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ABSTRACT

With the increasing volume of multilingual user-generated content across
social media platforms, effective sentiment analysis (SA) becomes crucial,
especially for low-resource languages. However, traditional models relying
on context-independent embeddings, such as Word2Vec, GloVe, and
fastText, struggle to handle the complexity of multilingual sentiment
classification. To address this, we propose an Automatic Multilingual

Sentiment Detection (AMSD) framework that leverages the contextual
capabilities of BERT for feature extraction and a Bidirectional Long Short-

d
g;:‘TN ores Term Memory (Bi-LSTM) network for classification. Our method, termed
Bi-LSTM Elite Opposition Cross-Entropy Weighted Bi-LSTM (EOCEWBi-

LSTM), integrates elite opposition-based learning to optimize
hyperparameters and enhance classification accuracy. A weighted cross-
entropy loss function further refines the model's sensitivity to class
imbalance, thereby improving its performance. The model is trained and
evaluated on the NEP_EDUSET corpus, comprising 45,434 tweets in
English, Hindi, and Tamil. Experimental results demonstrate notable
improvements in precision, recall, F1-score, and accuracy, highlighting the
effectiveness of EOCEWBI-LSTM in multilingual sentiment analysis,
especially across both high-resource and low-resource languages. The
experimental results show that the proposed EOCEWBi-LSTM achieves a
high Fl-score ratio of 93.83% and an accuracy ratio of 93.83% compared
to other existing methods. EOCEWBi-LSTM provides an effective
solution for multilingual sentiment analysis, especially for languages with
limited resources.

Contextual embeddings
Low-Resource languages
Multilingual sentiment analysis

© 2025 The Author(s).
This is an open access article under the CC-BY-SA license.

1. Introduction

Social media platforms, including Facebook, X (formerly Twitter), Instagram, WhatsApp, and
TikTok, have become valuable sources of data for sentiment analysis (SA) research [1]. Twitter data, in
particular, has been widely used due to its concise format and diverse linguistic expressions, including
multilingual and multicultural elements [2]. SA assigns polarity (positive, neutral, or negative) to tweets
and is one of the most studied tasks in natural language processing (NLP) and machine learning (ML)
[3], [4]. However, SA models are often language-specific and not easily transferable across languages [5].

Multilingual Sentiment Analysis (MSA) aims to analyze sentiment across languages, using resources
from well-resourced languages to process data in low-resource ones [6]. Traditional word embeddings,
such as Word2Vec and fastText, have failed to consider contextual variations; however, BERT, a state-
of-the-art (SOTA) pre-trained model, has significantly improved contextual understanding [7]. Despite

d. heeps://doi.org/10.26555/ijain.v11i3.2003 @v http://ijain.org ijain@uad.ac.id


https://doi.org/10.26555/ijain.v11i3.2003
http://ijain.org/index.php/IJAIN/index
mailto:ijain@uad.ac.id?subject=%5BIJAIN%5D
mailto:mohammad.siddique@res.christuniversity.in
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://crossmark.crossref.org/dialog/?doi=10.26555/ijain.v11i3.2003&domain=pdf

397 International Journal of Advances in Intelligent Informatics ISSN 2442-6571
Vol. 11, No. 3, August 2025, pp. 396-416

its effectiveness, challenges remain in adapting pre-trained models, such as BERT, to multilingual
environments [8]. The development of multilingual tools increasingly relies on artificial intelligence (AI)
and deep learning (DL) techniques [9]. DL has been instrumental in advancing MSA, with techniques
such as Convolutional Neural Networks (CNN) and LSTM networks being explored for improved
classification [10].

Traditional models using static embeddings (e.g., Word2Vec, GloVe) or context-agnostic
architectures lack the flexibility to handle polysemy and code-mixed text, which is common in
multilingual social media content. Even recent multilingual extensions of BERT, such as mBERT and
XLM-R, while promising, often require extensive fine-tuning and do not explicitly address issues like
class imbalance or hyperparameter sensitivity in deep classifiers. To address these limitations, we propose
a novel hybrid framework, EOCEWBi LSTM, that combines the contextual strength of BERT with a
Bi-LSTM classifier optimized using Elite Opposition-Based Learning and a Weighted Cross-Entropy
Loss. This approach enhances model performance on low-resource multilingual datasets by addressing
both the quality of representation and the dynamics of training.

This paper introduces an Automatic Multilingual Sentiment Detection (AMSD) approach for MSA,
focusing on English (high-resource) and Hindi and Tamil (low-resource). AMSD employs BERT for
contextual embeddings and an Elite Opposition Cross Entropy Weighted Bi-LSTM (EOCEWBi-
LSTM) for classification. This model refines hyperparameters by adjusting the weights and biases,
thereby improving sentiment detection accuracy. This study was designed to answer several key questions
related to the development of deep learning-based sentiment classification models, as follows:

e Can BERT-enhanced contextual embeddings significantly improve sentiment classification in
multilingual settings compared to traditional embeddings?

e Can elite opposition-based optimization improve the performance of Bi-LSTM classifiers in
imbalanced multilingual datasets?

e  How effectively does the proposed EOCEWBi-LSTM framework at generalizing across different
languages with varying resource availability?

The contributions of this research include the creation of the NEP_Eduset dataset, which was mostly
collected from platform X (formerly Twitter), the development of the EOCEWBi-LSTM model that
integrates the elite opposition-based tuning method with BERT-enhanced Bi-LSTM to improve
classification performance, and implementation using Python 3.7 and GPU resources from Google
Collaboratory with the application of various deep learning classifiers on the dataset. Additionally, this
research demonstrates the superiority of EOCEWBi-LSTM in capturing diverse sentiment tones across
languages with greater accuracy. The paper is structured as follows: Section 2 reviews existing DL
classification methods and research gaps, Section 3 details the methodology, Section 4 presents findings,
and Section 5 summarizes contributions, limitations, and future research directions.

2. Literature Review

Sentiment analysis has been extensively studied using various ML and DL techniques. However,
challenges persist in achieving high performance across multiple languages, especially in low-resource
contexts. This review organizes related work into three major themes: (1) traditional ML approaches,
(2) DL and pre-trained language models, and (3) multilingual and cross-lingual sentiment classification.

A text classification method utilizing BERT and various enhancements for NLP, categorizing tweet
sentiments as neutral, negative, or positive. Compared to models using Word2Vec, the results showed
significant improvements in Accuracy (Acc), Precision (P), Recall (R), and F1-score, particularly with
neural networks such as CNN, RNN, and Bi-LSTM [11]. Four DL models combining BERT with
Bidirectional LSTM (Bi-LSTM) and Bidirectional Gated Recurrent Unit (Bi-GRU) were developed.
The study optimized accuracy by fine-tuning pre-trained word embeddings. It examined the impact of
hybridizing Bi-GRU and Bi-LSTM on DistilBERT and RoBERT4a, with Bi-GRU layers yielding the
best results [12]. Enhanced sentiment analysis by applying pre-processing techniques to remove noise
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from tweets, such as URLSs, mentions, and hashtags, was analyzed. Their BERT-based experiments in
Italian and English identified optimal pre-processing methods, thereby advancing the state-of-the-art
(SOTA) sentiment classification [13].

A BERT-based model incorporating ML algorithms, including SGD, SVM, Decision Tree, Logistic
Regression, Random Forest (RF), and XGBoost, was employed to detect hateful content and sentiment
in tweets [14]. Mann et al. enhanced BERT models for sentiment analysis using the Kaggle SMILE
dataset, improving text interpretation by leveraging surrounding contextual information [15]. Azzouza
et al. employed a four-phase framework that utilized BERT-generated sentence representations,
integrating classification models and pre-trained embeddings to enhance sentiment classification [16].
Prottasha et al. combined BERT with CNN-BiLSTM to enhance sentiment detection, comparing
transfer learning (TL) approaches like GloVe, FastText, and Word2Vec [17].

Jain ez al. introduced a BERT-DCNN model with parallel Dilated CNN layers for sentiment analysis,
preserving dimensional relevance while handling long-term dependencies [18]. Wadud et al. developed
Deep-BERT, a hybrid CNN-BERT model for offensive text classification in Bengali and English [19].
Cam et al. proposed a Turkish SA model that integrates lexicon-based and ML classifiers, examining
public sentiment in financial tweets [20]. Nandhini et al. introduced a multilingual BERT model
classifying sentiments across multiple languages [21].

A model DConvBLSTM-MuRIL was proposed for hate speech detection in Hinglish, Tamil-
English, and Malayalam-English, outperforming prior models [22]. Roy suggested an ensemble
transformer-based model for sentiment classification in Kannada and Malayalam [23]. Aruna &
Vetriselvi [24] demonstrated a cross-lingual transfer learning (TL) approach for Tamil sentiment
analysis, yielding higher results in most cases compared to other models. Hossain et al. introduced
AFuNet, an Attention-Based Fusion Network for low-resource language classification [25]. Nazir ez al.
[26] proposed transformer-based models, including BERT, RoBERT4, and XLMRoBERT?4, for Tamil-
English YouTube comment sentiment analysis, leveraging synthetic oversampling techniques to enhance
performance.

Liu et al. [27] suggested the use of DL-based NLP in MSA. At the same time, Prova [28] proposed
the GPT and DL-based Meta-Ensemble Model for Multilingual Emotion Classification in E-commerce
Customer Reviews. Md Saef Ullah Miah et al. [29] recommended a multimodal approach to cross-
lingual sentiment analysis using an ensemble of transformers and LLM. Geethanjali and Valarmathi [30]
presented modality-enriched and multilingual emotion recognition in social media using IChOA-CNN-
LSTM. Dhananjaya ez al. [31] introduced the lexicon-based fine-tuning of multilingual language models
for low-resource language sentiment analysis.

Despite significant advancements in sentiment analysis, several limitations persist in existing
approaches. Traditional models employing static word embeddings, such as Word2Vec and GloVe, are
unable to capture contextual variations in meaning, which is particularly problematic in informal or
multilingual text. While recent methods have incorporated contextualized models like BERT, their
application has been limited mainly to high-resource languages, with limited effectiveness observed in
low-resource settings such as Hindi and Tamil. Additionally, many studies overlook the issue of class
imbalance in multlingual datasets, resulting in biased predictions and degraded performance.
Furthermore, hyperparameter selection in deep learning (DL) models is often performed manually or
through a simple grid search, which can be inefficient and suboptimal. These gaps highlight the need
for a unified, optimized, and scalable framework that can generalize across languages and handle noisy,
imbalanced real-world data. Motivated by these challenges, the present study introduces a BERT-
enhanced Bi-LSTM model integrated with elite opposition-based learning and weighted cross-entropy
loss, designed to improve sentiment classification accuracy across both high- and low-resource languages.

2.1. LSTM Classifier

An LSTM retains all textual data throughout time. A bidirectional RNN integrates two RNNs,
enabling them to convey data from both forward and backward sequences. LSTM has enhanced sequence
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processing abilities and can identify long-range dependencies within sequences. An LSTM layer
comprises a series of LSTM cells, with the sequential data input processed in a forward manner. The
LSTM cell is illustrated in Fig. 1.
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Fig. 1.LSTM cell

The following transformations are carried out while taking into account the current value xy, the
previous hidden state hy_1, and the previous state C¢_; in below equation (1-6).

f. = o(Wey. [he_q, %] + bp) €))
ir = o(Wej. [he_q, x¢] + b;) ?2)
C, = tanh(Wec. [hy_1, %] + b.) (3)
Ce=fi* Comy +ip * Cy 4)
oy = 6(We,. [hi_q1, %] + by) 5)
h, = o, * tanh(C,) (6)

In this case, o represents the sigmoid function. Then, tanh is a representation of the hyperbolic
tangent function. The forget gate is represented by f;. The input gate is indicated by i¢. The output gate
is denoted by 0. The weight matrix is denoted as W,, and the bias vector's value is b. The concatenation
operator is []. The dot product is indicated by *. Since unidirectional LSTM can only take in data from
the past, it can only remember information that has already occurred. Another option is to use a Bi-
LSTM, which allows for both forward and backwards processing of inputs. Because it integrates two
latent states, this strategy is significantly more successful in the present and future, enabling one to learn
from both past and future experiences.

2.2. Bi-LSTM Classifier

In Bi-LSTM, contextual data is analyzed in both backward and forward directions, facilitating the
retention of knowledge from both past and future, as proposed by [32], [33]. The suggested framework
illustrates the Bidirectional LSTM architecture in Fig. 2. In the equations (1-6), there are two hidden
values, namely }_{t—l and Et—l associated with the sequence in the Bi-LSTM: Ht—l is involved in the
forward calculation and Et—l is involved in the reverse calculation. In Equation (1-6), the bias vector is
represented by b, and the weight matrix by we. It has a major impact on improving the accuracy of the

SA.
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Forward Pass

Backward Pass

Fig. 2.Bidirectional LSTM (Bi-LSTM) architecture

3. Method

Data collection and labeling constituted the preliminary phases of this classification study. The social
media data that were extracted were meticulously labeled, and an expert in the corresponding specific
domain verified the manual labeling. The datasets were then pre-processed intransitively, wherein
spelling mistakes were corrected, missing points and noise were removed, and both feature extraction
and dimensionality reduction were performed. After that, the dataset was divided into 70:30 training
and testing subsets. Supervised learning is utilized to train and assess this model. The efficiency of the
trained model was then tested on the assessment information and compared with the actual value. The
overall process of the proposed system is illustrated in Fig. 3.

NEP_EDUSET corpus

Data Preprocessing-Handling Missing Values, Noise Eradication,
and Spelling and Typographic Errors

l

Word Embedding Extraction -Bidirectional Encoder
ions from T (BERT)

Feature Extraction -Convolutional Neural Neswork (CNN)
Classification -Elite Opposition Cross Entropy Weighted
Bidirectional Long Short-Term Memory (EOCEWEBi-LSTM)

l

Performance evaluation -precision, recall, fI-score, and accuracy

=5k

Fig. 3. The overall process of the proposed system

3.1. Data Pre-processing
The dataset used in this study, NEP_EDUSET, consists of 45,434 tweets in English, Hindi, and
Tamil, representing both high- and low-resource languages. Pre-processing is crucial for ensuring the

consistency and quality of the input data. The following steps were applied.
oe—
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3.1.1. Data Preparation

This step is crucial in ML classification because the model's accuracy largely relies on the input fed
to it.

3.1.2. Handling Missing Values

The first stage in the data processing step involved handling the missing values present in the dataset.
The reason was either completely discarding the data points or low data availability. If a sample did not
contain the required information, we discarded the entire row. In cases corresponding to the lack of
information to some extent, the missing value was replaced with a string from a similar observation.
This approach maintains the dataset in its original and holistic form for further analysis.

3.1.3. Noise Eradication

Subsequently, after imputing missing values, noise was removed from the dataset. Noise refers to text
or characters from a different language, unrelated special symbols, and emoticons, all of which lack
relevance to the language context. While emoticons express a wide range of emotions, their limited
appearance in the dataset justified excluding them from the data cleaning process. During this noise-
reduction phase, punctuation, numbers, emoticons, and stopwords were removed. This process was
crucial in enhancing the quality and relevance of the data, thereby facilitating more effective subsequent
analysis.

3.1.4. Spelling and Typographic Errors

Some terms in the text data, taken from various users, are mistyped or misspelled, which is present
in the dataset used. The AD (Available Dictionary) database was used to verify the building possibilities
of each word and correct those errors. The sentiment corpus, represented a sSC = d;,d;,d3, ..., d,
where dy, d;, ds, ..., d, denotes the individual text entries, was scrutinized for spelling accuracy.This is
done using a specified sentiment corpus, known as, for verifying the spelling of every text input (texts).
Those words found in the corpus but not in the AD were marked as misspelled. Thereafter, the
appropriate term was obtained from the AD and utilized to log in to the inappropriate term in the data
collection. The quality of textual data is ensured at this stage for further processing.

3.2. Feature Extraction

The methodology proposed by Misra utilizes feature extraction through word embedding to represent
words contextually [34]. BERT receives tokens for embedding, which a CNN then processes to extract
relevant features. The proposed EOCEWBi-LSTM module structures this information sequentially, and
a Feed-forward Neural Network (FNN) computes the loss for accurate predictions.

BERT, a bidirectional and unsupervised pre-trained language model, utilizes Transformer
architecture to enhance semantic representation [35]. Unlike unidirectional models, BERT interprets
text bi-directionally, allowing deeper contextual understanding. Vaswani ez al. introduced an attention
mechanism to track sentence semantics, while Rush highlighted how BERT's encoder layers comprising
self-attention and feed-forward layers, process input sequences eftectively [36].

BERT employs two key techniques: Next-sentence prediction (NSP) and Masked Language
Modeling (MLM). MLM randomly masks 15% of tokens, replacing 80% with [MASK], 10% with
random tokens, and leaving 10% unchanged. This allows the model to learn contextual relationships.
NSP helps identify whether a given sentence follows another in a sequence, improving performance
across tasks.

The input undergoes tokenization, numericalization, and embedding. Tokenization assigns unique
numbers, and sequences are padded for uniformity. During encoding, the input matrix takes dimensions
(Input length) x (Embedding dimension) [33]. Multi-head attention enables multiple weighted
computations to be performed in parallel, producing a concatenated matrix of dimensions Input_Length
x (h * d_v). A final linear layer refines the output to Input_Length x Embedding Dimension, ensuring
optimized representations for NLP tasks. In mathematical terms, Equation (7).
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Multihead(A, B, C) = Concat(head,, ..., heady,)w® 7

where head; = Attention(Aw*,BwP,Cwf )and A, B and C are placeholder for various input
matrix. Every head corresponds to three distinct projections (matrix multiplication) identified by the
matrix present in a scaled Dot-Product mechanism.wPwith the dimension demb_dim X dB, witwith
the dimension dgmp gim X d a,WEwith the dimensions demb_dim X dc. Each head estimate, therefore,
projects the input matrix X through its respective weight matrix. Then, the resultant matrix is as follows
as Equation (8).

XWiB = B; with the dimension input_lengthxdB
XW{ = A with the dimension input_length xdA
XWE = C; with the dimension input_length xdC

A, Bj and C; to calculate the scaled dot product attentions,

. _ ABT
Attention(A, B, C) = softmax (ﬁ) C )

These different elements could include the query sequence (A), key-value pairs (B and C), and so on.
The dot products of this projection is used to measure the similarity between token projections. Where
m; and n; are the ith and jth token’s projection via Bjand A;. Hence, the dot-product is represented
in Equation (3).

m;. n; = cos(m;, n,-)||mi||2||f'lj||2 ®)

It depicts the relationship between m; and n;. The resulting matrix is divided by the square root of
dg for scaling and partitioning into elements. Softmax is applied to each row, ensuring values range
between 0 and 1, summing to 1 in above Equation (9). Finally, Vimultiplies this value to determine the
head [37]. The text sequence E is split into token embeddings, segment embeddings, and position
embeddings. Adding vectors of the same dimension produces the text sequence T for model
comprehension. BERT is built on the transformer's bidirectional language model [38], [39], using
masked LM to predict missing words based on context. The trained word vector Tn and transformer
structure Trm process input data. Token embedding divides words into unique tokens, adding special
symbols ([CLS], [SEP]) to mark sentence boundaries. Segment embedding differentiates sentences,
while position embedding represents word locations [37], as shown in Fig. 4.

E1 E; Es Ex

Fig. 4 BERT model structure diagram
—
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3.3. Convolutional Neural Network (CNN)

CNN is a type of deep feed-forward artificial neural networks. Generally, a CNN consists of one or
more convolution layers with associated weights and pooling layer followed by a fully connected layer. It
is used to extract the features of local correlation from local information [40].

3.3.1. Convolution Layer

A kernel is used in the convolution layer to calculate a dot product (or convolutions) of every sliding
window of the input text corpus, followed by an addition of a bias, which is fed forward through an
activation function to form feature maps on the next layer. Suppose the input vectors for text samples is
x{ = [X1,Xg,...,Xp], where n is the number of text samples. The output value is then computed
utilizing Equation (10).

L _ M )
G = h(by + X1 WinXism- (10)

Here [ is the layer index, h is the activation function that introduces non-linearity to this layer, and
b is the bias terms for the j feature maps. M is the kernel/filter size, w is the weights for the jth feature
maps and m filter index.

3.3.2. Batch Normalization

Intuitively, data is collected in batches for training. Due to the need to match the batch distributions
with the network parameters during each training cycle, the model's convergence is significantly delayed
because the distributions are not uniform and unstable. The concept of batch normalization is based on
computing the pp and variance 63 of every mini-batch of training data and normalizing the actual data
to zero-mean and unity-variance. Furthermore, the shifted data is fed to it with weights and bias that
enhance its expressive powers. The equations (11) - (14) present the calculations. The change to a batch
normalization approach makes it much easier to coordinate updates across the layers of the neural
network.

ip = — (T, x)) (n

o} = — 2, (x; — up)? (12)

s Xi—HD

g =k (13)
: pd+e

yi = Y& +B (14)

3.3.3. Max Pooling Layer

The pooling layer is also known as a subsampling layer. The max-pooling approach is employed in
this study to obtain the maximum value among neighboring inputs. Equation (15) defines the pooling
of a feature map in a layer.

Lj _ 1j
P = maxien;ly,, (15)

where R is the pooling window size, and T is the pooling stride.

3.4. Elite Opposition Cross Entropy Weighted Bidirectional Long Short-Term Memory
(EOCEWBi-LSTM)

The core innovation of this study lies in the design of the Elite Opposition Cross Entropy Weighted
Bi-LSTM (EOCEWBi-LSTM) classifier, which combines the sequential modeling capabilities of Bi-
LSTM with elite opposition-based learning (EOBL) for dynamic hyperparameter optimization. In the
proposed work, if the error rate of the algorithm is higher due to the random selection of weights and
bias in the classifier, it results in incorrect detection of MSA. Thus, the hyperparameters of the Bi-
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LSTM classifier are tuned using elite opposition-based learning (EOBL). The weighted cross-entropy
function weights the negative class by the same weight. The positive class is weighted by a factor of
1.Given the current values X¢, the previous hidden states hi_; and the previous states Ci_q, the
subsequent changes are employed.

f. = o(EWey. [he_q, x] + Eby) (16)
i, = o(EWe;. [hy_1, %] + Eb;) (17)
C; = CE(EWe,. [h,_;, x] + Eb,) (18)
C, = f, * Co_q +1i¢ * C, (19)
o, = 6(EWe,. [h;_y1, %] + Eb,) (20)
h = o, * CE(Cy) 1)

EWe;, EWe(, EWe,, EWGOIS the elite oopposition weight matrix, according to the input gate, forget
gate, cell gate, and output gate.Eb;, Ebg, Eb,, Eb,is the elite opposition bias vector according to input
gate, forgot gate, cell gate, and output gate in Equation (16) — (21). Finally, the sentiment analysis
detection is performed by Feed-forward Neural Network (FNN). It is characterized by a one-directional
flow of data between its layers. The term "feed-forward" refers to a model where information flows in
one direction, with no cycles or loops; the data moves only forward from the input nodes to the output

nodes through the hidden nodes.

3.4.1. EOBL

The concept of EOBL involves generating opposites of the current particles located within the
dimension of the best weight values of each feature vector based on the elite individual's current weights
and bias. As a result, they will pull those particles to specific areas in the end, which is a better area for
them to find a suitable label. Thus, the EOBL method would achieve a better diversity of weights bias
and further promote the exploration of Bi-LSTM. For the weight and bias X = (Xy1, Xk2, ---, Xkp) in
the current population Xj = (Xi1,Xjz, -, Xjp); thus, the elite opposite location will be X, =

(Xk1, X2, - » Xkp) formulated as Equation (22).

)‘Ek,j =Fx (dy] + dZ]) - Xk,j (22)

where F € [0,1] and F is a generalization factor. dyjand dz; are dynamic boundaries and can be
articulated as in Equation (23)

dyy = min(x,), dz, = maxCy) )

However, the resulting opposite can exceed the search boundary [yy, z]. Random values are assigned
to the relocated weight, and bias in [yy, zy], as in Equation (24),

%, = rand(y; + 7)), iffy; < yjl|Zi;7 (24)

Elite Opposition-Based Learning (EOBL) is a metaheuristic optimization technique inspired by the
principle of simultaneously considering a candidate solution and its opposite to accelerate convergence
toward optimal values. In our proposed framework, EOBL is applied to optimize the hyperparameters
of the Bi-LSTM classifier, such as learning rate, number of hidden units, dropout rate, and batch size.
Instead of relying on conventional manual tuning or computationally expensive grid/random search
methods, EOBL dynamically explores the search space more efficiently by generating elite candidates
and their opposites, thereby increasing the likelihood of escaping local optima. The novelty of using
EOBL in our work lies in its integration with a weighted cross-entropy loss function, forming the
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EOCEWBIi-LSTM framework. This combination not only enhances classification accuracy but also
effectively addresses class imbalance in multilingual sentiment datasets. To the best of our knowledge,
this is the first application of EOBL in optimizing Bi-LSTM parameters for multilingual sentiment
classification, especially in low-resource language settings.

3.4.2. Cross-Entropy Function

From this best weight is attained which gives lower bias when compared to previous work. The tuned
weight value is validated by weighted cross-entropy function expressed as Equation (25),

H = — XL, Weac; log(pTy) + (1 — ac;) log(pTy) (25)

where N is the number of text instances, ac; is the actual label, and prjis the prediction for text data
i. We is the weight generated by the EOBL. If We is equal or less than 1, the exact sentiment is detected,;
if We is smaller than 0.5, bias increases, leading to incorrect sentiment detection. The proposed AMSD
classification method determines sentiment based on context using DL, specifically the BERT model a
pre-trained, bidirectional, unsupervised language representation method. A multilingual BERT model
is trained on a large corpus of multilingual tweets. The obtained word embeddings pass through two
deep architecture layers: CNN and EOCEWBi-LSTM (Fig. 5). After intermediate output from the
second layer, a feature vector is formed by concatenating output neurons for each word. These vectors
are then fed into a densely connected neural network to reduce dimensions. The final reduced vector is
classified using the softmax function. Finally, the EOCEWBi-LSTM classifier is introduced for AMSD,
detailed in Algorithm 1.

Algorithm 1: EOCEWBi-LSTM
Input: Dataset D containing n samples, each with m features.
Output: Predicted sentiments for the dataset D.
Step 1: Data Pre-processing
e Tokenization: Convert raw text data into tokens.
e Padding/Truncation: Normalize sequences to a fixed length L.
Step 2: Embedding Layer
e Embeddings: Transform tokens into dense vectors using a pre-trained model
like BERT.
Step 3: Bidirectional LSTM Layer
e Bidirectional Processing: Process embedded vectors using a bidirectional
LSTM layer.
Step 4: Attention and Gating Mechanisms
e Attention Weights: Compute attention weights using a dense layer with a
softmax function.
e Gating: Apply sigmoid gating on LSTM outputs to control information flow.
Step 5: Feature Fusion
e Concatenation: Concatenate attention outputs and gated outputs.
e Dense Layer: Pass concatenated features through a dense layer for
classification.
Step 6: Output
e Softmax Activation: Apply a softmax layer to get probabilities of each
class.
Prediction: Derive final predictions from the softmax probabilities

The input layer receives sequences of words from the dataset. Each word in a sentence or text input
(Wordl to Word N) is processed individually. It acts as the gateway for feeding textual data into the
model. BERT comprises multiple encoder layers (EO to E10, EA, EB) that refine word vectors using
transformer blocks, attending to different input parts. It includes:

* Token embeddings: Converts words into vectors using BERT’s pre-trained embeddings, capturing
context and meaning.

*  Segment embeddings: Difterentiates text segments, useful for tasks like question answering.

*  Position embeddings: Encodes word positions to help BERT understand word order and structure
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3.4.3. EOCEWBIi-LSTM layer

Combines Bi-LSTM with EOBL. The Bi-LSTM processes data in both forward and reverse
directions, capturing dependencies from both ends of the sequence, which is critical for understanding
the overall context and sentiment of the text. EOBL technique is integrated to enhance the parameter
tuning process. By considering opposing or elite solutions during the training, EOBL helps in escaping
local optima, improving the generalization of the model.
3.4.4. Activation layer

Introduces non-linearities into the model, which are essential for learning complex patterns in the
data.
3.4.5. Concatenation layer

Merges features from different sources (like outputs from different LSTM cells or different feature
maps from CNNs), combining all learned features into a single vector that can be used for final
classification.
3.4.6. Dense and Sigmoid layers

1) Dense layer: Fully connected, using concatenated features for final classification. 2) Sigmoid layer:
Converts logits into probabilities, useful for binary classification.

Multilingual Sentiment Analysis

dataset
Input layer
Jordl Jord2  Wordd Jord I
BERT layer
Matwork structure of Tesined i
BERT- transformer ™% i
Es-Ew ExEs Eic151.Eqzem oo i
~ Position  Sagment  Tokem Suiput
Embeddings Embeddings embeddings
CNN layer
Convolution layer r— Pooling layer
EOCEWBi-LSTM layer
Bi-LSTM classifier- paramster tuning
by cross entropy function and Elite gy Activation layar

Opposition Basad Leaming (EOBL)|

l

Concatenation layar

l

Dense and sigmoid laver

Fig. 5.Flow diagram of proposed EOCEWBi-LSTM method
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4, Results and Discussion

The results, which have been fully implemented in Python 3.9.13, are discussed in this section.
Google Collaboratory was used for GPU support, as the dataset was significantly larger than typical, and
to deploy various DL models. Sci-Kit Learn and Keras (with a TensorFlow backend) were utilized for
the ML and DNN models. To provide an FT model with comparable evaluation metrics, the training
set, crucial Hyperparameter, and CE are adjusted using the elite opposition. Performance is improved by
the suggested architecture's removal of data limitations and the aggregation of weights. Adjusting the
Bi-LSTM classifier's parameters improves the outcomes when the classification method is fine-tuned
with BERT, as suggested by the method.

4.1. Dataset

Initially, MSA in the tweet dataset contains tweets generated from the real time. Data gathered for
the corpus, named NEP_EDUSET, with a total of 45,434 tweets in English, Hindi and Tamil languages
was extracted mainly from the social networking Twitter platform (now named X), via Twitter
comments. The languages are combined into new form like Tamil+English, Tamil+Hindji,
Hindi+English and Tamil+Hindi+English. The dataset was split into training (70%), validation (15%),
and testing (15%) subsets to ensure comprehensive evaluation. The dataset’s training, development or
validation, corresponding to 31804, 6815, and 6815 tweets respectively. The tweets are labeled into three
sentiment classes: positive, negative, and neutral using BERT label generator.

While EOCEWBi-LSTM demonstrates strong classification performance, it incurs a higher
computational cost compared to simpler models. We evaluated the training efficiency of EOCEWBi-
LSTM and compared it with standard Bi-LSTM and CNN models on a system equipped with an
NVIDIA RTX 3090 GPU and 64GB RAM. EOCEWBIi-LSTM required approximately 1.8x more
training time than the baseline Bi-LSTM model, primarily due to the additional BERT embedding layer
and elite opposition-based hyperparameter optimization. Additionally, GPU memory usage increased by
roughly 1.5x, owing to the larger parameter space and complex training dynamics.

4.2. Performance Evaluation Metrics

Models were assessed using measures such as accuracy, precision, recall, and F1-score based on the
test set.
4.2.1. Precision

The number of total positive predictions that are accurate is known as precision. This statistic is
calculated by dividing the total number of predicted positives by the total number of classified positives.
A well-performing model should have a high degree of precision. The definition of precision is expressed
as equation (26).

S TP
S (TP+FP)

Precision = (26)

4.2.2. Recall

The number of accurately predicted courses with positive results, or the ratio of correctly identified
positively classified classes to all positively classified classes, is known as the recall. A high recall rate is a
sign of a solid model. The definition of recall is expressed as equation (27).

S TP
Y(TP+FN)

Recall = 27)

4.2.3. Fl-score

Because the F1-score includes information regarding P and R, a high score suggests high P and R.
It can be defined as follows in Equation (28),

3 2TP

F1 — Score Zm

(28)
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4.2.4. Accuracy

The ratio of correctly predicted instances to all instances is known as accuracy. The most popular
statistic for classification tasks is accuracy. It is expressed as equation (29),

S TP+TN

ACC = Y(TP+TN+FP+FN)

(29)
TP, TN, FP, and FN represent True Positives, True Negatives, False Positives, and False Negatives.
As seen in Table 1, the CM is a 2x2 matrix that lists the ratio of accurate and inaccurate samples that a

classifier predicted.
Table 1. Confusion Matrix (CM)

Actual class

True False
Predicted class True TP( True Positive) FP (False Positive)
False FN(False Negative) TN(True Negative)

The number of positive samples that the classifier accurately predicts as positive is denoted by TP.
FP is a measure of the number of negative samples the classifier incorrectly predicts as positive. The
number of negative cases that FN denotes the classifier mispredicted. TN denotes the classifier's accurate
prediction of the number of negative samples. Table 2 compares classifier performance across unilingual,
bilingual, and multilingual settings using evaluation metrics such as P, R, F1-score, and Accuracy. The
analysis of ML and DL models highlights their distinct performance characteristics.

Table 2. Classifiers Comparison for NEP_EDUSET dataset

Classifiers Ll
Precision Recall F1-Score Accuracy
RF 0.72441 0.73295 0.72866 0.72868
XGBOOST 0.75757 0.75972 0.75865 0.75865
LGBM 0.76216 0.78860 0.77516 0.77538
CNN 0.82582 0.83142 0.82862 0.82862
LSTM 0.85473 0.85761 0.85617 0.85617
Bi-LSTM 0.86169 0.86675 0.86422 0.86422
WBi-LSTM 0.87851 0.88418 0.87821 0.88156
EOWBI-LSTM 0.89256 0.90244 0.89854 0.89565
EOCEWBIi-LSTM 0.91623 0.92319 0.91972 0.91971

) English
Sl Precision Recall F1-Score Accuracy
RF 0.72305 0.74016 0.73150 0.73160
XGBOOST 0.75045 0.76699 0.75863 0.75872
LGBM 0.77839 0.78126 0.77982 0.77983
CNN 0.82692 0.83415 0.83052 0.83053
LSTM 0.85633 0.85411 0.85521 0.85522
Bi-LSTM 0.86380 0.85465 0.85920 0.85923
WBi-LSTM 0.87251 0.86874 0.87147 0.87145
EOWBi-LSTM 0.89574 0.88861 0.89361 0.89266
EOCEWBIi-LSTM 0.91406 0.93955 0.92663 0.92680

. Hindi
Cheitee Precision Recall F1-Score Accuracy
RF 0.73887 0.74182 0.74034 0.74035
XGBOOST 0.75980 0.76618 0.76298 0.76299
LGBM 0.76055 0.78257 0.77140 0.77156
CNN 0.82736 0.81276 0.82000 0.82006
LSTM 0.85280 0.84278 0.84776 0.84779
Bi-LSTM 0.85954 0.86211 0.85578 0.85583
WBi-LSTM 0.86454 0.87451 0.87154 0.87892
EOWBi-LSTM 0.88475 0.89418 0.89475 0.89789
EOCEWBi-LSTM 0.91906 0.92989 0.92444 0.92447
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Table 2. (cont...)

) Tamil+English
Sl Precision Recall F1-Score Accuracy
RF 0.72776 0.73208 0.72991 0.72992
XGBOOST 0.74745 0.75616 0.75178 0.75181
LGBM 0.77362 0.77977 0.77668 0.77669
CNN 0.82516 0.83773 0.83140 0.83144
LSTM 0.85228 0.86324 0.85772 0.85776
Bi-LSTM 0.85540 0.86508 0.86021 0.85824
WBi-LSTM 0.87441 0.88353 0.87985 0.87542
EOWBi-LSTM 0.90143 0.92145 0.91256 0.90541
EOCEWBIi-LSTM 0.93186 0.94480 0.93828 0.93833
Classifiers Tamil+Hindi
Precision Recall F1-Score Accuracy
RF 0.73746 0.73654 0.73700 0.73700
XGBOOST 0.74264 0.75014 0.74637 0.74639
LGBM 0.77399 0.78571 0.77981 0.77985
CNN 0.82547 0.83435 0.82765 0.82971
LSTM 0.85143 0.83510 0.84318 0.84326
Bi-LSTM 0.85740 0.86508 0.86122 0.85824
WBi-LSTM 0.86925 0.88152 0.87841 0.88545
EOWBi-LSTM 0.89546 0.91257 0.89715 0.91547
EOCEWBi-LSTM 0.93261 0.93367 0.93314 0.93314
Classifiers Hindi+English
Precision Recall F1-Score Accuracy
RF 0.72380 0.74021 0.73191 0.73200
XGBOOST 0.75065 0.75497 0.75280 0.75281
LGBM 0.76950 0.77518 0.77233 0.772346
CNN 0.82843 0.83100 0.82971 0.82971
LSTM 0.85377 0.84356 0.84863 0.84866
Bi-LSTM 0.85016 0.86833 0.85915 0.85924
WBi-LSTM 0.86115 0.87569 0.87688 0.87581
EOWBI-LSTM 0.87569 0.88735 0.90253 0.90458
EOCEWBIi-LSTM 0.93281 0.93394 0.93366 0.93385
Classifiers - Tamil+Hindi+English
Precision Recall F1-Score Accuracy
RF 0.73344 0.74128 0.73734 0.73736
XGBOOST 0.75650 0.76141 0.75895 0.75895
LGBM 0.76106 0.77162 0.76630 0.76634
CNN 0.82775 0.81812 0.82291 0.82294
LSTM 0.85143 0.83510 0.84318 0.84326
Bi-LSTM 0.85984 0.85126 0.85553 0.85555
WBi-LSTM 0.88254 0.87554 0.87821 0.87541
EOWBi-LSTM 0.89369 0.90251 0.89922 0.89364
EOCEWBIi-LSTM 0.91193 0.92259 0.91723 0.91726

Among them, EOCEWBi-LSTM excels across all metrics, with detailed examination and
interpretation provided. Traditional ML models, including ensemble methods like RF and gradient
boosting (XGBoost and LGBM), showed moderate performance. LGBM led this group, achieving
balanced precision and recall (0.773), which ensured consistent case identification. CNN outperformed
traditional models, particularly in precision (0.829), minimizing false positives and enhancing feature
extraction. LSTM and BiLSTM further improved upon CNN, effectively capturing temporal
dependencies. BiLSTM, with a precision of 0.862, demonstrated superior contextual understanding,
reducing false positives. The consistent performance across different language combinations
demonstrates the proposed model’s robustness. The highest accuracy is achieved for Tamil + English
(93.83%), showcasing the model’s ability to handle code-mixed data effectively.
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Fig.6 compares classifier performance for Tamil using P, R, Fl-score, and Acc. The EOCEWBi-
LSTM model outperformed all, achieving the highest precision (0.91623), recall (0.92319), F1-score
(0.91972), and accuracy (0.933997). Results indicate a performance boost with increasing model
complexity, as DL classifiers surpass traditional ML models across all metrics. While RF, XGBoost, and
LGBM provide strong baselines, CNN, LSTM, and Bi-LSTM exhibit superior pattern recognition in
Tamil text. EOCEWBi-LSTM excels by effectively capturing contextual and linguistic complexities,
making it highly reliable for applications like SA and hate speech detection. Despite computational costs,
DL, especially EOCEWBi-LSTM, proves optimal for Tamil text interpretation.
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Fig. 6. Metrics comparison of classifiers for Tamil language

Fig. 7 compares classifier performance in English using P, R, F1-score, and Acc. EOCEWBi-LSTM
outperformed all, achieving the highest precision (0.91406), recall (0.93955), F1-score (0.92663), and
accuracy (0.92680). The results show classifier efficacy improves with model complexity. While RF,
XGBoost, and LGBM perform well, DL models consistently achieve superior results. CNN surpasses
traditional models by identifying patterns, while LSTM and Bi-LSTM further enhance sequence
comprehension. Advanced models like Bi-LSTM, EOWBi-LSTM, and EOCEWBi-LSTM improve
performance, with EOCEWBI-LSTM excelling overall. Its architecture enhances material
understanding, making it highly effective for English text analysis, ensuring precise and reliable
outcomes.
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Fig. 7. Metrics comparison of classifiers for English language

A comparison of classifiers using evaluation metrics such as P, R, fl-score, and accuracy for the Hindi
language is illustrated in Fig. 8. The EOCEWBi-LSTM model consistently achieved higher scores than
all others, attaining the highest scores in precision (0.91906), recall (0.92989), f1-score (0.92444), and
accuracy (0.92447). The efficacy of classifiers in Hindi text analysis, demonstrating a marked
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enhancement as models evolve. Conventional models such as RF, XGBOOST, and LightGBM (LGBM)
deliver dependable baseline performance, with LGBM exhibiting marginally superior results. DL
approaches surpass these, with CNNs efficiently capturing textual patterns, while sequential models such
as LSTM and Bi-LSTM enhance outcomes by learning word associations. Advanced models such as
WBi-LSTM, EOWBi-LSTM, and EOCEWBIi-LSTM demonstrate increasingly superior performance,
with EOCEWBi-LSTM attaining the highest scores across all criteria. The results demonstrate the
effectiveness of DL models, specifically EOCEWBi-LSTM, in achieving precise and equitable outcomes
for Hindi text analysis.
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Fig. 8. Metrics comparison of classifiers for Hindi language

Evaluation metrics like P, R, fl-score and Acc with respect to Tamil+English languages among
classifiers are illustrated in Fig. 9. The EOCEWBi-LSTM model showed measurable improvement all
others, achieving the highest scores in precision (0.93186), recall (0.94480), f1-score (0.93828), and
accuracy (0.93833). The graphic illustrates the efficacy of classifiers in analyzing Tamil and English texts,
showing enhancements as models progress in sophistication. Conventional models such as RF,
XGBOOST, and LGBM deliver robust baseline performance; nevertheless, they are surpassed by DL
models. CNN eftectively captures bilingual text patterns, while sequential models, such as LSTM and
Bi-LSTM, enhance performance by leveraging word associations. Advanced models, such as WBi-
LSTM, EOWBIi-LSTM, and EOCEWBi-LSTM, demonstrate increasingly superior performance, with
EOCEWBI-LSTM yielding the highest results across all measures. The results underscore the efticacy
of DL models, especially EOCEWBi-LSTM, in providing precise and equitable analysis for bilingual
text data.
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Fig. 9. Metrics comparison of classifiers for Tamil+English languages

Values of P, R, fl-score and Acc with respect to Tamil+Hindi languages among classifiers are shown
in Fig. 10. The EOCEWBi-LSTM model achieved increased accuracy, especially in low-resource
S
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settings, all others, achieving the highest scores in precision (0.93261), recall (0.93367), fl-score
(0.93314), and accuracy (0.93314). The illustration demonstrates a notable enhancement in performance
when classifiers evolve for Tamil and Hindi text analysis. Conventional models such as RF, XGBOOST,
and LGBM yield robust baseline outcomes but are frequently surpassed by DL models. CNN exhibits
superior pattern recognition, whereas sequential models, such as LSTM and Bi-LSTM, enhance
performance by capturing word dependencies. Advanced models, such as WBi-LSTM, EOWBi-LSTM,
and EOCEWBI-LSTM, achieve increasingly superior scores, with EOCEWBi-LSTM yielding the
highest performance in terms of Precision, Recall, F1-Score, and Accuracy. The results underscore the
efficacy of DL models, especially EOCEWBI-LSTM, in delivering precise and equitable performance for
bilingual text analysis.
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Fig. 10. Metrics comparison of classifiers for Tamil+Hindi languages

Classifiers' performance among evaluation metrics like recall, precision, fl-score, and accuracy
concerning Hindi+English languages is illustrated in Fig. 11. The EOCEWBi-LSTM model compared
favorably with baseline models across all languages evaluated, achieving the highest scores in precision
(0.93281), recall (0.93394), fl-score (0.93366), and accuracy (0.93384). The illustration depicts the
efficacy of classifiers in analyzing Hindi and English texts, showing steady enhancements as models
evolve. Conventional models, such as RF, XGBoost, and LGBM, yield robust baseline outcomes but are
surpassed by DL models. CNN demonstrates superior pattern recognition, whereas sequential models,
such as LSTM and Bi-LSTM, enhance performance by capturing word dependencies. Advanced
variations, such as WBi-LSTM, EOWBi-LSTM, and EOCEWBi-LSTM, attain ever superior scores,
with EOCEWBi-LSTM yielding the optimal outcomes across all criteria. The results underscore the
efficacy of DL, specifically EOCEWBi-LSTM, in delivering precise and equitable analysis for bilingual
text data.
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The EOCEWBi-LSTM model demonstrated better performance across evaluation metrics than all
others, achieving the highest scores in precision (0.91193), recall (0.92259), F1-score (0.91723), and
accuracy (0.91726) for multi-language, as shown in Fig. 12.
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Fig. 12. Metrics comparison of classifiers for Tamil+Hindi+English languages

The figure illustrates the efficacy of classifiers in analyzing Tamil, Hindi, and English texts, indicating
a steady enhancement with the advancement of models. Conventional classifiers, such as RF, XGBoost,
and LGBM, yield dependable baseline outcomes; however, they are surpassed by DL models. CNN
successfully captures multilingual patterns, while sequential models, such as LSTM and Bi-LSTM,
enhance performance by learning word dependencies. Advanced versions, including WBi-LSTM,
EOWBIi-LSTM, and EOCEWBIi-LSTM, yield increasingly superior outcomes, with EOCEWBi-LSTM
attaining the best scores across all parameters. These findings underscore the preeminence of
EOCEWBI-LSTM in delivering precise and equitable outcomes for multilingual text analysis. To
validate the performance improvements of the suggested EOCEWBi-LSTM model over baseline
methods, we conducted McNemar’s test, a non-parametric test commonly used to compare the
predictions of two classifiers on the same dataset. The test was applied between EOCEWBi-LSTM and
its closest baseline, Bi-LSTM, with BERT embeddings. Results showed a chi-squared value of 6.21 with
a corresponding p-value of 0.013, indicating that the observed performance difference is statistically
significant at the 95% confidence level.

4.3. Comparison with State-of-the-Art Models

The proposed model was compared against recent SOTA sentiment classification models from the
literature. The comparison focuses on models that have demonstrated high efficacy in handling
sentiment classification tasks across various datasets. Table 3 summarizes the comparison.

Table 3. Comparison of EOWBi-LSTM with SOTA models

Model Dataset F1-Score (%) Accuracy (%)
mBERT + Fine-Tuning Twitter 88.0 88.0
Bi-GRU + Attention Film Reviews 89.0 89.0
Proposed EOCEWBi-LSTM NEP_EDUSET 93.83 93.83

5. Conclusion

Sentiment analysis (SA) is crucial for understanding public opinion in domains like politics and
business. In tweet classification, keywords play a vital role. While BERT has proven effective in MSA,
accuracy can be further improved. This paper introduces a three-part technique: Pre-processing, BERT,
and EOCEWBi-LSTM. Pre-processing includes checks for missing values, removal of names,
whitespaces, hashtags, numbers, punctuation, URLs, and spelling correction. BERT enhances word
representation in short texts using dynamic word vectors and a self-attention mechanism. EOCEWBi-
LSTM classifies tweets based on sentiment. The analysis demonstrates EOCEWBi-LSTM’s superior
precision, recall, accuracy, and F1-score, outperforming traditional and DL models in MSA. Compared
—
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to SOTA techniques, the EOCEWBi-LSTM combination excels in performance metrics. Superior
handling of class imbalance, particularly in the neutral sentiment class, due to the dynamically weighted
cross-entropy loss function. Future research can expand sentiment analysis beyond online data to include
emotions such as happiness and surprise. Other transformer models, such as RoBERTa, XLNet, and
DistilBERT, warrant further study. EOCEWBi-LSTM’s promising results highlight its effectiveness in
MSA. The high accuracy and robustness of EOCEWBi-LSTM make it suitable for deployment in several
real-world applications: 1) Social Media Sentiment Monitoring: Organizations and governments can use
the model to monitor public opinion on global issues, marketing campaigns, or policy decisions; 2)
Customer Feedback Analysis: Multinational companies can analyze feedback across multiple languages
to understand customer satisfaction and improve services; 3) Crisis Management: The model can provide
early warning signals by identifying negative or neutral sentiment during crises, enabling proactive
response measures. While the proposed EOCEWBi-LSTM model demonstrates strong performance on
the NEP_EDUSET dataset, several limitations warrant further exploration. First, although the dataset
includes multilingual content, it is restricted to the social media domain. This raises concerns about the
model’s domain transferability; its ability to generalize to other text genres, such as news articles, product
reviews, or formal discourse, remains untested. A domain adaptation study, measuring performance drop
(e.g., F1-score and accuracy variation greater than 10%) across new domains, is necessary to assess the
model's robustness. Second, the model operates as a black box, and its lack of interpretability poses a
challenge for use in critical domains such as healthcare, policy analysis, or legal reviews. Future work
should incorporate interpretability mechanisms, such as attention weight visualization or post-hoc
explanation techniques like SHAP (SHapley Additive exPlanations) or LIME (Local Interpretable
Model-agnostic Explanations), to provide transparency and gain user trust. Third, the model has been
evaluated on only two low-resource languages Hindi and Tamil. To validate its linguistic scalability, it is
essential to extend testing to other typologically diverse low-resource languages (e.g., Amharic, Marathi,
or Burmese), aiming for consistent performance across at least five such languages with a performance
deviation of <5%. Additionally, future enhancements may include integrating advanced semantic analysis
through external knowledge graphs or transformer-based semantic parsers. The inclusion of transfer
learning strategies, such as domain-adaptive pretraining, could further boost generalization to unseen
data. Finally, we plan to evaluate the model’s scalability on significantly larger datasets (e.g., more than
250,000 instances) to ensure performance stability and computational efficiency.
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