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1. Introduction

ABSTRACT

The accuracy of diagnosing an Anterior Cruciate Ligament (ACL) tear
depends on the radiologist’s or surgeon’s expertise, experience, and skills.
In this study, we contribute to the development of an automated diagnostic
model for anterior cruciate ligament (ACL) tears using a lightweight deep
learning model, specifically ResNet-14, combined with a Spatial Attention
mechanism to enhance diagnostic performance while conserving
computational resources. The model processes knee MRI scans using a
ResNet architecture, comprising a series of residual blocks and a spatial
attention mechanism, to focus on the essential features in the imaging data.
The methodology, which includes the training and evaluation process, was
conducted using the Stanford dataset, comprising 1,370 knee MRI scans.
Data augmentation techniques were also implemented to mitigate biases.
The model’s assessment uses performance metrics, ROC-AUC, sensitivity,
and specificity. The results show that the proposed model achieved an
ROC-AUC score of 0.8696, a sensitivity of 79.81%, and a specificity of
79.82%. At 6.67 MB in size, with 1,684,517 parameters, the model is
significantly more compact than existing models, such as MRNet. The
findings demonstrate that embedding spatial attention into a lightweight
deep learning framework augments the diagnostic accuracy for ACL tears
while maintaining computational efficiency. Therefore, lightweight models
have the potential to enhance diagnostic capability in medical imaging,
allowing them to be deployed in resource-constrained clinical settings.

© 2025 The Author(s).
This is an open access article under the CC-BY-SA license.

Generally, the diagnostic procedure for an Anterior Cruciate Ligament (ACL) tear using Magnetic
Resonance Imaging (MRI) is conducted by either a radiologist or an orthopedic surgeon [1]. The
professionals mentioned above are responsible for reviewing the MRI scan results. This procedure looks
for signs of disruption or tearing of the ACL fibers and any associated injuries, such as bone bruising or
meniscus tears [2]. MRI is indispensable in providing holistic and cleared screening for ACL tear, yet
non-intrusive assessment, thereby eliminating the potential risks associated with intrusive procedures.
Nevertheless, it should be noted that this procedure is not without its drawbacks. The precision of the
diagnosis largely depends on the skills, experience, and competence of the radiologist or surgeon.
Misreading of MRI scans occurs frequently, which is why arthroscopy is still considered the gold
standard for identifying ACL tears despite being a more invasive procedure [3].
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Machine learning and deep learning (DL) have emerged as a promising method for accurately
determining the grades of ACL injuries [4]. The evaluation of extensive medical imaging data through
machine learning algorithms has demonstrated the ability to reveal patterns that can effectively categorize
ACL injury grades. Support vector machines (SVM) [5], decision trees [6], artificial neural networks
(ANN) [7], and random forests [8], [9] have been proposed in recent years as machine learning
techniques for classifying ACL tears. A recent study suggested the application of a deep convolutional
neural network (CNN) for the automated classification of ACL tear grades through the analysis of MRI
scans [10]-[12]. The CNN exhibited a high degree of accuracy and outperformed conventional
diagnostic methods, thereby emphasizing the transformative potential of machine learning in grading
ACL tears. However, these techniques are computationally intensive, such as CPU and GPU resources,
necessitating substantial processing time and storage capacity [13]. Furthermore, the visualization tools
required for interpreting the results impose an additional computational overhead during model
inference, which currently restricts their practicality for routine clinical deployment [10]. The following
sub-sections will discuss the lightweight deep learning model, attention mechanism, and the challenges
of diagnosing ACL tear characteristics.

1.1. Lightweight Deep Learning Model

Generally, deep learning models have a complex architecture with many parameters and high
computational demands. On the other hand, the lightweight deep learning model is characterized by
optimizing its capability, resulting in a compact size without sacrificing its functionality [14]. Its
enhanced computational efficiency enabled full functionality on devices with constrained resources, such
as CPUs and GPUs [15]. The number of parameters, computational complexity, model size, and memory
consumption have been commonly used as assessment measures to describe lightweight deep learning
models [16]. A lightweight deep learning model is particularly well-suited for applications necessitating
real-time inference [17], [18], including ACL tear diagnosis. Previous studies that have employed
machine learning algorithms as an alternative to conventional medical practice for ACL tear diagnosis
have all mentioned the limitation of that approach, namely the substantial computational resources
required for its effective operation [19]. The lightweight model has the potential to address this
limitation and can be utilized not only by major medical institutions but also by small and remote ones
[20]. Thus, a lightweight model will significantly enhance accessibility for medical professionals, such as
radiologists, to utilize advanced Al technologies [21].

1.2. Attention Mechanism

A fundamental aspect of deep learning techniques is the incorporation of attention mechanisms [22],
which enable models to prioritize different components of an input based on their perceived significance.
This mechanism enables the model to mimic human cognitive processes by focusing on multiple input
aspects, producing a more comprehensive result while disregarding less significant details to eliminate
superficial findings [23]. Deep learning employs this mechanism to dynamically assign importance levels,
thereby ensuring optimal results are generated [24]. This assignment of dynamic significance is apparent
in the graphical data analysis, as the model can concentrate on the most relevant elements of the data to
produce a more thorough outcome.

1.3. ACL Tear Characteristics

Fig. 1 visually represents the ACL injury, providing context and aiding understanding of the localized
focus in the MRI scans. The MRI scans of ACL tears differ significantly from other MRI scans or
natural images due to their specific focus and diagnostic requirements. Fig. 2 is an example of an ACL
image on an MRI scan. The highlighted area represents the ACL. These scans concentrate solely on the
knee region. This selection ensures a more consistent viewpoint and angle, thereby improving the
uniformity of the outcomes compared to natural images. Natural images often exhibit a considerable
variation in perspective, lighting, and contextual elements; therefore, they are unreliable. Diagnosing an
ACL tear primarily relies on detecting highly localized, low-level features that exhibit minimal variation
across cases. This characteristic enables machine learning models designed for ACL tear detection to be
lightweight and efficient. In contrast to models trained on natural images, which are constrained by the
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need to account for extensive variability, ACL tear detection models can focus on a more limited set of
features and patterns [26]. In the context of this particular medical imaging task, this focused method
decreases the computational demands of the model while increasing its precision and reliability.

Fig. 1. Anterior Cruciate Ligament Injury. Source [25]

Fig. 2. ACL Tear Magnetic Resonance Imaging.
Source [5]

This study contributes to the development of an automated diagnostic model for anterior cruciate
ligament (ACL) tears using a novel lightweight CNN architecture enriched with spatial attention
mechanisms. This approach responds to the growing call for effective and accurate diagnostic possibilities
in clinical settings, where the ability to make decisions rapidly is of the essence [27], Introducing the
spatial attention mechanism into the CNN framework, which can focus on high-importance features in
the medical imaging data and provide better diagnostic performance without impairing computational
efficiency. We demonstrate that the proposed model achieves competitive accuracy with existing deep
learning models from the previous study by Bien er al. [28]. Our findings may help to improve
computational efficiency for ACL diagnosis, which minimizes the need for invasive procedures and
ultimately helps provide better outcomes for patients with ACL injuries.

2. Related Works
2.1. Models for ACL Tear Detection

Developing machine learning models for diagnosing ACL tears has garnered significant interest from
academics and practitioners. Several studies have investigated various architectures to achieve this
objective. For example, the research conducted by N. Bien ez al. [28], employed a deep learning CNN
model known as MRNet to convert each three-dimensional MRI series into a probability. Additionally,
a feature extractor based on AlexNet was utilized for each two-dimensional slice. A study by S. S. Mazlan
et al. [5] utilized a Support Vector Machine (SVM) architecture, which was further expanded by F. Liu
et al. [29] using a deep learning CNN approach. A study by J. Qiao employed an Artificial Neural
Network (ANN) architecture to develop a model capable of detecting a broader range of injuries while
maintaining high accuracy [30]. Among the lightweight deep learning models considered for ACL
Diagnosis, ResNet-18 is arguably one of the best models for this specific purpose. Despite the number
of parameters in ResNet-18 being considered “Lightweight” compared to other versions of ResNet,
there is a chance for improvement, which is the objective of this study.

2.2. Lightweight Deep Learning Model

The rapid expansion in both the size and complexity of deep learning models has created a significant
challenge in their implementation on devices with constrained resources, such as CPUs and GPUs. In
order to validate the validity of utilizing lightweight models, it is essential to ensure that a certain level
of accuracy and functionality is maintained at a consistent pace. At the same time, they are being
employed with minimal computational resources [31], [32]. To address this need, several techniques
E/e been developed. For instance, a study by P. Sharma et al. introduced the bottleneck mechanism,
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which reduces the dimensionality of the input data by extracting only the most critical features before
expanding the representation back to its original size, thereby significantly improving computational
efficiency without compromising the model’s representational power [33]. Similarly, the study by O. E.
Okman et al. [34] employed a data-folding technique, which enhances computational power by
evaluating multiple image segments simultaneously while eliminating irrelevant data.

These innovations are crucial steps toward balancing performance and efficiency in constrained
resource environments. Another noteworthy advancement is group convolution, as introduced by Y. Li
et al. [35]. This technique involves dividing a convolutional layer into multiple groups, each with its
unique set of filters. By enabling parallel learning of features across these groups, the network achieves
improved computational efficiency and maintains its ability to learn diverse representations. Collectively,
these methods illustrate the potential for developing lightweight yet powerful models through careful
architectural design and optimization techniques. However, despite the progress made, a pressing need
remains for a deeper understanding of the efficiency and effectiveness of these techniques in various
applications. Continued research is essential to evaluate their trade-offs and identify the optimal
strategies for deploying DL models in environments with limited resources.

Structured pruning means eliminating sizable structural elements, such as whole filters or channels,
directly altering the model’'s width. “Layer Pruning,” which entails the removal of entire layers or
substantial segments of layers, is included in this category since it addresses the removal of structural
redundancy [16]. This study aims to evaluate layer pruning on ResNet-18 and reduce it to ResNet-14
in terms of lightweightness and effectiveness.

2.3. Attention Mechanism

The attention mechanism is a method that enables a model to focus on the most relevant parts of its
input data, assigning difterent levels of importance to various elements, much like humans do when
dealing with complex information [36]. Studies of its usage in the broader medical field are shown by
L. Zhang ez al. [37], used for detecting brain tumors, and another study by X. Zhou et al. [38] used an
attention mechanism to detect rectal cancer. A study by C. Liang et al. [39] used it for ACL tear
diagnosis and claimed that it improves diagnostic efficiency and reduces misdiagnosis. Nevertheless,
further research is required to comprehend the utilization of this mechanism, particularly in the context
of computational efficiency. The current study intends to incorporate the attention mechanism into the
proposed lightweight deep learning model. We utilized the Spatial Attention Mechanism, an attention
mechanism capable of distinguishing the significance of certain parts, as seen in image analysis. This new
inclusion would enhance the accuracy of ResNet-18 and ResNet-14 in ACL diagnosis. Spatial attention
mechanisms are mainly used because they allow a model to focus on and prioritise the most informative
areas within an image or feature map, thereby improving overall performance. The Spatial Attention
Mechanism method is very advantageous because spatial attention dynamically creates weights to
emphasize or diminish specific regions, which is essential for minimizing the effects of noise and
interference in the input data, such as fluctuations in image quality [40].

3. Method

3.1. Architecture

The proposed lightweight model takes a knee MRI scan as an input feature in this study. The ResNet
architecture begins with a 7x7 convolutional that has a stride of 2, followed by batch normalization and
a ReLU activation function. After this initial convolution, a max pooling operation is applied. After the
initial setup, the network is divided into four main stages, each containing a series of residual blocks
[41]. The quantity of blocks varies depending on the specific ResNet setup. At each stage, the
dimensions of the feature maps are halved while the number of filters is increased to maintain consistent
time complexity across each layer. The network culminates with a global average pooling layer followed
by a fully connected layer with 1000 outputs. A softmax activation function is utilized to produce the
probability distribution across the classes. Due to high accuracy, strong feature extraction, and efficient

Herman et al. (Lightweight deep learning model with ResNet14 and spatial attention for...)



ISSN 2442-6571 International Journal of Advances in Intelligent Informatics 371
Vol. 11, No. 3, August 2025, pp. 367-378

n
training process, ResNet-18 is well suited for MRI scan classification, which becomes a valuable tool in
early disease detection [42], [43] and also the ResNet-14 model has proven to be a significant leap in
the automatic detection of ACL injuries from MRI, providing a reliable early diagnosis and possibly
lessening the radiologist’s workload [44]. In this research, we are using ResNet-18 and ResNet-14.
ResNet-14 has emerged as a lightweight deep learning model attributed to its effective architecture,
balanced performance, and resource consumption. In the context of the study by C.H. Wang et al. [14],
ResNet-14 serves as an example of the principle statement regarding model compression techniques
suitable for deployment on constrained resources, such as CPU and GPU. The architecture of ResNet-
14 is illustrated in Fig. 3.
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Fig. 3.ResNet-14 with Spatial Attention Mechanism Model Illustration

The attention mechanism highlights critical areas within CNN models and enhances the
representation of key features. Its main objective is to improve representational power by focusing on
relevant features while reducing the impact of irrelevant ones. In this paper, we present a Spatial
Attention Mechanism. This mechanism gathers essential information along the spatial dimension,
enabling the attention mechanism to determine what is important [45], [46]. Among other attention
mechanisms, we chose the spatial attention mechanism due to its characteristics and mechanism to
identify the importance of certain parts of the image by reviewing the whole image, which coincided
with the objective of ACL diagnosis. As a result, our attention module efficiently aids in the distribution
of information across the network by identifying what information to emphasize and what to reduce.
Fig. 4 illustrates the design of the spatial attention mechanism.
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Fig. 4. Spatial Attention Mechanism Model Overview

In the spatial attention mechanism, the spatial relationships of features are leveraged to generate
spatial attention maps. This component of spatial attention emphasizes the identification of significant
areas. An intermediate feature map, Fin, of dimensions CxHxW, is processed by the spatial attention
mechanism to produce a 2D spatial attention map, Ms (Fin), with dimensions 1xHxW. The most
significant spatial areas of the input feature map are highlighted in this attention map. The final output
feature map, Four, which maintains the exact dimensions, CxHxW, is then created by multiplying the
attention map by the original feature map, Fin. For improved performance, this procedure assists the
model in concentrating on the most pertinent portions of the input. To summarize, the procedure for
acquiring an output feature map is described as follows:
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Fnax = MaxPool(Fy,) (1)
Fayg = AvgPool(Fy,) (2
M (Fin) = 0 (7% ([Fras;Favg))) 3
Fout = Fin ® Ms(F) )

In this context, MaxPool denotes global max pooling; AvgPool stands for global average pooling;
o indicates the sigmoid function; f7x7 refers to a convolution operation with a filter size of 7 x 7; @
represents element-wise multiplication.

3.2. Data

We evaluate the proposed model with Stanford datasets. The Stanford dataset consists of 1370 knee
MRI scans gathered from Stanford University Medical Center during the period from January 1, 2001,
to December 31, 2012 [28]. The demographic statistics of the dataset are presented in Table 1.

Table 1. Summary statistics of training and validation datasets

Statistic Training Validation
Number of exams 1,250 120
Age, mean (SD) 38.3 (16.9) 36.3 (16.9)
Number with abnormality (%) 913 (80.8) 95 (79.2)
Number with ACL tear (%) 208 (18.4) 54 (45.0)
Number with meniscal tear (%) 397 (35.1) 52 (43.3)
Number with ACL and meniscal tear (%) 125 (11.1) 31 (25.8)

Chronic and acute pain, postoperative evaluation or follow-up examination, injury or trauma, and
other conditions were the most common indications for knee MRI scans in this dataset. The variety of
different scanners used in the eventual extraction includes GE scanners (GE Discovery, GE Healthcare,
Waukesha, WI) with standard knee MRI coils.

A sagittal plane MRI scan is used to show the knee from a side view, allowing either the right or left
side to be visualized. The coordinate system defines the side and direction. The proposed model aims to
predict the presence of ACL tears using sagittal plane MRI scans. The model generates a binary output
float for the given MRI input, indicative of whether there is an “ACL tear or "No ACL tear.

3.3. Training

The development of the ACL Tears Diagnostic Model followed a structured methodology, as
illustrated in Fig. 5.

To prevent any potential biases during training, we apply the same data preprocessing and
augmentation methods to each training instance. Data augmentation includes random horizontal flips,
random rotations, and 3D affine transforms. The affine transform accomplishes three types of image
distortion: scale, translation, and rotation. The Adam optimizer optimizes every model. A batch size of
5 is used, and all models are trained for 150 epochs.

Five-fold cross-validation is used to train the performance model, and we try three different learning
rates: le-3, le-4, and le-5. We find that le-5 is the best learning rate for proposed models. We assess
the mean and variation of performance measures using prediction outcomes from the five folds. We
utilize ROC-AUC, Sensitivity, and Specificity as our key performance measures. ROC-AUC is a
performance metric that assesses how eftectively a classification model can differentiate between positive
and negative classes [47]. Specificity measures the proportion of actual negative cases that the model
correctly identifies as negative. At the same time, Sensitivity, also called recall, evaluates the proportion
of actual positive cases accurately recognized by the model [48]. In addition to these, we also consider
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the number of parameters and model size to evaluate the model’s computation complexity. The number
of parameters reflects the model’s complexity, and the model size indicates the memory it occupies [11].

Knee MRI Dataset
Y
Dataset Spliting

[ Validation Set ]

L

[ Training Set

¥
Data
Augmentation

b

y
Models Training
4>| Models Validation }4*

v
ACL Tears
Diagnostic Model

Fig. 5. ACL. Tears Diagnostic Model Training and Validation Flowchart

4. Results and Discussion

Table 2 compares the diagnostic accuracy and model size of our proposed model alongside other ACL
detection models. "Proposed model” refers to the configuration proposed and illustrated in Fig. 3.
“Proposed Model + Spatial Attention” is developed by incorporating the “Spatial Attention Mechanism”
into ResNet-14.

Table 2. Comparison of diagnostic accuracy and model size

Model
Model Sensitivity ~ Specificity Precision Fl-— ROC- Parameter Size
score AUC

(mb)

ELNet 0.4615 0.9544 - - 0.8936 211314 0.882

MRNet+AlexNet 0.3606 0.9664 - - 0.8822 2,469,953 46.98

ResNet-18 + Spatial 0.8413 0.7722 0.7018 07207  0.8903 2,865,189 11.30
Attention

Proposed Model + Spacial - /¢, 0.7982 0.6607  0.6727  0.8696 1,684,517 6.67
Attention

ResNet-18 0.7596 0.7961 0.5846  0.6716  0.8470 2,799,397 11.29

Proposed Model 0.7548 0.7918 0.5488  0.6618  0.8339 1,618,725 6.66

In this study, two models stood out as the best performers: “ELNet” and “ResNet-18 + Spatial
Attention”. Both models outperform all others when tested on the Stanford knee dataset. Interestingly,
when we added “Spatial Attention” to the “Proposed Model,” it achieved a ROC-AUC score of 0.8696
on the same dataset, while the “Proposed Model” without this feature scored 0.8339. Furthermore, the
sensitivity of ResNet-18 and its counterpart with the Spatial Attention Mechanism also showed
promising results, with sensitivity from 0.7596 to 0.8413. When compared with the Proposed Model
with the Spatial Attention Mechanism, the improvement is more significant in terms of accuracy (0.8339
to 0.8696), sensitivity (0.7548 to 0.7981), specificity (0.7918 to 0.7982), precision (0.5488 to 0.6087),
Fl-score (0.6618 to 0.6829), and model size (6.66 MB to 6.67 MB) across the board show positive
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improvements. This indicates that “Spatial Attention” plays a crucial role in enhancing performance for
both “ResNet-18” and the “Proposed Model.” The results also highlight that “ResNet-18” models are
highly effective and can deliver cutting-edge performance in diagnosing ACL tears. Additionally, the
“Proposed Model” is much more computationally efficient; it is seven times smaller than MRNet,
making it lightweight yet archiving good accuracy.

The calculated training time, illustrated in Fig. 6, can be obtained by computing the average time
needed to process a total of 100 scans, incrementing by 10 as the batch size, and then dividing that total
by the number of scans. ResNet-18 requires 0.0171 seconds, while ResNet-18 with Spatial Attention
takes 0.0191 seconds, the proposed model takes 0.0158 seconds, and the proposed model with Spatial
Attention requires 0.0181 seconds to train on a single scan. Despite the proposed model being
significantly smaller than ResNet-18, we do not see notable speed enhancements compared to ResNet-
18.

Train time(s)

@ ResNet-18 + Spatial Attention @ ResNet-18

@ Proposed Model + Spatial Attention

Proposed Model
0.020

0.0181
0.0171

0.0158
0.015

0.010

0.005

0.000

Fig. 6. Computational Speed

This study explores lightweight model architectures to optimize model size, especially in medical
imaging applications when processing power may be constrained. The results show that larger models,
such as “ResNet-18” and “MRNet+AlexNet,” obtain excellent diagnostic accuracy at the expense of larger
model sizes, which might be a significant disadvantage in contexts with limited resources.

Our “Proposed Model” using ResNet-14 architecture demonstrates that it is possible to balance
model size and diagnostic performance. Its compact size makes it an attractive option for practical
applications, offering a lightweight yet eftective solution for diagnosing ACL tears. The increase in size
when adding “Spatial Attention” further enhances its performance without significantly impacting its
computational efficiency on devices with constrained resources.

The results suggest that “Spatial Attention” is a valuable addition for improving diagnostic accuracy
without substantially increasing model size. This enhancement is particularly beneficial for models like
the “Proposed Model,” which prioritizes computationally efficient devices with constrained resources.
For future work, several aspects of the study have been considered for improvement. The deployment of
the proposed model will be a priority in our future work, allowing it to be applied and tested in real-life
scenarios. The lightweight model operates with a single dataset, which contains 1,370 exams performed
between January 1, 2001, and December 31, 2012, at Stanford University Medical Centre. This dataset
will remain crucial for this study and future endeavors related to ACL tear diagnosis; it cannot possibly
represent all the variations of knee and ACL tear MRI data, not to mention the variance in population
demographics and timeframes. Due to the age of the dataset and the advancement of MRI Technology
over the past decade, a more recent dataset should provide better insight to improve the lightweight

e
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model. We intend to update the proposed model with a newer dataset from other institutions to improve
the proposed model and comprehensively recognize ACL tears.

While our lightweight model shows positive results, there is still room for improvement. A more
robust attention mechanism that incorporates the latest advancements in MRI and ACL diagnostics
could significantly enhance the proposed model. Additional datasets could potentially provide a more
balanced representation of both positive and negative results. Weighted misclassification penalization,
undersampling of negative cases, and oversampling of positive samples are further possibilities. These
adjustments could help the model better handle imbalanced data and improve its performance,
particularly in identifying rare or underrepresented conditions. Despite these advancements, all these
models require expert judgment to interpret model results effectively. Future work should also focus on
enhancing transparency, interpretability, and explainability by utilizing Explainable Artificial Intelligence
(XAI) to increase the trust and confidence of end-users.

5. Conclusion

This study demonstrates the use of ResNet-14 with the newly applied Spatial Attention Mechanism
to develop our lightweight model. This model can diagnose ACL tears with 86.96% accuracy, 79.81%
sensitivity, and 79.82% specificity, having screened 1,684,517 parameters with a small size of 6.67 MB.
The proposed model is seven times smaller than MRNet, one of the earliest studies on a model for ACL
Tear Diagnosis. The findings from the present study emphasize the importance of a thorough
understanding of medical imaging tasks in developing a model that is not only concise and precise but
also computationally efficient.
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