj� , ifx�k,j < yj�x�k,jzj   (24) 

Elite Opposition-Based Learning (EOBL) is a metaheuristic optimization technique inspired by the 

principle of simultaneously considering a candidate solution and its opposite to accelerate convergence 

toward optimal values. In our proposed framework, EOBL is applied to optimize the hyperparameters 

of the Bi-LSTM classifier, such as learning rate, number of hidden units, dropout rate, and batch size. 

Instead of relying on conventional manual tuning or computationally expensive grid/random search 

methods, EOBL dynamically explores the search space more efficiently by generating elite candidates 

and their opposites, thereby increasing the likelihood of escaping local optima. The novelty of using 

EOBL in our work lies in its integration with a weighted cross-entropy loss function, forming the 
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EOCEWBi-LSTM framework. This combination not only enhances classification accuracy but also 

effectively addresses class imbalance in multilingual sentiment datasets. To the best of our knowledge, 

this is the first application of EOBL in optimizing Bi-LSTM parameters for multilingual sentiment 

classification, especially in low-resource language settings. 

3.4.2. Cross-Entropy Function 
From this best weight is attained which gives lower bias when compared to previous work. The tuned 

weight value is validated by weighted cross-entropy function expressed as Equation (25), 

H = −∑ WeaciN
i=1 log(pr�i) + (1 − aci) log(pr�i)   (25) 

where N is the number of text instances, aci is the actual label, and priis the prediction for text data 

i. We is the weight generated by the EOBL. If We is equal or less than 1, the exact sentiment is detected; 

if We is smaller than 0.5, bias increases, leading to incorrect sentiment detection. The proposed AMSD 

classification method determines sentiment based on context using DL, specifically the BERT model a 

pre-trained, bidirectional, unsupervised language representation method. A multilingual BERT model 

is trained on a large corpus of multilingual tweets. The obtained word embeddings pass through two 

deep architecture layers: CNN and EOCEWBi-LSTM (Fig. 5). After intermediate output from the 

second layer, a feature vector is formed by concatenating output neurons for each word. These vectors 

are then fed into a densely connected neural network to reduce dimensions. The final reduced vector is 

classified using the softmax function. Finally, the EOCEWBi-LSTM classifier is introduced for AMSD, 

detailed in Algorithm 1. 

Algorithm 1: EOCEWBi-LSTM 
Input: Dataset 𝐷𝐷 containing 𝑛𝑛 samples, each with 𝑚𝑚 features. 
Output: Predicted sentiments for the dataset 𝐷𝐷. 

Step 1: Data Pre-processing 
• Tokenization: Convert raw text data into tokens. 
• Padding/Truncation: Normalize sequences to a fixed length 𝐿𝐿. 

Step 2: Embedding Layer 
• Embeddings: Transform tokens into dense vectors using a pre-trained model 

like BERT. 
Step 3: Bidirectional LSTM Layer 

• Bidirectional Processing: Process embedded vectors using a bidirectional 
LSTM layer. 

Step 4: Attention and Gating Mechanisms 
• Attention Weights: Compute attention weights using a dense layer with a 

softmax function. 
• Gating: Apply sigmoid gating on LSTM outputs to control information flow. 

Step 5: Feature Fusion 
• Concatenation: Concatenate attention outputs and gated outputs. 
• Dense Layer: Pass concatenated features through a dense layer for 

classification. 
Step 6: Output 

• Softmax Activation: Apply a softmax layer to get probabilities of each 
class. 

Prediction: Derive final predictions from the softmax probabilities 

 

The input layer receives sequences of words from the dataset. Each word in a sentence or text input 

(Word1 to Word N) is processed individually. It acts as the gateway for feeding textual data into the 

model. BERT comprises multiple encoder layers (E0 to E10, EA, EB) that refine word vectors using 

transformer blocks, attending to different input parts. It includes: 

• Token embeddings: Converts words into vectors using BERT’s pre-trained embeddings, capturing 

context and meaning. 

• Segment embeddings: Differentiates text segments, useful for tasks like question answering. 

• Position embeddings: Encodes word positions to help BERT understand word order and structure 
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3.4.3. EOCEWBi-LSTM layer 
Combines Bi-LSTM with EOBL. The Bi-LSTM processes data in both forward and reverse 

directions, capturing dependencies from both ends of the sequence, which is critical for understanding 

the overall context and sentiment of the text. EOBL technique is integrated to enhance the parameter 

tuning process. By considering opposing or elite solutions during the training, EOBL helps in escaping 

local optima, improving the generalization of the model. 

3.4.4. Activation layer 
Introduces non-linearities into the model, which are essential for learning complex patterns in the 

data. 

3.4.5. Concatenation layer 
Merges features from different sources (like outputs from different LSTM cells or different feature 

maps from CNNs), combining all learned features into a single vector that can be used for final 

classification. 

3.4.6. Dense and Sigmoid layers 
1) Dense layer: Fully connected, using concatenated features for final classification. 2) Sigmoid layer: 

Converts logits into probabilities, useful for binary classification. 

 

Fig. 5. Flow diagram of proposed EOCEWBi-LSTM method 
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4. Results and Discussion 
The results, which have been fully implemented in Python 3.9.13, are discussed in this section. 

Google Collaboratory was used for GPU support, as the dataset was significantly larger than typical, and 

to deploy various DL models. Sci-Kit Learn and Keras (with a TensorFlow backend) were utilized for 

the ML and DNN models. To provide an FT model with comparable evaluation metrics, the training 

set, crucial Hyperparameter, and CE are adjusted using the elite opposition. Performance is improved by 

the suggested architecture's removal of data limitations and the aggregation of weights. Adjusting the 

Bi-LSTM classifier's parameters improves the outcomes when the classification method is fine-tuned 

with BERT, as suggested by the method. 

4.1. Dataset 
Initially, MSA in the tweet dataset contains tweets generated from the real time. Data gathered for 

the corpus, named NEP_EDUSET, with a total of 45,434 tweets in English, Hindi and Tamil languages 

was extracted mainly from the social networking Twitter platform (now named X), via Twitter 

comments. The languages are combined into new form like Tamil+English, Tamil+Hindi, 

Hindi+English and Tamil+Hindi+English. The dataset was split into training (70%), validation (15%), 

and testing (15%) subsets to ensure comprehensive evaluation. The dataset’s training, development or 

validation, corresponding to 31804, 6815, and 6815 tweets respectively. The tweets are labeled into three 

sentiment classes: positive, negative, and neutral using BERT label generator. 

While EOCEWBi-LSTM demonstrates strong classification performance, it incurs a higher 

computational cost compared to simpler models. We evaluated the training efficiency of EOCEWBi-

LSTM and compared it with standard Bi-LSTM and CNN models on a system equipped with an 

NVIDIA RTX 3090 GPU and 64GB RAM. EOCEWBi-LSTM required approximately 1.8× more 

training time than the baseline Bi-LSTM model, primarily due to the additional BERT embedding layer 

and elite opposition-based hyperparameter optimization. Additionally, GPU memory usage increased by 

roughly 1.5×, owing to the larger parameter space and complex training dynamics. 

4.2. Performance Evaluation Metrics 
Models were assessed using measures such as accuracy, precision, recall, and F1-score based on the 

test set. 

4.2.1. Precision 
The number of total positive predictions that are accurate is known as precision. This statistic is 

calculated by dividing the total number of predicted positives by the total number of classified positives. 

A well-performing model should have a high degree of precision. The definition of precision is expressed 

as equation (26). 

Precision = ∑𝑇𝑇𝑇𝑇
∑(𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹)

   (26) 

4.2.2. Recall 
The number of accurately predicted courses with positive results, or the ratio of correctly identified 

positively classified classes to all positively classified classes, is known as the recall. A high recall rate is a 

sign of a solid model. The definition of recall is expressed as equation (27). 

Recall = ∑𝑇𝑇𝑇𝑇
∑(𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹)

   (27) 

4.2.3. F1-score 
Because the F1-score includes information regarding P and R, a high score suggests high P and R. 

It can be defined as follows in Equation (28), 

𝐹𝐹1 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = ∑2𝑇𝑇𝑇𝑇
∑(2𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹+𝐹𝐹𝐹𝐹)

   (28) 
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4.2.4. Accuracy 
The ratio of correctly predicted instances to all instances is known as accuracy. The most popular 

statistic for classification tasks is accuracy. It is expressed as equation (29), 

𝐴𝐴𝐴𝐴𝐴𝐴 = ∑𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇
∑(𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹+𝐹𝐹𝐹𝐹)

   (29) 

TP, TN, FP, and FN represent True Positives, True Negatives, False Positives, and False Negatives. 

As seen in Table 1, the CM is a 2x2 matrix that lists the ratio of accurate and inaccurate samples that a 

classifier predicted. 

Table 1.  Confusion Matrix (CM) 

  Actual class  
  True False 

Predicted class True  TP( True Positive)  FP (False Positive) 

False   FN(False Negative)  TN(True Negative) 

The number of positive samples that the classifier accurately predicts as positive is denoted by TP. 

FP is a measure of the number of negative samples the classifier incorrectly predicts as positive. The 

number of negative cases that FN denotes the classifier mispredicted. TN denotes the classifier's accurate 

prediction of the number of negative samples. Table 2 compares classifier performance across unilingual, 

bilingual, and multilingual settings using evaluation metrics such as P, R, F1-score, and Accuracy. The 

analysis of ML and DL models highlights their distinct performance characteristics.  

Table 2.  Classifiers Comparison for NEP_EDUSET dataset 

Classifiers Tamil 
Precision Recall F1-Score Accuracy 

RF 0.72441 0.73295 0.72866 0.72868 

XGBOOST 0.75757 0.75972 0.75865 0.75865 

LGBM 0.76216 0.78860 0.77516 0.77538 

CNN 0.82582 0.83142 0.82862 0.82862 

LSTM 0.85473 0.85761 0.85617 0.85617 

Bi-LSTM 0.86169 0.86675 0.86422 0.86422 

WBi-LSTM 0.87851 0.88418 0.87821 0.88156 

EOWBi-LSTM 0.89256 0.90244 0.89854 0.89565 

EOCEWBi-LSTM 0.91623 0.92319 0.91972 0.91971 

Classifiers English 
Precision Recall F1-Score Accuracy 

RF 0.72305 0.74016 0.73150 0.73160 

XGBOOST 0.75045 0.76699 0.75863 0.75872 

LGBM 0.77839 0.78126 0.77982 0.77983 

CNN 0.82692 0.83415 0.83052 0.83053 

LSTM 0.85633 0.85411 0.85521 0.85522 

Bi-LSTM 0.86380 0.85465 0.85920 0.85923 

WBi-LSTM 0.87251 0.86874 0.87147 0.87145 

EOWBi-LSTM 0.89574 0.88861 0.89361 0.89266 

EOCEWBi-LSTM 0.91406 0.93955 0.92663 0.92680 

Classifiers Hindi 
Precision Recall F1-Score Accuracy 

RF 0.73887 0.74182 0.74034 0.74035 

XGBOOST 0.75980 0.76618 0.76298 0.76299 

LGBM 0.76055 0.78257 0.77140 0.77156 

CNN 0.82736 0.81276 0.82000 0.82006 

LSTM 0.85280 0.84278 0.84776 0.84779 

Bi-LSTM 0.85954 0.86211 0.85578 0.85583 

WBi-LSTM 0.86454 0.87451 0.87154 0.87892 

EOWBi-LSTM 0.88475 0.89418 0.89475 0.89789 

EOCEWBi-LSTM 0.91906 0.92989 0.92444 0.92447 
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Table 2. (cont…) 

Classifiers Tamil+English 
Precision Recall F1-Score Accuracy 

RF 0.72776 0.73208 0.72991 0.72992 

XGBOOST 0.74745 0.75616 0.75178 0.75181 

LGBM 0.77362 0.77977 0.77668 0.77669 

CNN 0.82516 0.83773 0.83140 0.83144 

LSTM 0.85228 0.86324 0.85772 0.85776 

Bi-LSTM 0.85540 0.86508 0.86021 0.85824 

WBi-LSTM 0.87441 0.88353 0.87985 0.87542 

EOWBi-LSTM 0.90143 0.92145 0.91256 0.90541 

EOCEWBi-LSTM 0.93186 0.94480 0.93828 0.93833 

Classifiers Tamil+Hindi 
Precision Recall F1-Score Accuracy 

RF 0.73746 0.73654 0.73700 0.73700 

XGBOOST 0.74264 0.75014 0.74637 0.74639 

LGBM 0.77399 0.78571 0.77981 0.77985 

CNN 0.82547 0.83435 0.82765 0.82971 

LSTM 0.85143 0.83510 0.84318 0.84326 

Bi-LSTM 0.85740 0.86508 0.86122 0.85824 

WBi-LSTM 0.86925 0.88152 0.87841 0.88545 

EOWBi-LSTM 0.89546 0.91257 0.89715 0.91547 

EOCEWBi-LSTM 0.93261 0.93367 0.93314 0.93314 

Classifiers Hindi+English 
Precision Recall F1-Score Accuracy 

RF 0.72380 0.74021 0.73191 0.73200 

XGBOOST 0.75065 0.75497 0.75280 0.75281 

LGBM 0.76950 0.77518 0.77233 0.772346 

CNN 0.82843 0.83100 0.82971 0.82971 

LSTM 0.85377 0.84356 0.84863 0.84866 

Bi-LSTM 0.85016 0.86833 0.85915 0.85924 

WBi-LSTM 0.86115 0.87569 0.87688 0.87581 

EOWBi-LSTM 0.87569 0.88735 0.90253 0.90458 

EOCEWBi-LSTM 0.93281 0.93394 0.93366 0.93385 

Classifiers Tamil+Hindi+English 
Precision Recall F1-Score Accuracy 

RF 0.73344 0.74128 0.73734 0.73736 

XGBOOST 0.75650 0.76141 0.75895 0.75895 

LGBM 0.76106 0.77162 0.76630 0.76634 

CNN 0.82775 0.81812 0.82291 0.82294 

LSTM 0.85143 0.83510 0.84318 0.84326 

Bi-LSTM 0.85984 0.85126 0.85553 0.85555 

WBi-LSTM 0.88254 0.87554 0.87821 0.87541 

EOWBi-LSTM 0.89369 0.90251 0.89922 0.89364 

EOCEWBi-LSTM 0.91193 0.92259 0.91723 0.91726 

 

Among them, EOCEWBi-LSTM excels across all metrics, with detailed examination and 

interpretation provided. Traditional ML models, including ensemble methods like RF and gradient 

boosting (XGBoost and LGBM), showed moderate performance. LGBM led this group, achieving 

balanced precision and recall (0.773), which ensured consistent case identification. CNN outperformed 

traditional models, particularly in precision (0.829), minimizing false positives and enhancing feature 

extraction. LSTM and BiLSTM further improved upon CNN, effectively capturing temporal 

dependencies. BiLSTM, with a precision of 0.862, demonstrated superior contextual understanding, 

reducing false positives. The consistent performance across different language combinations 

demonstrates the proposed model’s robustness. The highest accuracy is achieved for Tamil + English 

(93.83%), showcasing the model’s ability to handle code-mixed data effectively. 
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Fig.6 compares classifier performance for Tamil using P, R, F1-score, and Acc. The EOCEWBi-

LSTM model outperformed all, achieving the highest precision (0.91623), recall (0.92319), F1-score 

(0.91972), and accuracy (0.933997). Results indicate a performance boost with increasing model 

complexity, as DL classifiers surpass traditional ML models across all metrics. While RF, XGBoost, and 

LGBM provide strong baselines, CNN, LSTM, and Bi-LSTM exhibit superior pattern recognition in 

Tamil text. EOCEWBi-LSTM excels by effectively capturing contextual and linguistic complexities, 

making it highly reliable for applications like SA and hate speech detection. Despite computational costs, 

DL, especially EOCEWBi-LSTM, proves optimal for Tamil text interpretation. 

 

Fig. 6. Metrics comparison of classifiers for Tamil language 

Fig. 7 compares classifier performance in English using P, R, F1-score, and Acc. EOCEWBi-LSTM 

outperformed all, achieving the highest precision (0.91406), recall (0.93955), F1-score (0.92663), and 

accuracy (0.92680). The results show classifier efficacy improves with model complexity. While RF, 

XGBoost, and LGBM perform well, DL models consistently achieve superior results. CNN surpasses 

traditional models by identifying patterns, while LSTM and Bi-LSTM further enhance sequence 

comprehension. Advanced models like Bi-LSTM, EOWBi-LSTM, and EOCEWBi-LSTM improve 

performance, with EOCEWBi-LSTM excelling overall. Its architecture enhances material 

understanding, making it highly effective for English text analysis, ensuring precise and reliable 

outcomes. 

 

Fig. 7. Metrics comparison of classifiers for English language 

A comparison of classifiers using evaluation metrics such as P, R, f1-score, and accuracy for the Hindi 

language is illustrated in Fig. 8. The EOCEWBi-LSTM model consistently achieved higher scores than 

all others, attaining the highest scores in precision (0.91906), recall (0.92989), f1-score (0.92444), and 

accuracy (0.92447). The efficacy of classifiers in Hindi text analysis, demonstrating a marked 
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enhancement as models evolve. Conventional models such as RF, XGBOOST, and LightGBM (LGBM) 

deliver dependable baseline performance, with LGBM exhibiting marginally superior results. DL 

approaches surpass these, with CNNs efficiently capturing textual patterns, while sequential models such 

as LSTM and Bi-LSTM enhance outcomes by learning word associations. Advanced models such as 

WBi-LSTM, EOWBi-LSTM, and EOCEWBi-LSTM demonstrate increasingly superior performance, 

with EOCEWBi-LSTM attaining the highest scores across all criteria. The results demonstrate the 

effectiveness of DL models, specifically EOCEWBi-LSTM, in achieving precise and equitable outcomes 

for Hindi text analysis. 

 

Fig. 8. Metrics comparison of classifiers for Hindi language 

Evaluation metrics like P, R, f1-score and Acc with respect to Tamil+English languages among 

classifiers are illustrated in Fig. 9. The EOCEWBi-LSTM model showed measurable improvement all 

others, achieving the highest scores in precision (0.93186), recall (0.94480), f1-score (0.93828), and 

accuracy (0.93833). The graphic illustrates the efficacy of classifiers in analyzing Tamil and English texts, 

showing enhancements as models progress in sophistication. Conventional models such as RF, 

XGBOOST, and LGBM deliver robust baseline performance; nevertheless, they are surpassed by DL 

models. CNN effectively captures bilingual text patterns, while sequential models, such as LSTM and 

Bi-LSTM, enhance performance by leveraging word associations. Advanced models, such as WBi-

LSTM, EOWBi-LSTM, and EOCEWBi-LSTM, demonstrate increasingly superior performance, with 

EOCEWBi-LSTM yielding the highest results across all measures. The results underscore the efficacy 

of DL models, especially EOCEWBi-LSTM, in providing precise and equitable analysis for bilingual 

text data. 

 

Fig. 9. Metrics comparison of classifiers for Tamil+English languages 

Values of P, R, f1-score and Acc with respect to Tamil+Hindi languages among classifiers are shown 

in Fig. 10. The EOCEWBi-LSTM model achieved increased accuracy, especially in low-resource 
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settings, all others, achieving the highest scores in precision (0.93261), recall (0.93367), f1-score 

(0.93314), and accuracy (0.93314). The illustration demonstrates a notable enhancement in performance 

when classifiers evolve for Tamil and Hindi text analysis. Conventional models such as RF, XGBOOST, 

and LGBM yield robust baseline outcomes but are frequently surpassed by DL models. CNN exhibits 

superior pattern recognition, whereas sequential models, such as LSTM and Bi-LSTM, enhance 

performance by capturing word dependencies. Advanced models, such as WBi-LSTM, EOWBi-LSTM, 

and EOCEWBi-LSTM, achieve increasingly superior scores, with EOCEWBi-LSTM yielding the 

highest performance in terms of Precision, Recall, F1-Score, and Accuracy. The results underscore the 

efficacy of DL models, especially EOCEWBi-LSTM, in delivering precise and equitable performance for 

bilingual text analysis. 

 

Fig. 10. Metrics comparison of classifiers for Tamil+Hindi languages 

Classifiers' performance among evaluation metrics like recall, precision, f1-score, and accuracy 

concerning Hindi+English languages is illustrated in Fig. 11. The EOCEWBi-LSTM model compared 

favorably with baseline models across all languages evaluated, achieving the highest scores in precision 

(0.93281), recall (0.93394), f1-score (0.93366), and accuracy (0.93384). The illustration depicts the 

efficacy of classifiers in analyzing Hindi and English texts, showing steady enhancements as models 

evolve. Conventional models, such as RF, XGBoost, and LGBM, yield robust baseline outcomes but are 

surpassed by DL models. CNN demonstrates superior pattern recognition, whereas sequential models, 

such as LSTM and Bi-LSTM, enhance performance by capturing word dependencies. Advanced 

variations, such as WBi-LSTM, EOWBi-LSTM, and EOCEWBi-LSTM, attain ever superior scores, 

with EOCEWBi-LSTM yielding the optimal outcomes across all criteria. The results underscore the 

efficacy of DL, specifically EOCEWBi-LSTM, in delivering precise and equitable analysis for bilingual 

text data. 

 

Fig. 11. Metrics comparison of classifiers for Hindi+English languages 
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The EOCEWBi-LSTM model demonstrated better performance across evaluation metrics than all 

others, achieving the highest scores in precision (0.91193), recall (0.92259), F1-score (0.91723), and 

accuracy (0.91726) for multi-language, as shown in Fig. 12.  

 

Fig. 12. Metrics comparison of classifiers for Tamil+Hindi+English languages 

The figure illustrates the efficacy of classifiers in analyzing Tamil, Hindi, and English texts, indicating 

a steady enhancement with the advancement of models. Conventional classifiers, such as RF, XGBoost, 

and LGBM, yield dependable baseline outcomes; however, they are surpassed by DL models. CNN 

successfully captures multilingual patterns, while sequential models, such as LSTM and Bi-LSTM, 

enhance performance by learning word dependencies. Advanced versions, including WBi-LSTM, 

EOWBi-LSTM, and EOCEWBi-LSTM, yield increasingly superior outcomes, with EOCEWBi-LSTM 

attaining the best scores across all parameters. These findings underscore the preeminence of 

EOCEWBi-LSTM in delivering precise and equitable outcomes for multilingual text analysis. To 

validate the performance improvements of the suggested EOCEWBi-LSTM model over baseline 

methods, we conducted McNemar’s test, a non-parametric test commonly used to compare the 

predictions of two classifiers on the same dataset. The test was applied between EOCEWBi-LSTM and 

its closest baseline, Bi-LSTM, with BERT embeddings. Results showed a chi-squared value of 6.21 with 

a corresponding p-value of 0.013, indicating that the observed performance difference is statistically 

significant at the 95% confidence level. 

4.3. Comparison with State-of-the-Art Models 
The proposed model was compared against recent SOTA sentiment classification models from the 

literature. The comparison focuses on models that have demonstrated high efficacy in handling 

sentiment classification tasks across various datasets. Table 3 summarizes the comparison. 

Table 3.  Comparison of EOWBi-LSTM with SOTA models 

Model Dataset F1-Score (%) Accuracy (%) 
mBERT + Fine-Tuning Twitter 88.0 88.0 

Bi-GRU + Attention Film Reviews 89.0 89.0 

Proposed EOCEWBi-LSTM NEP_EDUSET 93.83 93.83 

5. Conclusion 
Sentiment analysis (SA) is crucial for understanding public opinion in domains like politics and 

business. In tweet classification, keywords play a vital role. While BERT has proven effective in MSA, 

accuracy can be further improved. This paper introduces a three-part technique: Pre-processing, BERT, 

and EOCEWBi-LSTM. Pre-processing includes checks for missing values, removal of names, 

whitespaces, hashtags, numbers, punctuation, URLs, and spelling correction. BERT enhances word 

representation in short texts using dynamic word vectors and a self-attention mechanism. EOCEWBi-

LSTM classifies tweets based on sentiment. The analysis demonstrates EOCEWBi-LSTM’s superior 

precision, recall, accuracy, and F1-score, outperforming traditional and DL models in MSA. Compared 
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to SOTA techniques, the EOCEWBi-LSTM combination excels in performance metrics. Superior 

handling of class imbalance, particularly in the neutral sentiment class, due to the dynamically weighted 

cross-entropy loss function. Future research can expand sentiment analysis beyond online data to include 

emotions such as happiness and surprise. Other transformer models, such as RoBERTa, XLNet, and 

DistilBERT, warrant further study. EOCEWBi-LSTM’s promising results highlight its effectiveness in 

MSA. The high accuracy and robustness of EOCEWBi-LSTM make it suitable for deployment in several 

real-world applications: 1) Social Media Sentiment Monitoring: Organizations and governments can use 

the model to monitor public opinion on global issues, marketing campaigns, or policy decisions; 2) 

Customer Feedback Analysis: Multinational companies can analyze feedback across multiple languages 

to understand customer satisfaction and improve services; 3) Crisis Management: The model can provide 

early warning signals by identifying negative or neutral sentiment during crises, enabling proactive 

response measures. While the proposed EOCEWBi-LSTM model demonstrates strong performance on 

the NEP_EDUSET dataset, several limitations warrant further exploration. First, although the dataset 

includes multilingual content, it is restricted to the social media domain. This raises concerns about the 

model’s domain transferability; its ability to generalize to other text genres, such as news articles, product 

reviews, or formal discourse, remains untested. A domain adaptation study, measuring performance drop 

(e.g., F1-score and accuracy variation greater than 10%) across new domains, is necessary to assess the 

model's robustness. Second, the model operates as a black box, and its lack of interpretability poses a 

challenge for use in critical domains such as healthcare, policy analysis, or legal reviews. Future work 

should incorporate interpretability mechanisms, such as attention weight visualization or post-hoc 

explanation techniques like SHAP (SHapley Additive exPlanations) or LIME (Local Interpretable 

Model-agnostic Explanations), to provide transparency and gain user trust. Third, the model has been 

evaluated on only two low-resource languages Hindi and Tamil. To validate its linguistic scalability, it is 

essential to extend testing to other typologically diverse low-resource languages (e.g., Amharic, Marathi, 

or Burmese), aiming for consistent performance across at least five such languages with a performance 

deviation of ≤5%. Additionally, future enhancements may include integrating advanced semantic analysis 

through external knowledge graphs or transformer-based semantic parsers. The inclusion of transfer 

learning strategies, such as domain-adaptive pretraining, could further boost generalization to unseen 

data. Finally, we plan to evaluate the model’s scalability on significantly larger datasets (e.g., more than 

250,000 instances) to ensure performance stability and computational efficiency. 
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