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ABSTRACT

Chest X-ray (CXR) classification tasks often suffer from severe class
imbalance, resulting in biased predictions and suboptimal diagnostic
performance. To address this challenge, we propose an integrated
framework that combines high-fidelity data augmentation using Generative
Adversarial Networks (GANSs), ensemble learning via hard and soft voting,
and multimodal feature fusion. The method begins by partitioning the

majority class into multiple subsets, which are individually balanced
through GAN-generated synthetic images. Deep learning models,
specifically DenseNet201 and EfficientNetV2B3, are trained separately on
each balanced subset. These models are then combined using ensemble
voting to improve robustness. Additionally, features extracted from the
most performant models are fused and used to train traditional classifiers
such as Logistic Regression, Multilayer Perceptron, CatBoost, and
XGBoost. Evaluations on a publicly available CXR dataset demonstrate
consistent improvements across key metrics, including accuracy, precision,
recall, F1-score, AUROC, AUPRC, MCC, and G-mean. This framework

shows superior performance in multiclass scenarios.
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1. Introduction

The advancement of machine learning (ML), and particularly deep learning (DL), has significantly
transformed clinical decision-making by automating diagnostic processes and improving the accuracy
and efficiency of medical assessments. DL models trained on large-scale datasets have been successfully
applied in domains such as cardiology and oncology, facilitating early detection and enabling personalized
healthcare strategies [1]. These models excel at analyzing complex, high-dimensional medical data,
thereby supporting informed and timely clinical decisions [2], [3].

However, a persistent challenge in medical data analysis is class imbalance, as the underrepresentation
of certain disease categories often results in biased model predictions and poor generalizability [4].
Furthermore, obtaining large, high-quality annotated medical datasets is resource-intensive and depends
heavily on expert annotation [5], posing barriers to the development of robust disease classification
systems [6]. Although progress has been made in medical imaging, traditional techniques such as
resampling or basic data augmentation often fail to address imbalance, particularly with high-
dimensional clinical images, effectively. These methods tend to simplify data distributions and generate
unrepresentative samples for minority classes [7]. In contrast, recent advances in GANs have shown
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promise in producing realistic synthetic data that enhances minority class representation and improves
model performance [8], [9]. Yet, many approaches using GANs focus exclusively on data generation
without integrating them with advanced classification strategies such as ensemble learning or multimodal
feature fusion, both of which are essential for improving model robustness and generalizability. To
overcome these limitations, we propose a novel framework that combines GAN-based augmentation
with ensemble voting and improved feature fusion. The dataset is divided into three subsets, where
GANSs generate additional samples for the minority classes. We implement both soft and hard voting
strategies to improve decision robustness and introduce a multimodal feature fusion mechanism that
integrates learned representations from multiple submodels into a unified embedding for final
classification. This approach is evaluated on a CXR dataset including COVID-19, Viral Pneumonia, and
Normal cases. The results reveal substantial improvements in class balance and diagnostic accuracy,
confirming the effectiveness of combining synthetic data generation with ensemble classification and
feature integration. To the best of our knowledge, this is the first study to integrate GAN-based data
augmentation with ensemble feature fusion for multiclass CXR classification. The main contributions
of this work are summarized as follows:

e A new method employing GANs to generate realistic synthetic data for minority classes, eftectively
reducing class imbalance.

e State-of-the-art models (e.g., EfficientNet and DenseNet) for high-quality feature extraction and
classification in imbalanced datasets.

e Integration of multiple submodels in an ensemble framework, leveraging their strengths to improve
performance and robustness.

¢ Outputs from multiple submodels are combined into a unified feature representation, allowing diverse
models to complement each other in medical imaging tasks.

e A comprehensive case study on CXR images demonstrates the effectiveness of the proposed
framework in enhancing diagnostic accuracy across imbalanced classes.

Previous studies have explored multiple strategies to address class imbalance in medical imaging.
Malygina et al. and Qin ez al. [10], [11] leveraged GANS to generate synthetic samples, which improved
accuracy but risked lacking the morphological diversity essential in clinical data, potentially limiting
generalizability. Kothawade et al. [12] proposed a submodular mutual information-based active learning
framework to enhance minority-class representation, although it is annotation-intensive and may
overlook subtle disease progression. Yeung ez al. [13] introduced the Unified Focal Loss to penalize
misclassification of the minority class, showing promise in binary tasks; however, its effectiveness in
complex, noisy multiclass CXR datasets remains uncertain. Fan and Bu [14] adopted transfer learning
using ImageNet-pretrained models for lung disease classification, yet domain mismatch between natural
and medical images may prevent optimal feature learning, especially in diverse clinical environments.
Beyond single-model approaches, ensemble learning has shown strong potential for improving
robustness and accuracy. For instance, Jangam et al. [15] achieved high performance using stacking
ensembles, though such methods are often computationally intensive and less suitable for resource-
constrained environments. Kaleem [16] enhanced multiclass detection through advanced ensemble
architectures, yet interpretability remains limited due to increased complexity. Habib ez al [17]
combined CheXNet and VGG-19 with oversampling for binary classification, showing gains but limited
flexibility. In contrast, our work introduces a dual-strategy framework that fuses GAN-based
augmentation with ensemble voting and feature fusion, aiming to tackle imbalance more
comprehensively while enhancing transparency and modularity. Unlike prior efforts focused on isolated
solutions, our framework is explicitly designed for multiclass scenarios and scalable clinical integration.

2. Method
2.1. Residual Block

Neural network performance is generally proportional to its depth, as deeper architectures tend to
achieve superior feature representation and improved accuracy. However, excessively deep networks often
encounter the challenge of gradient degradation, where performance initially improves but subsequently
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declines due to vanishing or exploding gradients. To mitigate this issue, ResNet [18] introduces residual
blocks, which incorporate identity mappings to facilitate stable feature propagation throughout the
network. A key component of this architecture is the convolutional layer within each residual block,
which plays a crucial role in feature extraction. The mathematical operation governing this convolutional

process is formally defined by Eqs (1) and (2).
¥ =f(#) (1)
7l = Yiem; Xi_g X kygj + b 2

where le represents the output feature map at layer 1, () is the ReL.U activation function, x/_; is
the feature map from the (I-1)th layer, Mj denotes a subset of the input feature map, and k; ;; is the 3
x 3 convolutional kernel matrix at layer 1, applied without a bias term. The convolutional operation is
followed by batch normalization and the ReL.U activation function. The architecture and functionality
of the residual block, specifically its single convolutional layer, are illustrated in Fig. 1(a).
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Fig. 1.Illustration of key network components: (a) Residual Block, and (b) Upsampling Block

2.2. Upsampling Block

The upsampling block is responsible for enhancing the spatial dimensions of the feature map, playing
a crucial role in generating high-resolution output images from low-resolution inputs. It begins with an
UpSampling2D layer, which expands the feature map by replicating rows and columns using a form of
nearest-neighbor interpolation. This is followed by a 3 x 3 convolutional layer, which integrates and
smooths the feature map. The convolved feature map then undergoes batch normalization, which
stabilizes training by normalizing activations. Finally, a ReLLU activation function is applied to introduce
nonlinearity. Nonlinearity is illustrated in this upsampling module of Fig. 1(b).

2.3. Generative Adversarial Networks And Proposed Architecture

GANS, a prominent sub-category of generative models, were first introduced by Goodfellow et al.
[19]. A GAN framework consists of two primary components: a generator and a discriminator (also
referred to as a critic). The generator is trained to synthesize realistic fake images that can deceive the
discriminator, while the discriminator is trained to distinguish between real and generated (fake) images
accurately. This adversarial training continues until an equilibrium is reached, at which point the
generator and the discriminator perform optimally.

The proposed GAN architecture, depicted in Fig. 2, is designed to produce high-resolution, realistic,
and diverse data samples for augmentation. The generator takes a random noise vector of size 128 and
projects it through a dense layer to produce a small 4x4 feature map. This map is progressively upsampled,

!
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first to 8x8, then to 16x16, 32x32, 64x64, and finally 128x128. At each stage, convolutional layers refine
the features, followed by batch normalization and ReLU activation, with the number of channels
gradually decreasing from 256 down to 16 to ensure a smoother, higher-quality output. Ultimately, two
ResNet blocks are applied to refine the image's structure and texture further, aided by skip connections
that help stabilize the training process.

Generator

Critie

Input Noise [128-D]
axEx128
¥
16K16364
)
3zx32x32
5
GAXGAXLE
5
128x128x8
M
128x128x8
¥

Upsample Block

Residual Block

Fig. 2. Proposed generator and critic architecture for generating CXR images

The final output layer produces a single-channel 128x128 image. In contrast, the critic performs a
downsampling operation to evaluate the authenticity of images. Beginning with an input image of size
128x128, it applies successive convolutional layers that progressively reduce the spatial resolution to
64x64, 32x32, 16x16, and finally, 8x8, while increasing the depth of the feature maps from 64 to 1024.
The flattened output is passed through a dense layer to yield a scalar that approximates the Wasserstein
distance, which is used to assess the quality of generated images. Minimizing the distance between the
real distribution and the generated distribution, as formulated in [20], can be unstable. To stabilize
training, the WGAN-GP loss [21] is adopted. Let G be the generator and D the critic; if the input
image is x, then the output of D on x is D(x). The generator G receives a noise vector z ~ pz (e.g., from
a standard normal or uniform distribution) and outputs a generated image xN = G(z). Real images follow
the distribution pr. Instead of the Jensen-Shannon divergence, WGAN-GP relies on the Wasserstein-1
distance, which is more robust for training when pr (real distribution) and pg ( generated distribution)
lie on low-dimensional manifolds. The WGAN-GP framework introduces a gradient penalty to enforce
soft Lipschitz constraints on D. Specifically, the generator and critic losses are defined by Egs. (3) and

(4).
L Cey) = min (=Exy-p, [DG)1) 3)
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Lp (65 X3 %) = min (B [DGw)] = B, [DGO] + X By, |19, D012 = 1)°]) “

where A > 0 is a balancing coefficient, and x, is a linear interpolation between the real image x and
Xy is the generated image.

Xo = ax + (1 —a)xy, a~ U[0,1] 5)

2.4. Deep Learning Models

We employed two pre-trained deep learning models: DenseNet201 and EfficientNetV2B3.
DenseNet201, a densely connected convolutional network, enhances feature propagation and reuse by
creating direct connections between each layer and all preceding layers within dense blocks, thereby
improving gradient flow and parameter efficiency [22]. EfficientNetV2B3, a scalable model, applies a
compound scaling method to balance depth, width, and resolution, and integrates fused MBConv layers
to boost training speed and computational efficiency [23]. Both models effectively extract hierarchical
features, capturing low-level patterns such as edges and textures while progressively learning high-level
semantic representations capabilities essential for tackling the complexities of medical imaging tasks
[24]. To adapt these models to our task, we removed their original classification layers and appended
custom task-specific layers. These included a Global Average Pooling (GAP) layer for dimensionality
reduction, a Dropout layer to reduce overfitting [25], a Dense layer with ReLLU activation for feature
transformation, and a final Dense layer with softmax activation for classification. We trained the modified
architecture end-to-end on our dataset. We adopted a fine-tuning strategy by initializing training with
a low learning rate, which allowed the pre-trained weights to adapt gradually while optimizing the newly

added layers

2.5. Machine Learning Models

We integrated machine learning (ML) and deep learning (DL) approaches to leverage their
complementary strengths in medical image analysis. Traditional ML algorithms such as Logistic
Regression (LR), Multilayer Perceptron (MLP), Categorical Boosting (CatBoost), and Extreme
Gradient Boosting (XGBoost) performed effectively on structured datasets, particularly when provided
with high-quality feature representations. Below, we briefly describe the methods we adopted in this
study, including those used for comparative analysis.

e LR: Logistic Regression models the conditional probability for a class k given an input vector x €
R% using the softmax function:

exp(wp*+by,)

6
Tx+bj) ( )

P =k =
(y | x) Zf:l exp(w]

where wk € R% and bk € R are the weight vector and bias for class k, and K is the number of
classes. DL features replace the input x with a rich, high-dimensional representation ¢(x)
extracted from a pre-trained network.

e MLP: An MLP is a feed-forward neural network that models complex relationships by composing
multiple nonlinear transformations. For a network with L layers, the transformation in layer [ is

given by.
a® = 0(W(l)a(l—l) + b(l)), l=12,..,L Q)

where a(® = x (the input), WO s the weight matrix, b® is the bias vector, and ¢ is a nonlinear
activation function (e.g., ReLU, Sigmoid, or Tanh).

e CatBoost: CatBoost is a gradient-boosted decision tree (GBDT) algorithm optimized for handling
categorical features. Its objective function combines a loss term with a regularization term.

L=3 1y f(x)) + () ®)
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where € is a loss function (e.g., cross-entropy or mean squared error), f(xi) is the prediction, for
instance, i, and Q(f) penalizes model complexity. A distinctive feature of CatBoost is its handling
of categorical data via target-based statistics, which transform categorical variables ¢ into numerical

features:
< _ ZjeroYjta
€= 17¢(c)|+b ©)

where (7(c)) is the set of indices corresponding to category ¢, a, and b are smoothing parameters.

Additionally, CatBoost employs an ordered boosting algorithm to minimize prediction shift by
ensuring that the model only utilizes past data to predict future data, thereby effectively mitigating
overfitting.

e XGBoost: XGBoost is another gradient-boosting framework that sequentially builds an ensemble
of decision trees [26]—[28]. The model's objective is formulated as:

L =% 10u 9 + Xk Qi) (10)

where (7, = YX_, fi. (x;)) is the ensemble prediction, fk represents an individual tree, and (Q(f;) =
yT + %MWF) is a regularization term that penalizes the complexity of the tree (with T being the

number of leaves and o and A being regularization hyperparameters). In multiclass settings, the softmax
function is employed for probability estimates, and the gradient and Hessian for each tree are computed
to perform a second-order Taylor expansion of the loss function, enabling efficient optimization:

£~ T [gif () + 5 hif ()] + 0() (11)

where (g;) and (h;) are the first and second derivatives of the loss with respect to the prediction
(). XGBoost's ability to handle class imbalance and its support for parallel tree construction make it a
robust choice in various complex scenarios.

2.6. Ensemble Voting

Ensemble learning is a robust ML, methodology that enhances predictive accuracy by integrating
multiple models, commonly referred to as base classifiers. The fundamental idea is to leverage the
collective decision-making of these models to produce a more reliable and accurate outcome than any
individual model could achieve. Two prominent approaches are used: hard voting and soft voting. The
first method, hard voting, determines the final class label (9) based on the class (k) that receives the
maximum number of votes among all models. Mathematically, this can be expressed as:

-~

y = argmax NiL, [, = k) (12)

where (I(¥, = k)) is an indicator function that equals 1 if the (i ) —th model predicts the class ( k),
and 0 otherwise. Here, ( N ) represents the total number of models in the ensemble. Hard voting relies
on plurality, selecting the class that garners the most support among the base classifiers. The second
method, soft voting, utilizes the predicted probabilities provided by the base classifiers. Instead of
considering only the most frequently predicted class, soft voting aggregates the probability distributions
of all models, allowing more confident predictions to have greater influence. The final class label (¥) is
derived by summing the predicted probabilities (P; ) for each class (k) across all (N ) models and
selecting the class with the highest aggregated probability:

9 = argmax T, Py (13)

where (P; i) denotes the predicted probability of class (k) by the (i) —th model, and ( N) represents

the total number of models in the ensemble.
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3. Experiment And Proposed Pipelines

All experiments were executed in Python. Image preprocessing tasks, including resizing and dataset
partitioning, were executed locally on a Windows 10 system featuring an Intel Core i7-12700H CPU
(4.7 GHz maximum), 32 GB of DDR5 RAM, and an NVIDIA RTX A2000 GPU (8 GB VRAM).
Compute-intensive phases, encompassing GAN training and subsequent model assessment, were
executed in Kaggle's cloud computing platform, which offers an NVIDIA Tesla P100 GPU via
TensorFlow and Keras. Fig. 3 provides a comprehensive overview of the implemented methodology,
encompassing data preprocessing, class balancing, model training, and feature fusion. The pipeline starts
with raw CXR image acquisition and proceeds through five key phases: (1) dataset preprocessing, (2)
data division and GAN balancing, (3) training the classifier models, (4) ensemble learning (Approach
one), and (5) multimodal feature fusion (Approach two).

Dataset Preparation
(XChest: Normal=10190,
COVID=34080,

Viral Pneumonia=1336)

Train Set (80%) ‘

I

Split Train: 80% Train,
20% Validation

'/éllidat ion N‘

. o n Sub-dataset Preparation
‘ Validation Set (20% of Train) ‘ (Normal split, COVID & Viral Pneumonia intact)

‘r///,/giﬁzgt 1 Subset 3 Subset 2

| GAN Augmentation GAN Augmentation ‘ GAN Augmentation

Test Set (20%) |

Subset 1 Subset 3 Subset 2
Train DL Model Train DL Model Train DL Model
Subset 1 Subset 3 Subset 2

Extract Features#xtract Feiﬁgisi//é:edict xtract Features

pproach 1: ifature Fusion

Predict

: Ensgmble Vi

Ensemble Voting
{Aggregate Predictions)

I :

Evaluate on Test Set

Report Results
(Ensemble)

Feature Extraction & Fusion

| Train ML Classifier

A J
| Evaluate on Test Set

Report Results
(Fusion)

Fig. 3. Overview of the proposed methodology for imbalanced CXR classification. The pipeline begins with
GAN-based data balancing, followed by two classification approaches incorporating multimodal feature
fusion and ensemble learning

3.1. Dataset Description And Preprocessing

We  utilized a  publicly  available  dataset  from  the  Kaggle  platform
(https://www.kaggle.com/datasets/tawsifurrahman/covid19-radiography-database), which consists of
CXR images categorized into three classes: COVID-19, Normal, and Viral Pneumonia. The original
dataset contained 3,616 COVID-19 images, 10,192 Normal images, and 1,345 Viral Pneumonia images,
offering both diversity and scale. However, we observed a notable class imbalance, with a significantly
higher number of Normal cases compared to the other two categories. To reduce computational
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overhead, we resized the original CXR images (299 x 299 pixels) to 128 x 128 during data preprocessing.
We then used the ImageHash library to detect and remove duplicate images, thereby improving data
quality and minimizing redundancy. After deduplication, the final class distribution comprised 3,400
COVID-19 images, 10,190 Normal images, and 1,337 Viral Pneumonia images. We split the dataset into
training (80%) and testing (20%) subsets. We further divided the training set into training and validation
splits using an 80:20 ratio.

3.2. Data Division And GAN Balancing

To address class imbalance in the training dataset, we randomly divided the majority class (Normal)
into three partitions. If a subset lacked samples for certain classes, we supplemented it with additional
samples from the other partitions to match the number of COVID-19 samples (2,176). The Viral
Pneumonia and COVID-19 classes were kept unchanged across all subsets to maintain consistency. This
approach resulted in more balanced training subsets for model development. To further enhance balance,
we used the GAN architecture from Section 3.3 to generate Viral Pneumonia images, ensuring equal
representation of all classes in each subset. We optimized the parameters for the WGAN-GP loss
functions in Eq. (3) and (4) through iterative training and parameter selection. During GAN training,
we drew the generator's input from a standard normal distribution to produce grayscale images of size
128 x 128. We scaled both real and generated samples to the range of [-1, 1] before passing them to the
discriminator. We used a Leaky-ReLLU activation function with a slope of 0.2 to alleviate potential "dying
ReLLU" issues. We initialized the weights using a normal distribution and applied normalization to ensure
stable training. We applied the Adam optimizer [26], with B1 = 0.0, 82 = 0.99, and a gradient penalty
coefficient A = 10, consistent with established best practices [20]. We used a slower learning rate of
0.0002 to ensure gradual and stable convergence throughout the training process. We trained the model
for 1000 epochs with a batch size of 64, providing sufficient iterations for the GAN to converge effectively
without overfitting. After training, we employed the generator to synthesize Viral Pneumonia images,
which we then used to augment and balance each subdataset. Fig. 4 shows the distribution of the original
training dataset after division and subsequent GAN-based balancing.

<’,I;»A. Original Dataset B. After Data Division C. After GAN Balancing
@
I Normal I Normal
6000 = COVID-19 . COVID-19
Bl Viral Pneumonia B Viral Pneumonia
n 5000
g
3
m 4000
7]
L
°
g 3000 © A0 A0 © A6 40 © .6 40
o ATATA W) ASATA
£ ey ey ngnding
=
2 2000
1000
Normal COVID-19 Viral Pneumonia Subset 1 Subset 2 Subset 3 Subset 1 Subset 2 Subset 3

Dataset

Fig. 4. Progression of data balancing strategies Left: Original dataset with an imbalanced class distribution
(Normal: 6521, COVID-19: 2176, Viral Pneumonia: 855). Middle: After data division, the majority class
(Normal) is split into three subsets, each containing 2176 samples, while COVID-19 and Viral Pneumonia
remain unchanged (2176 and 855, respectively). Right: After GAN balancing, the Viral Pneumonia class is
augmented to 2176 samples per subdataset

3.3. Training And Classifier Models

We fine-tuned two CNN architectures: D_Net (DenseNet201) and E_Net (EfficientNetV2B3), for
60 epochs using a batch size of 64, following the methodology described in Section 3.4. We initialized
the learning rate at 1 x 10-3 and progressively decreased it at epochs 20, 30, and 40 by factors of 0.1, 0.01,
and 0.001, respectively. After epoch 50, we stabilized the learning rate at 0.5 x 10-3. To dynamically adjust
the learning rate, we used a ReduceLROnPlateau callback, which applied a 31.6% reduction (a factor of
[ —
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0.1) after five epochs without improvement. No cooldown period was used, and we set the minimum
learning rate to 0.5x10-6. We employed the Adam optimizer throughout the training process. We first
trained the models on the original (imbalanced) dataset to obtain the baseline models: DNet_Orig and
ENet_Orig. Then, we trained on three split subsets: Non-GAN-balanced subsets (DNet_S1, DNet_S2,
DNet_S3 for D_Net and ENet_S1, ENet_S2, ENet_S3 for E_Net) and GAN-balanced subsets
(DNet_GS1, DNet_GS2, DNet_GS3 for D_Net and ENet_GS1, ENet_GS2, ENet_GS3 for E_Net).

3.3.1. Ensemble Voting (Approach One)

After training the classifier models, we utilized ensemble voting on the three sub-trained models to
improve overall performance, as detailed in Section 3.6. We used Eq. (12) for Soft Voting (SV) and Eq.
(13) for Hard Voting (HV). Ensemble voting was applied to two types of subsets: GSV and GHV denote
ensembles of sub-models trained on GAN-based data augmentation, where DNet_GSV and DNet_GHV
refer to the DNet model, and ENet_GSV and ENet_GHYV refer to the E_Net model. For models trained
on non-GAN subsets, which utilize the original imbalanced data, the ensembles include DNet_SV and
DNet_HYV for D_Net, as well as ENet_SV and ENet_HYV for E_Net.

3.3.2. Training On Multimodal Feature Fusion (Approach Two)

Feature-level fusion was explored by extracting vectors from the global pooling layers of trained
submodels (both GAN-balanced and non-GAN). These vectors, which capture salient image
representations, were concatenated into a single feature vector:

Ffused=F1®F2®F3 (14)

where F;, F,, and F3 represent feature vectors obtained from three submodels, and @ denotes
concatenation. A final standardization step ensured the uniform contribution of all features before
classification.

Fscatea = @ (15)
We applied feature fusion to the optimal sub-dataset for this method, which we selected based on
validation accuracy. The extracted features were concatenated and standardized using Eqs (14) and (15).
These processed features were then used to train four ML classifiers, implemented with the scikit-learn
library using default parameters, except for specific configurations we trained LR for up to 1000 iterations
to ensure convergence; we configured XGBoost for multiclass classification with objective="multi:
softmax" and num_class=3; we defined the MLP as a neural network with two hidden layers (128 and
64 neurons), ReLU activation, and trained it for 500 iterations; and we trained CatBoost with 500
boosting iterations, a learning rate of 0.1, and a maximum tree depth of 6. We duplicated the entire
pipeline across DNet, ENet, and their hybrid variants: DNet_SF, ENet_SF, DNet_GSF, and ENet_GSF,
where SF denotes submodel feature fusion based on submodels trained on the original subdataset, and
GSF represents feature fusion from submodels trained on the GAN-augmented subdataset.

4, Results and Discussion

We evaluated the quality of GAN-generated images using the Fréchet Inception Distance (FID) [29]
and the Multi-Scale Structural Similarity Index (MS-SSIM) [30]. FID measures the distance between
the feature distributions of real and synthetic images, where lower values indicate higher fidelity. MS-
SSIM assesses perceptual similarity, with values closer to 1 reflecting greater visual resemblance. As
shown in Table 1, the FID and MS-SSIM scores remained similar across the three subdatasets, indicating
that the GAN consistently generated high-quality and perceptually realistic CXR images. Fig. 5
illustrates this comparison, showing real images in the top row and corresponding synthetic samples in
the bottom row, which highlight the realism and diversity of the generated images. After augmentation,
we balanced each subdataset with 2,176 samples per class (Normal, COVID-19, Viral Pneumonia), while
keeping the validation and testing sets unchanged.
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(a) Real (b) Real (c) Real

(d) Generated (e) Generated (f) Generated

Fig. 5.Sample real (top row) and generated (bottom row) CXR images of Viral pneumonia

Table 1. FID Scores for Generated Images Across Subdatasets

Subdataset Subdataset 1 Subdataset 2 Subdataset 3
FID Score 72.588 72.757 72.348
MS SSIM 0.546 0.542 0.548

4.1. Evaluation metrics

Although accuracy is commonly used to evaluate classifier performance, it can overemphasize majority
classes in imbalanced datasets and thus serves as an unreliable standalone metric [31], [32]. To establish
a more robust evaluation framework, particularly for imbalanced classification tasks, we consider multiple
complementary metrics:

Accuracy (Acc) = % (16)
- TP

Precision (Prec) = P a7
. TP

Sensitivity (Sens) = e (18)
e TN

Specificity (Spec) = ——— (19)

2-Prec-Sens

F1— Score (F1) = (20)

Prec+Sens

G — Mean = ,/Spec X Sens (21)

(TPXTN)—(FPXFN)
J(TP+FP)(TP+FN)(TN+FP)(TN+FN)

Mcc = 22)

where TP (true positives), TN (true negatives), FP (false positives), and FN (false negatives) are
derived from the confusion matrix, in addition to threshold-dependent metrics such as accuracy and F1

score, we emﬁloz the Matthews Correlation Coefficient (MCC), which considers all four elements of
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the confusion matrix and quantifies the correlation between predicted and actual labels. To further
evaluate classifier behavior across varying thresholds, we analyze curve-based metrics. The Receiver
Operating Characteristic (ROC) curve, evaluated by the Area Under the Curve (AUC), illustrates the
trade-off between the true positive rate (TPR) and the false positive rate (FPR). However, recent studies
suggest that AUC may overestimate performance in highly imbalanced datasets [33], [34]. Therefore,
we also emphasize the Area Under the Precision-Recall Curve (AUPRC), which is more informative for
imbalanced classification tasks [35]. By directly assessing the trade-off between precision and recall,
AUPRC ofters a more reliable estimate of a model's ability to identify minority-class instances while
minimizing false positives correctly [35].

4.2. Classification Results Based On Balanced And Imbalanced Subdatasets

This section evaluates the effectiveness of GAN-based synthetic data balancing at the subsataset level
for DNet and ENet architectures. Table 2 and Table 3 show that this approach significantly improves
classifier performance by harmonizing the precision-sensitivity trade-off and increasing sensitivity for
minority classes. The observed gains in G-mean, F1 score, MCC, and AUROC are statistically significant
(paired t-test, p < 0.05), confirming the method’s effectiveness. In DNet models, GAN balancing
increased accuracy from 0.978 to 0.984 and F1 score from 0.972 to 0.978 (+0.6%) in DNet_B1, and
improved precision by 1.6% (0.964 to 0.980) in DNet_B2. All GAN-augmented DNet variants reached
an AUROC of 0.999, with DNet_B2 and DNet_B3 achieving AUPRC of 0.997. MCC rose to 0.966.

Table 2. Classification results of DNet-based models on subdatasets with and without balancing
Model Acc Prec Sens F1 Spec G-Mean MCC AUROC AUPRC

Without ~ DNet_S1  0.978 0967 0977 0.972 0.987 0.982 0.954 0.998 0.995
GAN DNet S2 0973 0964 0973 0968 0.984 0.979 0.945 0.998 0.996
Balancing DNet S3  0.979 0.967 0.978 0.972 0.987 0.982 0.955 0.998 0.996
With DNet GSI 0984 0975 0.982 0.978 0.990 0.986 0.966 0.998 0.993
GAN' DNet_GS2 0983 0980 0976 0978 0.988 0.982 0.965 0.999 0.997
Balancing DNet_ GS3 0982 0975 0.980 0.977 0.989 0.984 0.963 0.999 0.997

ENet models showed even stronger improvements. ENet_GS3 increased sensitivity by 1.6% (0.965
to 0.981), specificity by 0.2% (0.983 to 0.985), and reached the highest accuracy (0.985) and F1-Score
(0.979, +0.8%). All augmented ENet variants reached AUROC of 0.999, with AUPRC rising to 0.997
in ENet_GS2. MCC reached 0.968.

Table 3. Classification results of ENet-based models on subdatasets with and without balancing

Model Acc Prec Sens F1 Spec G-Mean MCC AUROC AUPRC

Without ~ ENet_SI  0.975 0967 0.966 0.966 0.980 0.973 0.943 0.997 0.988
GAI\_I ENet S2  0.976 0.955 0.980 0.967 0.987 0.983 0.950 0.998 0.995
Balancing ENet S3 0980 0.978 0.965 0.971 0.983 0.974 0.957 0.997 0.994
With ENet_ GS1  0.983 0.978 0975 0976 0.980 0.980 0.963 0.999 0.995
GAN ENet GS2 0983 0.981 0973 0977 0.980 0.980 0.964 0.999 0.997
Balancing ENet_ GS3 0985 0978 0.981 0.979 0.985 0.985 0.968 0.999 0.997

To compare GAN-based augmentation with traditional methods, we evaluated DNet on the
imbalanced subdataset 2 (DNet_S2), comparing GAN-augmented (DNet_GS2) against SMOTE
(Synthetic Minority Over-sampling Technique), ADASYN (Adaptive Synthetic Sampling), and
geometric oversampling. As depicted in Fig. 6, GAN-augmented DNet_GS2 achieved the highest
AUPRC (0.997), outperforming both the baseline (AUPRC 0.996) and other oversampling methods
(SMOTE/Geometric: 0.996/0.994 AUPRC). These findings highlight GAN's superiority in generating
synthetic data for class balancing, offering better precision-sensitivity trade-offs than conventional

oversampling techniques.
|
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Fig. 6. Performance comparison of GAN with different oversampling methods

4.3. Ablation Study Of Ensemble Voting Strategies With Balanced And Imbalanced Subsets

To investigate the contributions of ensemble voting strategies and GAN-based data augmentation
the DNet model achieved an F1 score of 0.972 and a sensitivity of 0.978. At the same time, ENet
obtained 0.973 and 0.970, respectively, reflecting performance limitations induced by skewed class
distributions (Table 4 and Table 5, "Original" rows). SV consistently outperformed HV in both
architectures. For DNet (Table 4), SV elevated F1-Score by +0.3%, G-Mean by +0.3%, and MCC by
+0.4% relative to HV.

Table 4. Classification results for DNet using the original imbalanced dataset, an ensemble of submodels
without GAN balancing, and an ensemble with GAN balancing

Model Acc Prec Sens F1 Spec G-Mean MCC AUROC AUPRC

Original Enet 0979 0976 0.970 0.973 0.983 0.977 0.955 0.997 0.992
Ensemble voting NY% 0.986 0.979 0.983 0.981 0.990 0.987 0.970 0.999 0.996
HV 0.983 0.975 0.978 0.977 0.988 0.983 0.964 0.983 0.980

GAN+ Ensemble GSV 0990 0.985 0.987 0.986 0.994 0.990 0.979 0.999 0.998
voting GHV  0.990 0985 0.985 0.985 0.993 0.989 0.978 0.989 0.987

For ENet (Table 5), SV enhanced F1 score by +0.4%, sensitivity by +0.5%, and AUPRC by +1.6%.
These gains are attributed to SV's confidence-weighted aggregation, which refines boundary decisions,
particularly critical under class imbalance. Integrating GAN-generated samples further improved
performance for both voting strategies. In DNet (Table 4), GSV increased precision by +2.0% (from
0.967 to 0.987), MCC by +2.1% (from 0.955 to 0.976), and achieved an AUPRC of 0.998. In ENet
(Table 5), GSV delivered a +0.9% precision gain, +1.7% sensitivity improvement, and +1.1% higher
AUPRC compared to GHV. Although both GSV and GHV surpassed non-GAN ensembles, GSV

consistently demonstrated superior performance in key metrics, including MCC and F1-Score.

Table 5. Classification results for ENet using the original imbalanced dataset, an ensemble of submodels
without GAN balancing, and an ensemble with GAN balancing

Model Acc Prec Sens F1 Spec G-Mean MCC AUROC AUPRC

Original Dnet  0.979  0.967 0.978 0.972 0.986 0.982 0.955 0.998 0.995
Ensemble voting Sv 0.982 0973 0.983 0.978 0.989 0.986 0.963 0.999 0.998
HV 0.981 0.972 0.978 0.975 0.988 0.983 0.959 0.983 0.979

GAN+ Ensemble GSV 0989 0.987 0.983 0.985 0.991 0.987 0.976 0.999 0.998
voting GHV  0.988 0.984 0.983 0.984 0.991 0.987 0.975 0.993 0.993

4.4. Ablation Study Of Feature Fusion And Machine Learning Classifiers On Balanced And
Imbalanced Subsets

Integrating GAN-augmented multimodal feature fusion resulted in significant improvements in
classification performance for both DNet and ENet architectures (Table 6 and Table 7). These findings
highlight the synergy between GAN-driven minority-class augmentation and feature fusion, which
jointly address class imbalance and enhance the representation of discriminative features. For DNet, the
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baseline DNet_Orig demonstrated strong accuracy (0.978-0.980), but revealed notable gaps between
sensitivity (0.967-0.976) and specificity (0.984-0.986), suggesting room for improvement in class
separation. Multimodal feature fusion without GAN balancing (DNet_SF) yielded small gains in F1-
Score (e.g., from 0.974 to 0.983 with MLP) and MCC (from 0.958 to 0.973 with MLP). Sill, it
preserved a statistically significant sensitivity-specificity imbalance (p < 0.05). In contrast, the GAN-
augmented DNet_GSF model markedly narrowed this gap. For XGBoost, specificity increased from
0.984 to 0.994 (+1.0%), and sensitivity rose from 0.969 to 0.991 (+2.2%), thereby significantly narrowing
the sensitivity-specificity gap. All DNet_GSF classifiers also achieved near-perfect AUROC values of
0.999, and AUPRC reached 0.998 for LR, XGBoost, and CatBoost, indicating clear improvements over
DNet_Orig.

Table 6. Classification results of models using DNet feature extraction from the original dataset (DNet_Orig)
(single model) versus feature fusion from submodels, both without (DNet_SF) and with GAN balancing
(DNet_GSF), evaluated across various classifiers (LR, XGBoost, MLP, CatBoost).

Model Acc Prec  Sens F1 Spe G-Mean MCC AUROC AUPRC

Original LR 0.978 0.973 0.967 0.970 0.984 0.975 0.954 0.998 0.994
DNet_Orig  XGBoost  0.978 0.973 0.969 0.971 0.984 0.976 0.954 0.998 0.994
MLP 0.980 0.972 0.976 0.974 0.986 0.981 0.958 0.996 0.992
CatBoost  0.980 0.974 0.972 0.973 0.985 0.979 0.957 0.998 0.995
submodels LR 0.984 0.984 0.973 0.981 0.986 0.979 0.967 0.999 0.997
feature XGBoost  0.986 0.986 0.978 0.983 0.988 0.983 0.971 0.999 0.996
fusion MLP 0.986 0.984 0.979 0.981 0.989 0.984 0.973 0.998 0.995
DNet_SF  CatBoost  0.987 0.984 0.978 0.981 0.989 0.984 0.970 0.999 0.997
GAN+ LR 0.991 0.987 0.985 0.986 0.993 0.989 0.980 0.999 0.998
submodels  XGBoost  0.992 0.988 0.991 0.989 0.994 0.993 0.983 0.999 0.998
feature MLP 0.992 0.989 0.988 0.989 0.994 0.991 0.983 0.999 0.997
fusion CatBoost  0.991 0.987 0.989 0.988 0.994 0.991 0.982 0.999 0.998
DNet_GSF

Similarly, the baseline ENet_Orig performed slightly worse than DNet_Orig, with sensitivity (0.959
to 0.965) and MCC (0.945 to 0.952) values lagging behind. Feature fusion without GAN balancing
(ENet_SF) improved certain metrics, such as XGBoost sensitivity (from 0.959 to 0.980, a 2.1% increase)
and MCC (from 0.945 to 0.975). However, it still exhibited discrepancies in specificity and sensitivity.
By contrast, the ENet_GSF approach nearly aligned sensitivity (0.986-0.987) and specificity (0.993—
0.994). For MLP specifically, specificity increased from 0.982 to 0.994 (+1.2%) and sensitivity from
0.965 to 0.987 (+2.2%), substantially reducing the sensitivity-specificity gap. As with DNet_GSF, all
ENet_GSF classifiers attained MCC values reaching 0.983, AUROC values of 0.999, and an AUPRC of
0.998, confirming their robustness and improved balanced classification performance.

Table 7. Classification results of models using ENet feature extraction from the original dataset (ENet_Orig)
(single model) versus feature fusion from submodels, both without (ENet_SF) and with GAN balancing
(ENet_GSF), evaluated across various classifiers (LR, XGBoost, MLP, CatBoost)

Model Acc  Prec  Sens F1 Spe G-Mean MCC AUROC AUPRC

Original LR 0.977 0.978 0.965 0.971 0.982 0.973 0.952 0.997 0.992
DNet_Orig  XGBoost  0.974 0.971 0.959 0.965 0.980 0.970 0.945 0.995 0.989
MLP 0.976 0.969 0.965 0.967 0.982 0.973 0.948 0.994 0.987
CatBoost  0.976 0.976 0.964 0.970 0.981 0.972 0.950 0.997 0.992
submodels LR 0.987 0.985 0.978 0.981 0.989 0.984 0.972 0.999 0.997
feature XGBoost  0.988 0.986 0.980 0.983 0.991 0.986 0.975 0.999 0.997
fusion MLP 0.986 0.984 0.978 0.981 0.989 0.984 0.971 0.998 0.996
DNet_ SF  CatBoost  0.987 0.984 0.978 0.981 0.989 0.984 0.971 0.999 0.995
GAN+ LR 0.991 0.987 0.987 0.987 0.993 0.990 0.980 0.999 0.998
submodels  XGBoost  0.991 0.989 0.986 0.987 0.993 0.990 0.982 0.999 0.997
feature MLP 0992 0.990 0987 0989  0.994 0.991 0.983 0.999 0.998
fusion CatBoost  0.990 0.987 0.987 0.987 0.993 0.990 0.980 0.999 0.998
DNet_GSF
|
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4.5. Comparison With State-Of-The-Art Methods

Fig. 7 comprehensively compares the proposed method with several state-of-the-art approaches on
a multiclass CXR dataset that encompasses COVID-19, Viral pneumonia, and Normal classes. Win ez
al. [36] employ an ensemble strategy combining multiple high-performing CNNs through majority
voting, effectively capturing complementary feature representations to enhance decision robustness.
Verma et al. [37] integrate class-weighted loss functions within a VGG16 backbone to mitigate bias
toward overrepresented classes. Chamseddine et al. [38] apply SMOTE (Synthetic Minority Over-
sampling Technique) in conjunction with DenseNet201, thereby augmenting minority class samples to
enhance classifier sensitivity. Mohan et al. [39] propose a custom CNN architecture enhanced through
data augmentation pipelines, achieving better generalization under skewed class distributions. Expanding
beyond traditional CNN architectures, Nahiduzzaman ez al. [40] introduce a hybrid pipeline that
leverages a lightweight CNN for initial feature extraction, the Pearson Correlation Coefficient (PCC) for
dimensionality reduction, and the Extreme Learning Machine (ELM) for rapid, low-complexity
classification. This approach demonstrates that simplicity and efficiency can yield competitive
performance. In contrast, Wang et al. [41] take a model-free approach, proposing a semantic-powered
few-shot learning framework that aligns radiology report semantics with image features using a Report
Image Explanation Cell (RIEC). Their method, further enhanced by a multi-task collaborative diagnosis
strategy (MCDS), not only performs well with minimal annotated data but also provides strong
interpretability, though it relies heavily on the availability and quality of radiology reports.As shown in
Fig. 7, our approach demonstrates superior Accuracy, F1-score, and AUC [36]-[41]

Authors

Fig. 7. Comparison of state-of-the-art methods with our proposed approach on imbalanced multiclass CXR
data

4.6. Deployment Considerations and Explainable Al

To support interpretability and foster clinical trust, we employed Gradient-weighted Class Activation
Mapping (Grad-CAM) to visualize the salient regions within CXR images most strongly influencing the
CNN model's predictions. These class-discriminative heatmaps highlight areas contributing to positive
classifications for COVID-19 and viral pneumonia, as illustrated in Fig. 8. While Grad-CAM
visualizations offer valuable preliminary insights into potential disease-specific biomarkers, their clinical
validity remains contingent upon expert annotation, which is currently limited. Nonetheless, these
visualizations serve as a bridge between AI model reasoning and clinical interpretability, potentially
guiding future radiological and pathological investigations. We tested our models on the Kaggle platform
equipped with an NVIDIA Tesla P100 GPU (16 GB VRAM). Using a batch of five images, the ensemble
model achieved an average inference time of 34.32 seconds, while the multimodal fusion model recorded
0.0021 seconds. These values reflect the actual performance of our system under the specified GPU
environment. From a theoretical and future-oriented perspective, the system we designed is intended to
support integration into clinical environments through a modular architecture that could eventually

adhere to healthcare interoperability standards such as HL7 and FHIR. This includes potential
e —
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interaction with hospital information systems via secure APIs, automated report generation, and
integration with Electronic Health Records (EHRs). Furthermore, the models could be adapted for
deployment on mobile devices or edge computing platforms, enabling real-time point-of-care
diagnostics in diverse clinical settings.

@ (b) © @ (© ®
) (b) ® ) (k) )

(g

Fig. 8. Grad-CAM-based localization of disease-relevant regions using DenseNet201 activations for correctly
classified cases. The first row (a—f) displays CXR from the COVID-19 class, while the second row (g-1)
presents cases of viral pneumonia. Each pair includes the original image (left) and the Grad-CAM overlay
(right), highlighting regions that contributed most to the model's decision. The activated areas correspond
to radiological features such as bilateral opacities and localized infiltrates, offering insight into how
DenseNet201 distinguishes between the two conditions based on deep feature representations

4.7. Discussion

This study proposes a comprehensive framework to address class imbalance in CXR classification,
integrating GAN-based augmentation, ensemble voting, and multimodal feature fusion. Our approach
demonstrated significant improvements in classification performance and generalizability. Specifically,
soft voting outperformed hard voting by effectively leveraging classifier confidence, while feature fusion
using multiple submodels enhanced interclass separability and mitigated overfitting. These results build
upon prior research advocating for synthetic oversampling in imbalanced medical datasets. For example,
Abbas et al. [42] reported performance gains using synthetic COVID-19 CXRs in binary classification
tasks, though their scope was limited. Our work extends this to multiclass settings and incorporates
ensemble learning and feature integration, aligning with previous research that emphasizes multidomain
feature integration for robust classification in imbalanced datasets [43], [44].

Nonetheless, limitations persist. The reliance on GAN-generated samples raises concerns regarding
the authenticity and variability of synthetic pathologies. These samples may not capture subtle or rare
morphological features, which could potentially impair robustness in diverse clinical environments.
Moreover, the evaluation was limited to a single publicly available dataset, which restricted
generalizability and increased the risk of dataset-specific overfitting. Ethical considerations must also be
acknowledged. Although synthetic data generation offers privacy advantages, improper validation may
introduce bias or undermine clinician trust. Transparency regarding data provenance and responsible use
guidelines will be critical moving forward. To aid model interpretability, we employed Grad-CAM to
visualize class-discriminative regions; however, in the absence of annotated biomarkers, these
visualizations could not be clinically validated. Future studies should incorporate expert radiologist review
to assess whether the model's attention aligns with established diagnostic markers. Beyond algorithmic
performance, the clinical utility of such a framework merits further exploration. In high-volume or
resource-limited settings, automated triage using Al models can reduce diagnostic delays and optimize
referral workflows, particularly for conditions such as COVID-19 or atypical pneumonias. Moreover,
automation may alleviate radiologists' workload and reduce operational costs, supporting scalable and

equitable healthcare delivery. A further limitation is the lack of expert validation for model predictions.
L e—
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While quantitative metrics such as MCC and F1-score provide useful benchmarks, they are insufficient
for assessing clinical reliability. Radiologists did not review our framework, and no inter-reader or intra-
reader agreement was measured. Addressing this gap will be essential for clinical adoption. Future
research will focus on external validation using multi-institutional and prospective datasets to evaluate
the robustness of the model under dataset shifts. Real-world clinical trials with embedded feedback and
integration into radiology workflows are also needed to assess inference latency and practical utility.
Additionally, we plan to explore advanced methods, such as self-supervised learning, transformer-based
architectures, and hybrid radiomics—deep learning pipelines, to enhance performance, interpretability,
and generalization further.

5. Conclusion

This study presented a CXR classification framework that addresses class imbalance through GAN-
based data augmentation, multimodal feature fusion, and ensemble learning. The framework reduces
bias and enhances reliability by generating synthetic samples for underrepresented classes and controlling
the influence of dominant ones. Experimental results show that soft voting ensembles and multimodal
fusion, when combined with GAN-based augmentation, each independently improve diagnostic
performance. This results in high accuracy, balanced sensitivity and precision, and strong F1-scores and
MCC values. Future work will focus on improving GAN architectures and exploring advanced imbalance
mitigation strategies, such as contrastive and meta-learning, to further enhance classification outcomes.
Validation on multi-institutional datasets will assess generalizability, and lightweight models will be
considered to reduce computational demands. The proposed framework demonstrates the effectiveness
of combining data-driven augmentation with multimodal feature fusion and ensemble methods for
addressing class imbalance in medical imaging.
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