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1. Introduction 
Generally, the diagnostic procedure for an Anterior Cruciate Ligament (ACL) tear using Magnetic 

Resonance Imaging (MRI) is conducted by either a radiologist or an orthopedic surgeon [1]. The 

professionals mentioned above are responsible for reviewing the MRI scan results. This procedure looks 

for signs of disruption or tearing of the ACL fibers and any associated injuries, such as bone bruising or 

meniscus tears [2]. MRI is indispensable in providing holistic and cleared screening for ACL tear, yet 

non-intrusive assessment, thereby eliminating the potential risks associated with intrusive procedures. 

Nevertheless, it should be noted that this procedure is not without its drawbacks. The precision of the 

diagnosis largely depends on the skills, experience, and competence of the radiologist or surgeon. 

Misreading of MRI scans occurs frequently, which is why arthroscopy is still considered the gold 

standard for identifying ACL tears despite being a more invasive procedure [3].  
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 The accuracy of diagnosing an Anterior Cruciate Ligament (ACL) tear 

depends on the radiologist’s or surgeon’s expertise, experience, and skills. 

In this study, we contribute to the development of an automated diagnostic 

model for anterior cruciate ligament (ACL) tears using a lightweight deep 

learning model, specifically ResNet-14, combined with a Spatial Attention 

mechanism to enhance diagnostic performance while conserving 

computational resources. The model processes knee MRI scans using a 

ResNet architecture, comprising a series of residual blocks and a spatial 

attention mechanism, to focus on the essential features in the imaging data. 

The methodology, which includes the training and evaluation process, was 

conducted using the Stanford dataset, comprising 1,370 knee MRI scans. 

Data augmentation techniques were also implemented to mitigate biases. 

The model’s assessment uses performance metrics, ROC-AUC, sensitivity, 

and specificity. The results show that the proposed model achieved an 

ROC-AUC score of 0.8696, a sensitivity of 79.81%, and a specificity of 

79.82%. At 6.67 MB in size, with 1,684,517 parameters, the model is 

significantly more compact than existing models, such as MRNet. The 

findings demonstrate that embedding spatial attention into a lightweight 

deep learning framework augments the diagnostic accuracy for ACL tears 

while maintaining computational efficiency. Therefore, lightweight models 

have the potential to enhance diagnostic capability in medical imaging, 

allowing them to be deployed in resource-constrained clinical settings.  
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Machine learning and deep learning (DL) have emerged as a promising method for accurately 

determining the grades of ACL injuries [4]. The evaluation of extensive medical imaging data through 

machine learning algorithms has demonstrated the ability to reveal patterns that can effectively categorize 

ACL injury grades. Support vector machines (SVM) [5], decision trees [6], artificial neural networks 

(ANN) [7], and random forests [8], [9] have been proposed in recent years as machine learning 

techniques for classifying ACL tears. A recent study suggested the application of a deep convolutional 

neural network (CNN) for the automated classification of ACL tear grades through the analysis of MRI 

scans [10]–[12]. The CNN exhibited a high degree of accuracy and outperformed conventional 

diagnostic methods, thereby emphasizing the transformative potential of machine learning in grading 

ACL tears. However, these techniques are computationally intensive, such as CPU and GPU resources, 

necessitating substantial processing time and storage capacity [13]. Furthermore, the visualization tools 

required for interpreting the results impose an additional computational overhead during model 

inference, which currently restricts their practicality for routine clinical deployment [10]. The following 

sub-sections will discuss the lightweight deep learning model, attention mechanism, and the challenges 

of diagnosing ACL tear characteristics. 

1.1. Lightweight Deep Learning Model 
Generally, deep learning models have a complex architecture with many parameters and high 

computational demands. On the other hand, the lightweight deep learning model is characterized by 

optimizing its capability, resulting in a compact size without sacrificing its functionality [14]. Its 

enhanced computational efficiency enabled full functionality on devices with constrained resources, such 

as CPUs and GPUs [15]. The number of parameters, computational complexity, model size, and memory 

consumption have been commonly used as assessment measures to describe lightweight deep learning 

models [16]. A lightweight deep learning model is particularly well-suited for applications necessitating 

real-time inference [17], [18], including ACL tear diagnosis. Previous studies that have employed 

machine learning algorithms as an alternative to conventional medical practice for ACL tear diagnosis 

have all mentioned the limitation of that approach, namely the substantial computational resources 

required for its effective operation [19]. The lightweight model has the potential to address this 

limitation and can be utilized not only by major medical institutions but also by small and remote ones 

[20]. Thus, a lightweight model will significantly enhance accessibility for medical professionals, such as 

radiologists, to utilize advanced AI technologies [21]. 

1.2. Attention Mechanism 
A fundamental aspect of deep learning techniques is the incorporation of attention mechanisms [22], 

which enable models to prioritize different components of an input based on their perceived significance. 

This mechanism enables the model to mimic human cognitive processes by focusing on multiple input 

aspects, producing a more comprehensive result while disregarding less significant details to eliminate 

superficial findings [23]. Deep learning employs this mechanism to dynamically assign importance levels, 

thereby ensuring optimal results are generated [24]. This assignment of dynamic significance is apparent 

in the graphical data analysis, as the model can concentrate on the most relevant elements of the data to 

produce a more thorough outcome. 

1.3. ACL Tear Characteristics 
Fig. 1 visually represents the ACL injury, providing context and aiding understanding of the localized 

focus in the MRI scans. The MRI scans of ACL tears differ significantly from other MRI scans or 

natural images due to their specific focus and diagnostic requirements. Fig. 2 is an example of an ACL 

image on an MRI scan. The highlighted area represents the ACL. These scans concentrate solely on the 

knee region. This selection ensures a more consistent viewpoint and angle, thereby improving the 

uniformity of the outcomes compared to natural images. Natural images often exhibit a considerable 

variation in perspective, lighting, and contextual elements; therefore, they are unreliable. Diagnosing an 

ACL tear primarily relies on detecting highly localized, low-level features that exhibit minimal variation 

across cases. This characteristic enables machine learning models designed for ACL tear detection to be 

lightweight and efficient. In contrast to models trained on natural images, which are constrained by the 
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need to account for extensive variability, ACL tear detection models can focus on a more limited set of 

features and patterns [26]. In the context of this particular medical imaging task, this focused method 

decreases the computational demands of the model while increasing its precision and reliability. 

 

Fig. 1. Anterior Cruciate Ligament Injury. Source [25] 

 

 

Fig. 2. ACL Tear Magnetic Resonance Imaging. 

Source [5] 

This study contributes to the development of an automated diagnostic model for anterior cruciate 

ligament (ACL) tears using a novel lightweight CNN architecture enriched with spatial attention 

mechanisms. This approach responds to the growing call for effective and accurate diagnostic possibilities 

in clinical settings, where the ability to make decisions rapidly is of the essence [27], Introducing the 

spatial attention mechanism into the CNN framework, which can focus on high-importance features in 

the medical imaging data and provide better diagnostic performance without impairing computational 

efficiency. We demonstrate that the proposed model achieves competitive accuracy with existing deep 

learning models from the previous study by Bien et al. [28]. Our findings may help to improve 

computational efficiency for ACL diagnosis, which minimizes the need for invasive procedures and 

ultimately helps provide better outcomes for patients with ACL injuries. 

2. Related Works 

2.1. Models for ACL Tear Detection 
Developing machine learning models for diagnosing ACL tears has garnered significant interest from 

academics and practitioners. Several studies have investigated various architectures to achieve this 

objective. For example, the research conducted by N. Bien et al. [28], employed a deep learning CNN 

model known as MRNet to convert each three-dimensional MRI series into a probability. Additionally, 

a feature extractor based on AlexNet was utilized for each two-dimensional slice. A study by S. S. Mazlan 

et al. [5] utilized a Support Vector Machine (SVM) architecture, which was further expanded by F. Liu 

et al. [29] using a deep learning CNN approach. A study by J. Qiao employed an Artificial Neural 

Network (ANN) architecture to develop a model capable of detecting a broader range of injuries while 

maintaining high accuracy [30]. Among the lightweight deep learning models considered for ACL 

Diagnosis, ResNet-18 is arguably one of the best models for this specific purpose. Despite the number 

of parameters in ResNet-18 being considered “Lightweight” compared to other versions of ResNet, 

there is a chance for improvement, which is the objective of this study. 

2.2. Lightweight Deep Learning Model 
The rapid expansion in both the size and complexity of deep learning models has created a significant 

challenge in their implementation on devices with constrained resources, such as CPUs and GPUs. In 

order to validate the validity of utilizing lightweight models, it is essential to ensure that a certain level 

of accuracy and functionality is maintained at a consistent pace. At the same time, they are being 

employed with minimal computational resources [31], [32]. To address this need, several techniques 

have been developed. For instance, a study by P. Sharma et al. introduced the bottleneck mechanism, 
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which reduces the dimensionality of the input data by extracting only the most critical features before 

expanding the representation back to its original size, thereby significantly improving computational 

efficiency without compromising the model’s representational power [33]. Similarly, the study by O. E. 

Okman et al. [34] employed a data-folding technique, which enhances computational power by 

evaluating multiple image segments simultaneously while eliminating irrelevant data.  

These innovations are crucial steps toward balancing performance and efficiency in constrained 

resource environments. Another noteworthy advancement is group convolution, as introduced by Y. Li 

et al. [35]. This technique involves dividing a convolutional layer into multiple groups, each with its 

unique set of filters. By enabling parallel learning of features across these groups, the network achieves 

improved computational efficiency and maintains its ability to learn diverse representations. Collectively, 

these methods illustrate the potential for developing lightweight yet powerful models through careful 

architectural design and optimization techniques. However, despite the progress made, a pressing need 

remains for a deeper understanding of the efficiency and effectiveness of these techniques in various 

applications. Continued research is essential to evaluate their trade-offs and identify the optimal 

strategies for deploying DL models in environments with limited resources. 

Structured pruning means eliminating sizable structural elements, such as whole filters or channels, 

directly altering the model’s width. “Layer Pruning,” which entails the removal of entire layers or 

substantial segments of layers, is included in this category since it addresses the removal of structural 

redundancy [16]. This study aims to evaluate layer pruning on ResNet-18 and reduce it to ResNet-14 

in terms of lightweightness and effectiveness. 

2.3. Attention Mechanism 
The attention mechanism is a method that enables a model to focus on the most relevant parts of its 

input data, assigning different levels of importance to various elements, much like humans do when 

dealing with complex information [36]. Studies of its usage in the broader medical field are shown by 

L. Zhang et al. [37], used for detecting brain tumors, and another study by X. Zhou et al. [38] used an 

attention mechanism to detect rectal cancer. A study by C. Liang et al. [39] used it for ACL tear 

diagnosis and claimed that it improves diagnostic efficiency and reduces misdiagnosis. Nevertheless, 

further research is required to comprehend the utilization of this mechanism, particularly in the context 

of computational efficiency. The current study intends to incorporate the attention mechanism into the 

proposed lightweight deep learning model. We utilized the Spatial Attention Mechanism, an attention 

mechanism capable of distinguishing the significance of certain parts, as seen in image analysis. This new 

inclusion would enhance the accuracy of ResNet-18 and ResNet-14 in ACL diagnosis. Spatial attention 

mechanisms are mainly used because they allow a model to focus on and prioritise the most informative 

areas within an image or feature map, thereby improving overall performance. The Spatial Attention 

Mechanism method is very advantageous because spatial attention dynamically creates weights to 

emphasize or diminish specific regions, which is essential for minimizing the effects of noise and 

interference in the input data, such as fluctuations in image quality [40]. 

3. Method 

3.1. Architecture 
The proposed lightweight model takes a knee MRI scan as an input feature in this study. The ResNet 

architecture begins with a 7x7 convolutional that has a stride of 2, followed by batch normalization and 

a ReLU activation function. After this initial convolution, a max pooling operation is applied. After the 

initial setup, the network is divided into four main stages, each containing a series of residual blocks 

[41]. The quantity of blocks varies depending on the specific ResNet setup. At each stage, the 

dimensions of the feature maps are halved while the number of filters is increased to maintain consistent 

time complexity across each layer. The network culminates with a global average pooling layer followed 

by a fully connected layer with 1000 outputs. A softmax activation function is utilized to produce the 

probability distribution across the classes. Due to high accuracy, strong feature extraction, and efficient 
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training process, ResNet-18 is well suited for MRI scan classification, which becomes a valuable tool in 

early disease detection [42], [43] and also the ResNet-14 model has proven to be a significant leap in 

the automatic detection of ACL injuries from MRI, providing a reliable early diagnosis and possibly 

lessening the radiologist’s workload [44]. In this research, we are using ResNet-18 and ResNet-14. 

ResNet-14 has emerged as a lightweight deep learning model attributed to its effective architecture, 

balanced performance, and resource consumption. In the context of the study by C.H. Wang et al. [14], 

ResNet-14 serves as an example of the principle statement regarding model compression techniques 

suitable for deployment on constrained resources, such as CPU and GPU. The architecture of ResNet-

14 is illustrated in Fig. 3. 

 

Fig. 3. ResNet-14 with Spatial Attention Mechanism Model Illustration 

The attention mechanism highlights critical areas within CNN models and enhances the 

representation of key features. Its main objective is to improve representational power by focusing on 

relevant features while reducing the impact of irrelevant ones. In this paper, we present a Spatial 

Attention Mechanism. This mechanism gathers essential information along the spatial dimension, 

enabling the attention mechanism to determine what is important [45], [46]. Among other attention 

mechanisms, we chose the spatial attention mechanism due to its characteristics and mechanism to 

identify the importance of certain parts of the image by reviewing the whole image, which coincided 

with the objective of ACL diagnosis. As a result, our attention module efficiently aids in the distribution 

of information across the network by identifying what information to emphasize and what to reduce. 

Fig. 4 illustrates the design of the spatial attention mechanism. 

 

Fig. 4. Spatial Attention Mechanism Model Overview 

In the spatial attention mechanism, the spatial relationships of features are leveraged to generate 

spatial attention maps. This component of spatial attention emphasizes the identification of significant 

areas. An intermediate feature map, 𝐹𝐹𝑖𝑖𝑖𝑖, of dimensions 𝐶𝐶×𝐻𝐻×𝑊𝑊, is processed by the spatial attention 

mechanism to produce a 2D spatial attention map, 𝑀𝑀𝑆𝑆 (𝐹𝐹𝑖𝑖𝑖𝑖), with dimensions 1×𝐻𝐻×𝑊𝑊. The most 

significant spatial areas of the input feature map are highlighted in this attention map. The final output 

feature map, 𝐹𝐹𝑜𝑜𝑜𝑜𝑜𝑜, which maintains the exact dimensions, 𝐶𝐶×𝐻𝐻×𝑊𝑊, is then created by multiplying the 

attention map by the original feature map, 𝐹𝐹𝑖𝑖𝑖𝑖. For improved performance, this procedure assists the 

model in concentrating on the most pertinent portions of the input. To summarize, the procedure for 

acquiring an output feature map is described as follows: 
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𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝐹𝐹𝑖𝑖𝑖𝑖)   (1) 

𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐹𝐹𝑖𝑖𝑖𝑖)   (2) 

𝑀𝑀𝑠𝑠(𝐹𝐹𝑖𝑖𝑖𝑖) = 𝜎𝜎 �𝑓𝑓7𝑥𝑥7��𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚;𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎���   (3) 

𝐹𝐹𝑜𝑜𝑜𝑜𝑜𝑜 = 𝐹𝐹𝑖𝑖𝑖𝑖 ⊗𝑀𝑀𝑠𝑠(𝐹𝐹)   (4) 

In this context, 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 denotes global max pooling; 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 stands for global average pooling; 

𝜎𝜎 indicates the sigmoid function; 𝑓𝑓7×7 refers to a convolution operation with a filter size of 7 × 7; ⊗ 

represents element-wise multiplication. 

3.2. Data 
We evaluate the proposed model with Stanford datasets. The Stanford dataset consists of 1370 knee 

MRI scans gathered from Stanford University Medical Center during the period from January 1, 2001, 

to December 31, 2012 [28]. The demographic statistics of the dataset are presented in Table 1. 

Table 1.  Summary statistics of training and validation datasets 

Statistic Training Validation 
Number of exams 1,250 120 

Age, mean (SD) 38.3 (16.9) 36.3 (16.9) 

Number with abnormality (%) 913 (80.8) 95 (79.2) 

Number with ACL tear (%) 208 (18.4) 54 (45.0) 

Number with meniscal tear (%) 397 (35.1) 52 (43.3) 

Number with ACL and meniscal tear (%) 125 (11.1) 31 (25.8) 

 

Chronic and acute pain, postoperative evaluation or follow-up examination, injury or trauma, and 

other conditions were the most common indications for knee MRI scans in this dataset. The variety of 

different scanners used in the eventual extraction includes GE scanners (GE Discovery, GE Healthcare, 

Waukesha, WI) with standard knee MRI coils.  

A sagittal plane MRI scan is used to show the knee from a side view, allowing either the right or left 

side to be visualized. The coordinate system defines the side and direction. The proposed model aims to 

predict the presence of ACL tears using sagittal plane MRI scans. The model generates a binary output 

float for the given MRI input, indicative of whether there is an “ACL tear“ or ”No ACL tear. 

3.3. Training 
The development of the ACL Tears Diagnostic Model followed a structured methodology, as 

illustrated in Fig. 5. 

To prevent any potential biases during training, we apply the same data preprocessing and 

augmentation methods to each training instance. Data augmentation includes random horizontal flips, 

random rotations, and 3D affine transforms. The affine transform accomplishes three types of image 

distortion: scale, translation, and rotation. The Adam optimizer optimizes every model. A batch size of 

5 is used, and all models are trained for 150 epochs. 

Five-fold cross-validation is used to train the performance model, and we try three different learning 

rates: 1e-3, 1e-4, and 1e-5. We find that 1e-5 is the best learning rate for proposed models. We assess 

the mean and variation of performance measures using prediction outcomes from the five folds. We 

utilize ROC-AUC, Sensitivity, and Specificity as our key performance measures. ROC-AUC is a 

performance metric that assesses how effectively a classification model can differentiate between positive 

and negative classes [47]. Specificity measures the proportion of actual negative cases that the model 

correctly identifies as negative. At the same time, Sensitivity, also called recall, evaluates the proportion 

of actual positive cases accurately recognized by the model [48]. In addition to these, we also consider 
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the number of parameters and model size to evaluate the model’s computation complexity. The number 

of parameters reflects the model’s complexity, and the model size indicates the memory it occupies [11]. 

 

Fig. 5. ACL Tears Diagnostic Model Training and Validation Flowchart 

4. Results and Discussion 
Table 2 compares the diagnostic accuracy and model size of our proposed model alongside other ACL 

detection models. ”Proposed model” refers to the configuration proposed and illustrated in Fig. 3. 

“Proposed Model + Spatial Attention” is developed by incorporating the “Spatial Attention Mechanism” 

into ResNet-14. 

Table 2.  Comparison of diagnostic accuracy and model size 

Model Sensitivity Specificity Precision F1-
score 

ROC-
AUC Parameter 

Model 
Size 
(mb) 

ELNet 0.4615 0.9544 - - 0.8936 211,314 0.882 

MRNet+AlexNet 0.3606 0.9664 - - 0.8822 2,469,953 46.98 

ResNet-18 + Spatial 

Attention 

0.8413 0.7722 0.7018 0.7207 0.8903 2,865,189 11.30 

Proposed Model + Spatial 

Attention 

0.7981 0.7982 0.6607 0.6727 0.8696 1,684,517 6.67 

ResNet-18  0.7596 0.7961 0.5846 0.6716 0.8470 2,799,397 11.29 

Proposed Model 0.7548 0.7918 0.5488 0.6618 0.8339 1,618,725 6.66 
 

In this study, two models stood out as the best performers: “ELNet” and “ResNet-18 + Spatial 

Attention”. Both models outperform all others when tested on the Stanford knee dataset. Interestingly, 

when we added “Spatial Attention” to the “Proposed Model,” it achieved a ROC-AUC score of 0.8696 

on the same dataset, while the “Proposed Model” without this feature scored 0.8339. Furthermore, the 

sensitivity of ResNet-18 and its counterpart with the Spatial Attention Mechanism also showed 

promising results, with sensitivity from 0.7596 to 0.8413. When compared with the Proposed Model 

with the Spatial Attention Mechanism, the improvement is more significant in terms of accuracy (0.8339 

to 0.8696), sensitivity (0.7548 to 0.7981), specificity (0.7918 to 0.7982), precision (0.5488 to 0.6087), 

F1-score (0.6618 to 0.6829), and model size (6.66 MB to 6.67 MB) across the board show positive 
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improvements. This indicates that “Spatial Attention” plays a crucial role in enhancing performance for 

both “ResNet-18” and the “Proposed Model.” The results also highlight that “ResNet-18” models are 

highly effective and can deliver cutting-edge performance in diagnosing ACL tears. Additionally, the 

“Proposed Model” is much more computationally efficient; it is seven times smaller than MRNet, 

making it lightweight yet archiving good accuracy. 

The calculated training time, illustrated in Fig. 6, can be obtained by computing the average time 

needed to process a total of 100 scans, incrementing by 10 as the batch size, and then dividing that total 

by the number of scans. ResNet-18 requires 0.0171 seconds, while ResNet-18 with Spatial Attention 

takes 0.0191 seconds, the proposed model takes 0.0158 seconds, and the proposed model with Spatial 

Attention requires 0.0181 seconds to train on a single scan. Despite the proposed model being 

significantly smaller than ResNet-18, we do not see notable speed enhancements compared to ResNet-

18. 

 

Fig. 6. Computational Speed 

This study explores lightweight model architectures to optimize model size, especially in medical 

imaging applications when processing power may be constrained. The results show that larger models, 

such as “ResNet-18” and “MRNet+AlexNet,” obtain excellent diagnostic accuracy at the expense of larger 

model sizes, which might be a significant disadvantage in contexts with limited resources. 

Our “Proposed Model” using ResNet-14 architecture demonstrates that it is possible to balance 

model size and diagnostic performance. Its compact size makes it an attractive option for practical 

applications, offering a lightweight yet effective solution for diagnosing ACL tears. The increase in size 

when adding “Spatial Attention” further enhances its performance without significantly impacting its 

computational efficiency on devices with constrained resources. 

The results suggest that “Spatial Attention” is a valuable addition for improving diagnostic accuracy 

without substantially increasing model size. This enhancement is particularly beneficial for models like 

the “Proposed Model,” which prioritizes computationally efficient devices with constrained resources. 

For future work, several aspects of the study have been considered for improvement. The deployment of 

the proposed model will be a priority in our future work, allowing it to be applied and tested in real-life 

scenarios. The lightweight model operates with a single dataset, which contains 1,370 exams performed 

between January 1, 2001, and December 31, 2012, at Stanford University Medical Centre. This dataset 

will remain crucial for this study and future endeavors related to ACL tear diagnosis; it cannot possibly 

represent all the variations of knee and ACL tear MRI data, not to mention the variance in population 

demographics and timeframes. Due to the age of the dataset and the advancement of MRI Technology 

over the past decade, a more recent dataset should provide better insight to improve the lightweight 
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model. We intend to update the proposed model with a newer dataset from other institutions to improve 

the proposed model and comprehensively recognize ACL tears.  

While our lightweight model shows positive results, there is still room for improvement. A more 

robust attention mechanism that incorporates the latest advancements in MRI and ACL diagnostics 

could significantly enhance the proposed model. Additional datasets could potentially provide a more 

balanced representation of both positive and negative results. Weighted misclassification penalization, 

undersampling of negative cases, and oversampling of positive samples are further possibilities. These 

adjustments could help the model better handle imbalanced data and improve its performance, 

particularly in identifying rare or underrepresented conditions. Despite these advancements, all these 

models require expert judgment to interpret model results effectively. Future work should also focus on 

enhancing transparency, interpretability, and explainability by utilizing Explainable Artificial Intelligence 

(XAI) to increase the trust and confidence of end-users. 

5. Conclusion 
This study demonstrates the use of ResNet-14 with the newly applied Spatial Attention Mechanism 

to develop our lightweight model. This model can diagnose ACL tears with 86.96% accuracy, 79.81% 

sensitivity, and 79.82% specificity, having screened 1,684,517 parameters with a small size of 6.67 MB. 

The proposed model is seven times smaller than MRNet, one of the earliest studies on a model for ACL 

Tear Diagnosis. The findings from the present study emphasize the importance of a thorough 

understanding of medical imaging tasks in developing a model that is not only concise and precise but 

also computationally efficient. 
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