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1. Introduction 
The advancement of machine learning (ML), and particularly deep learning (DL), has significantly 

transformed clinical decision-making by automating diagnostic processes and improving the accuracy 

and efficiency of medical assessments. DL models trained on large-scale datasets have been successfully 

applied in domains such as cardiology and oncology, facilitating early detection and enabling personalized 

healthcare strategies [1]. These models excel at analyzing complex, high-dimensional medical data, 

thereby supporting informed and timely clinical decisions [2], [3]. 

However, a persistent challenge in medical data analysis is class imbalance, as the underrepresentation 

of certain disease categories often results in biased model predictions and poor generalizability [4]. 

Furthermore, obtaining large, high-quality annotated medical datasets is resource-intensive and depends 

heavily on expert annotation [5], posing barriers to the development of robust disease classification 

systems [6]. Although progress has been made in medical imaging, traditional techniques such as 

resampling or basic data augmentation often fail to address imbalance, particularly with high-

dimensional clinical images, effectively. These methods tend to simplify data distributions and generate 

unrepresentative samples for minority classes [7]. In contrast, recent advances in GANs have shown 
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 Chest X-ray (CXR) classification tasks often suffer from severe class 

imbalance, resulting in biased predictions and suboptimal diagnostic 

performance. To address this challenge, we propose an integrated 

framework that combines high-fidelity data augmentation using Generative 

Adversarial Networks (GANs), ensemble learning via hard and soft voting, 

and multimodal feature fusion. The method begins by partitioning the 

majority class into multiple subsets, which are individually balanced 

through GAN-generated synthetic images. Deep learning models, 

specifically DenseNet201 and EfficientNetV2B3, are trained separately on 

each balanced subset. These models are then combined using ensemble 

voting to improve robustness. Additionally, features extracted from the 

most performant models are fused and used to train traditional classifiers 

such as Logistic Regression, Multilayer Perceptron, CatBoost, and 

XGBoost. Evaluations on a publicly available CXR dataset demonstrate 

consistent improvements across key metrics, including accuracy, precision, 

recall, F1-score, AUROC, AUPRC, MCC, and G-mean. This framework 

shows superior performance in multiclass scenarios.  
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promise in producing realistic synthetic data that enhances minority class representation and improves 

model performance [8], [9]. Yet, many approaches using GANs focus exclusively on data generation 

without integrating them with advanced classification strategies such as ensemble learning or multimodal 

feature fusion, both of which are essential for improving model robustness and generalizability. To 

overcome these limitations, we propose a novel framework that combines GAN-based augmentation 

with ensemble voting and improved feature fusion. The dataset is divided into three subsets, where 

GANs generate additional samples for the minority classes. We implement both soft and hard voting 

strategies to improve decision robustness and introduce a multimodal feature fusion mechanism that 

integrates learned representations from multiple submodels into a unified embedding for final 

classification. This approach is evaluated on a CXR dataset including COVID-19, Viral Pneumonia, and 

Normal cases. The results reveal substantial improvements in class balance and diagnostic accuracy, 

confirming the effectiveness of combining synthetic data generation with ensemble classification and 

feature integration.  To the best of our knowledge, this is the first study to integrate GAN-based data 

augmentation with ensemble feature fusion for multiclass CXR classification. The main contributions 

of this work are summarized as follows: 

• A new method employing GANs to generate realistic synthetic data for minority classes, effectively 

reducing class imbalance.  

• State-of-the-art models (e.g., EfficientNet and DenseNet) for high-quality feature extraction and 

classification in imbalanced datasets.  

• Integration of multiple submodels in an ensemble framework, leveraging their strengths to improve 

performance and robustness.  

• Outputs from multiple submodels are combined into a unified feature representation, allowing diverse 

models to complement each other in medical imaging tasks.  

• A comprehensive case study on CXR images demonstrates the effectiveness of the proposed 

framework in enhancing diagnostic accuracy across imbalanced classes. 

Previous studies have explored multiple strategies to address class imbalance in medical imaging. 

Malygina et al. and Qin et al. [10], [11] leveraged GANs to generate synthetic samples, which improved 

accuracy but risked lacking the morphological diversity essential in clinical data, potentially limiting 

generalizability. Kothawade et al. [12] proposed a submodular mutual information-based active learning 

framework to enhance minority-class representation, although it is annotation-intensive and may 

overlook subtle disease progression. Yeung et al. [13] introduced the Unified Focal Loss to penalize 

misclassification of the minority class, showing promise in binary tasks; however, its effectiveness in 

complex, noisy multiclass CXR datasets remains uncertain. Fan and Bu [14] adopted transfer learning 

using ImageNet-pretrained models for lung disease classification, yet domain mismatch between natural 

and medical images may prevent optimal feature learning, especially in diverse clinical environments. 

Beyond single-model approaches, ensemble learning has shown strong potential for improving 

robustness and accuracy. For instance, Jangam et al. [15] achieved high performance using stacking 

ensembles, though such methods are often computationally intensive and less suitable for resource-

constrained environments. Kaleem [16] enhanced multiclass detection through advanced ensemble 

architectures, yet interpretability remains limited due to increased complexity. Habib et al. [17] 

combined CheXNet and VGG-19 with oversampling for binary classification, showing gains but limited 

flexibility. In contrast, our work introduces a dual-strategy framework that fuses GAN-based 

augmentation with ensemble voting and feature fusion, aiming to tackle imbalance more 

comprehensively while enhancing transparency and modularity. Unlike prior efforts focused on isolated 

solutions, our framework is explicitly designed for multiclass scenarios and scalable clinical integration. 

2. Method 

2.1. Residual Block 
Neural network performance is generally proportional to its depth, as deeper architectures tend to 

achieve superior feature representation and improved accuracy. However, excessively deep networks often 

encounter the challenge of gradient degradation, where performance initially improves but subsequently 
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declines due to vanishing or exploding gradients. To mitigate this issue, ResNet [18] introduces residual 

blocks, which incorporate identity mappings to facilitate stable feature propagation throughout the 

network. A key component of this architecture is the convolutional layer within each residual block, 

which plays a crucial role in feature extraction. The mathematical operation governing this convolutional 

process is formally defined by Eqs (1) and (2). 

𝑦𝑦𝑙𝑙
𝑗𝑗 = 𝑓𝑓�𝑧𝑧𝑙𝑙

𝑗𝑗�   (1) 

𝑧𝑧𝑙𝑙
𝑗𝑗 = ∑ 𝑥𝑥𝑙𝑙−1𝑖𝑖

𝑖𝑖∈𝑀𝑀𝑗𝑗 × 𝑘𝑘𝑙𝑙,𝑖𝑖𝑖𝑖 + 𝑏𝑏𝑙𝑙
𝑗𝑗   (2) 

where 𝑧𝑧𝑙𝑙
𝑗𝑗
 represents the output feature map at layer l, f(·) is the ReLU activation function, 𝑥𝑥𝑙𝑙−1𝑖𝑖

  is 

the feature map from the (l-1)th layer, Mj denotes a subset of the input feature map, and 𝑘𝑘𝑙𝑙,𝑖𝑖𝑖𝑖 is the 3 

× 3 convolutional kernel matrix at layer l, applied without a bias term. The convolutional operation is 

followed by batch normalization and the ReLU activation function. The architecture and functionality 

of the residual block, specifically its single convolutional layer, are illustrated in Fig. 1(a). 

 

 

(a) (b) 

Fig. 1. Illustration of key network components: (a) Residual Block, and (b) Upsampling Block 

2.2. Upsampling Block 
The upsampling block is responsible for enhancing the spatial dimensions of the feature map, playing 

a crucial role in generating high-resolution output images from low-resolution inputs. It begins with an 

UpSampling2D layer, which expands the feature map by replicating rows and columns using a form of 

nearest-neighbor interpolation. This is followed by a 3 × 3 convolutional layer, which integrates and 

smooths the feature map. The convolved feature map then undergoes batch normalization, which 

stabilizes training by normalizing activations. Finally, a ReLU activation function is applied to introduce 

nonlinearity. Nonlinearity is illustrated in this upsampling module of Fig. 1(b). 

2.3. Generative Adversarial Networks And Proposed Architecture 
GANs, a prominent sub-category of generative models, were first introduced by Goodfellow et al. 

[19]. A GAN framework consists of two primary components: a generator and a discriminator (also 

referred to as a critic). The generator is trained to synthesize realistic fake images that can deceive the 

discriminator, while the discriminator is trained to distinguish between real and generated (fake) images 

accurately. This adversarial training continues until an equilibrium is reached, at which point the 

generator and the discriminator perform optimally. 

The proposed GAN architecture, depicted in Fig. 2, is designed to produce high-resolution, realistic, 

and diverse data samples for augmentation. The generator takes a random noise vector of size 128 and 

projects it through a dense layer to produce a small 4×4 feature map. This map is progressively upsampled, 
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first to 8×8, then to 16×16, 32×32, 64×64, and finally 128×128. At each stage, convolutional layers refine 

the features, followed by batch normalization and ReLU activation, with the number of channels 

gradually decreasing from 256 down to 16 to ensure a smoother, higher-quality output. Ultimately, two 

ResNet blocks are applied to refine the image's structure and texture further, aided by skip connections 

that help stabilize the training process. 

 

Fig. 2. Proposed generator and critic architecture for generating CXR images 

The final output layer produces a single-channel 128×128 image. In contrast, the critic performs a 

downsampling operation to evaluate the authenticity of images. Beginning with an input image of size 

128×128, it applies successive convolutional layers that progressively reduce the spatial resolution to 

64×64, 32×32, 16×16, and finally, 8×8, while increasing the depth of the feature maps from 64 to 1024. 

The flattened output is passed through a dense layer to yield a scalar that approximates the Wasserstein 

distance, which is used to assess the quality of generated images. Minimizing the distance between the 

real distribution and the generated distribution, as formulated in [20], can be unstable. To stabilize 

training, the WGAN-GP loss [21] is adopted. Let G be the generator and D the critic; if the input 

image is x, then the output of D on x is D(x). The generator G receives a noise vector z ∼ pz (e.g., from 

a standard normal or uniform distribution) and outputs a generated image xN = G(z). Real images follow 

the distribution pr. Instead of the Jensen-Shannon divergence, WGAN-GP relies on the Wasserstein-1 

distance, which is more robust for training when pr (real distribution) and pg ( generated distribution) 

lie on low-dimensional manifolds. The WGAN-GP framework introduces a gradient penalty to enforce 

soft Lipschitz constraints on D. Specifically, the generator and critic losses are defined by Eqs. (3) and 

(4). 

𝐿𝐿𝐺𝐺(𝑥𝑥𝑁𝑁) = min
𝐺𝐺
�−𝐸𝐸𝑥𝑥𝑁𝑁∼𝑝𝑝𝑔𝑔[𝐷𝐷(𝑥𝑥𝑁𝑁)]�   (3) 
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𝐿𝐿𝐷𝐷(𝑥𝑥; 𝑥𝑥𝑁𝑁; 𝑥𝑥𝑂𝑂) = min
𝐷𝐷

�𝐸𝐸𝑥𝑥𝑁𝑁∼𝑝𝑝𝑔𝑔[𝐷𝐷(𝑥𝑥𝑁𝑁)] − 𝐸𝐸𝑥𝑥∼𝑝𝑝𝑟𝑟[𝐷𝐷(𝑥𝑥)] + λ 𝐸𝐸𝑥𝑥𝑂𝑂∼𝑝𝑝𝑥𝑥𝑂𝑂 ��|∇𝑥𝑥𝑂𝑂𝐷𝐷(𝑥𝑥𝑂𝑂)|2 − 1�2��  (4) 

where λ > 0 is a balancing coefficient, and 𝑥𝑥𝑂𝑂  is a linear interpolation between the real image x and 

𝑥𝑥𝑁𝑁 is the generated image. 

𝑥𝑥𝑂𝑂 = α𝑥𝑥 + (1 − α)𝑥𝑥𝑁𝑁, α ∼ 𝑈𝑈[0,1]   (5) 

2.4. Deep Learning Models 
We employed two pre-trained deep learning models: DenseNet201 and EfficientNetV2B3. 

DenseNet201, a densely connected convolutional network, enhances feature propagation and reuse by 

creating direct connections between each layer and all preceding layers within dense blocks, thereby 

improving gradient flow and parameter efficiency [22]. EfficientNetV2B3, a scalable model, applies a 

compound scaling method to balance depth, width, and resolution, and integrates fused MBConv layers 

to boost training speed and computational efficiency [23]. Both models effectively extract hierarchical 

features, capturing low-level patterns such as edges and textures while progressively learning high-level 

semantic representations capabilities essential for tackling the complexities of medical imaging tasks 

[24]. To adapt these models to our task, we removed their original classification layers and appended 

custom task-specific layers. These included a Global Average Pooling (GAP) layer for dimensionality 

reduction, a Dropout layer to reduce overfitting [25], a Dense layer with ReLU activation for feature 

transformation, and a final Dense layer with softmax activation for classification. We trained the modified 

architecture end-to-end on our dataset. We adopted a fine-tuning strategy by initializing training with 

a low learning rate, which allowed the pre-trained weights to adapt gradually while optimizing the newly 

added layers 

2.5. Machine Learning Models 
We integrated machine learning (ML) and deep learning (DL) approaches to leverage their 

complementary strengths in medical image analysis. Traditional ML algorithms such as Logistic 

Regression (LR), Multilayer Perceptron (MLP), Categorical Boosting (CatBoost), and Extreme 

Gradient Boosting (XGBoost) performed effectively on structured datasets, particularly when provided 

with high-quality feature representations. Below, we briefly describe the methods we adopted in this 

study, including those used for comparative analysis. 

• LR: Logistic Regression models the conditional probability for a class k given an input vector 𝑥𝑥 ∈
𝑅𝑅𝑑𝑑 using the softmax function: 

𝑃𝑃(𝑦𝑦 = 𝑘𝑘 ∣∣ 𝑥𝑥 ) = exp�𝑤𝑤𝑘𝑘
⊤𝑥𝑥+𝑏𝑏𝑘𝑘�

∑  𝐾𝐾
𝑗𝑗=1 exp�𝑤𝑤𝑗𝑗

⊤𝑥𝑥+𝑏𝑏𝑗𝑗�
   (6) 

where wk ∈ 𝑅𝑅𝑑𝑑 and bk ∈ R are the weight vector and bias for class 𝑘𝑘, and 𝐾𝐾 is the number of 

classes. DL features replace the input 𝑥𝑥 with a rich, high-dimensional representation 𝜙𝜙(𝑥𝑥) 

extracted from a pre-trained network. 

• MLP: An MLP is a feed-forward neural network that models complex relationships by composing 

multiple nonlinear transformations. For a network with 𝐿𝐿 layers, the transformation in layer 𝑙𝑙 is 
given by. 

𝑎𝑎(𝑙𝑙) = σ�𝑊𝑊(𝑙𝑙)𝑎𝑎(𝑙𝑙−1) + 𝑏𝑏(𝑙𝑙)�,  𝑙𝑙 = 1,2, … , 𝐿𝐿   (7) 

where 𝑎𝑎(0)
 = x (the input), 𝑊𝑊(𝑙𝑙)

 is the weight matrix, 𝑏𝑏(𝑙𝑙)
 is the bias vector, and 𝜎𝜎(.)

 is a nonlinear 

activation function (e.g., ReLU, Sigmoid, or Tanh). 

• CatBoost: CatBoost is a gradient-boosted decision tree (GBDT) algorithm optimized for handling 

categorical features. Its objective function combines a loss term with a regularization term. 

ℒ = ∑ l�𝑦𝑦𝑖𝑖 , 𝑓𝑓(𝑥𝑥𝑖𝑖)�𝑁𝑁
𝑖𝑖=1 + Ω(𝑓𝑓)   (8) 
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where ℓ is a loss function (e.g., cross-entropy or mean squared error), f(xi) is the prediction, for 

instance, i, and Ω(f) penalizes model complexity. A distinctive feature of CatBoost is its handling 

of categorical data via target-based statistics, which transform categorical variables c into numerical 

features: 

𝑐̃𝑐 =
∑ 𝑦𝑦𝑗𝑗𝑗𝑗∈ℐ(𝑐𝑐) +𝑎𝑎

|ℐ𝑐𝑐(𝑐𝑐)|+𝑏𝑏
   (9) 

where (ℐ(𝑐𝑐)) is the set of indices corresponding to category 𝑐𝑐,𝑎𝑎,𝑎𝑎𝑎𝑎𝑎𝑎 𝑏𝑏 are smoothing parameters. 

Additionally, CatBoost employs an ordered boosting algorithm to minimize prediction shift by 

ensuring that the model only utilizes past data to predict future data, thereby effectively mitigating 

overfitting. 

• XGBoost: XGBoost is another gradient-boosting framework that sequentially builds an ensemble 

of decision trees [26]–[28]. The model's objective is formulated as: 

ℒ = ∑ l(𝑦𝑦𝑖𝑖 ,𝑦𝑦𝚤𝚤�)𝑁𝑁
𝑖𝑖=1 + ∑ Ω(𝑓𝑓𝑘𝑘)𝐾𝐾

𝑘𝑘=1     (10) 

where (𝑦𝑦𝚤𝚤� = ∑ 𝑓𝑓𝑘𝑘(𝒙𝒙𝒊𝒊))𝐾𝐾
𝑘𝑘=1  is the ensemble prediction, fk represents an individual tree, and (Ω(𝑓𝑓𝑘𝑘) =

𝛾𝛾𝛾𝛾 + 1
2
𝜆𝜆|𝒘𝒘|2) is a regularization term that penalizes the complexity of the tree (with T being the 

number of leaves and γ and λ being regularization hyperparameters). In multiclass settings, the softmax 

function is employed for probability estimates, and the gradient and Hessian for each tree are computed 

to perform a second-order Taylor expansion of the loss function, enabling efficient optimization: 

ℒ ≈ ∑ �𝑔𝑔𝑖𝑖𝑓𝑓(𝑥𝑥𝑖𝑖) + 1
2
ℎ𝑖𝑖𝑓𝑓(𝑥𝑥𝑖𝑖)2�𝑁𝑁

𝑖𝑖=1 + Ω(𝑓𝑓)   (11) 

where (𝑔𝑔𝑖𝑖) and (ℎ𝑖𝑖) are the first and second derivatives of the loss with respect to the prediction 

(𝑦𝑦𝚤𝚤�). XGBoost's ability to handle class imbalance and its support for parallel tree construction make it a 

robust choice in various complex scenarios. 

2.6. Ensemble Voting 
Ensemble learning is a robust ML methodology that enhances predictive accuracy by integrating 

multiple models, commonly referred to as base classifiers. The fundamental idea is to leverage the 

collective decision-making of these models to produce a more reliable and accurate outcome than any 

individual model could achieve. Two prominent approaches are used: hard voting and soft voting. The 

first method, hard voting, determines the final class label (𝑦𝑦�) based on the class ( 𝑘𝑘 )  that receives the 

maximum number of votes among all models. Mathematically, this can be expressed as: 

𝑦𝑦� = arg max
𝑘𝑘

∑ 𝐼𝐼(𝑦𝑦𝚤𝚤� = 𝑘𝑘)𝑁𝑁
𝑖𝑖=1    (12) 

where (𝐼𝐼(𝑦𝑦𝚤𝚤� = 𝑘𝑘)) is an indicator function that equals 1 if the ( 𝑖𝑖 ) −th model predicts the class ( 𝑘𝑘 ), 
and 0 otherwise. Here, ( 𝑁𝑁 ) represents the total number of models in the ensemble. Hard voting relies 

on plurality, selecting the class that garners the most support among the base classifiers. The second 

method, soft voting, utilizes the predicted probabilities provided by the base classifiers. Instead of 

considering only the most frequently predicted class, soft voting aggregates the probability distributions 

of all models, allowing more confident predictions to have greater influence. The final class label (𝑦𝑦�) is 
derived by summing the predicted probabilities (𝑃𝑃𝑖𝑖,𝑘𝑘) for each class ( 𝑘𝑘 ) across all ( 𝑁𝑁 ) models and 

selecting the class with the highest aggregated probability: 

𝑦𝑦� = arg max
𝑘𝑘

∑ 𝑃𝑃𝑖𝑖,𝑘𝑘𝑁𝑁
𝑖𝑖=1    (13) 

where (𝑃𝑃𝑖𝑖,𝑘𝑘) denotes the predicted probability of class ( 𝑘𝑘 ) by the ( 𝑖𝑖 ) −th model, and ( 𝑁𝑁 ) represents 

the total number of models in the ensemble. 
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3. Experiment And Proposed Pipelines 
All experiments were executed in Python. Image preprocessing tasks, including resizing and dataset 

partitioning, were executed locally on a Windows 10 system featuring an Intel Core i7-12700H CPU 

(4.7 GHz maximum), 32 GB of DDR5 RAM, and an NVIDIA RTX A2000 GPU (8 GB VRAM). 

Compute-intensive phases, encompassing GAN training and subsequent model assessment, were 

executed in Kaggle's cloud computing platform, which offers an NVIDIA Tesla P100 GPU via 

TensorFlow and Keras. Fig. 3 provides a comprehensive overview of the implemented methodology, 

encompassing data preprocessing, class balancing, model training, and feature fusion. The pipeline starts 

with raw CXR image acquisition and proceeds through five key phases: (1) dataset preprocessing, (2) 

data division and GAN balancing, (3) training the classifier models, (4) ensemble learning (Approach 

one), and (5) multimodal feature fusion (Approach two). 

 

Fig. 3. Overview of the proposed methodology for imbalanced CXR classification. The pipeline begins with 

GAN-based data balancing, followed by two classification approaches incorporating multimodal feature 

fusion and ensemble learning 

3.1. Dataset Description And Preprocessing 
We utilized a publicly available dataset from the Kaggle platform 

(https://www.kaggle.com/datasets/tawsifurrahman/covid19-radiography-database), which consists of 

CXR images categorized into three classes: COVID-19, Normal, and Viral Pneumonia. The original 

dataset contained 3,616 COVID-19 images, 10,192 Normal images, and 1,345 Viral Pneumonia images, 

offering both diversity and scale. However, we observed a notable class imbalance, with a significantly 

higher number of Normal cases compared to the other two categories. To reduce computational 

https://www.kaggle.com/datasets/tawsifurrahman/covid19-radiography-database
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overhead, we resized the original CXR images (299 × 299 pixels) to 128 × 128 during data preprocessing. 

We then used the ImageHash library to detect and remove duplicate images, thereby improving data 

quality and minimizing redundancy. After deduplication, the final class distribution comprised 3,400 

COVID-19 images, 10,190 Normal images, and 1,337 Viral Pneumonia images. We split the dataset into 

training (80%) and testing (20%) subsets. We further divided the training set into training and validation 

splits using an 80:20 ratio. 

3.2. Data Division And GAN Balancing 
To address class imbalance in the training dataset, we randomly divided the majority class (Normal) 

into three partitions. If a subset lacked samples for certain classes, we supplemented it with additional 

samples from the other partitions to match the number of COVID-19 samples (2,176). The Viral 

Pneumonia and COVID-19 classes were kept unchanged across all subsets to maintain consistency. This 

approach resulted in more balanced training subsets for model development. To further enhance balance, 

we used the GAN architecture from Section 3.3 to generate Viral Pneumonia images, ensuring equal 

representation of all classes in each subset. We optimized the parameters for the WGAN-GP loss 

functions in Eq. (3) and (4) through iterative training and parameter selection. During GAN training, 

we drew the generator's input from a standard normal distribution to produce grayscale images of size 

128 × 128. We scaled both real and generated samples to the range of [-1, 1] before passing them to the 

discriminator. We used a Leaky-ReLU activation function with a slope of 0.2 to alleviate potential "dying 

ReLU" issues. We initialized the weights using a normal distribution and applied normalization to ensure 

stable training. We applied the Adam optimizer [26], with β1 = 0.0, β2 = 0.99, and a gradient penalty 

coefficient λ = 10, consistent with established best practices [20]. We used a slower learning rate of 

0.0002 to ensure gradual and stable convergence throughout the training process. We trained the model 

for 1000 epochs with a batch size of 64, providing sufficient iterations for the GAN to converge effectively 

without overfitting. After training, we employed the generator to synthesize Viral Pneumonia images, 

which we then used to augment and balance each subdataset. Fig. 4 shows the distribution of the original 

training dataset after division and subsequent GAN-based balancing. 

 

Fig. 4. Progression of data balancing strategies Left: Original dataset with an imbalanced class distribution 

(Normal: 6521, COVID-19: 2176, Viral Pneumonia: 855). Middle: After data division, the majority class 

(Normal) is split into three subsets, each containing 2176 samples, while COVID-19 and Viral Pneumonia 

remain unchanged (2176 and 855, respectively). Right: After GAN balancing, the Viral Pneumonia class is 

augmented to 2176 samples per subdataset 

3.3. Training And Classifier Models 
We fine-tuned two CNN architectures: D_Net (DenseNet201) and E_Net (EfficientNetV2B3), for 

60 epochs using a batch size of 64, following the methodology described in Section 3.4. We initialized 

the learning rate at 1 × 10⁻³ and progressively decreased it at epochs 20, 30, and 40 by factors of 0.1, 0.01, 

and 0.001, respectively. After epoch 50, we stabilized the learning rate at 0.5 × 10⁻³. To dynamically adjust 

the learning rate, we used a ReduceLROnPlateau callback, which applied a 31.6% reduction (a factor of 



ISSN 2442-6571 International Journal of Advances in Intelligent Informatics 522 

 Vol. 11, No. 3, August 2025, pp. 514-532 

 
 

 Snani et al. (GAN-Enhanced multimodal fusion and ensemble learning for imbalanced chest X-Ray classification) 

0.1) after five epochs without improvement. No cooldown period was used, and we set the minimum 

learning rate to 0.5×10⁻⁶. We employed the Adam optimizer throughout the training process. We first 

trained the models on the original (imbalanced) dataset to obtain the baseline models: DNet_Orig and 

ENet_Orig. Then, we trained on three split subsets: Non-GAN-balanced subsets (DNet_S1, DNet_S2, 

DNet_S3 for D_Net and ENet_S1, ENet_S2, ENet_S3 for E_Net) and GAN-balanced subsets 

(DNet_GS1, DNet_GS2, DNet_GS3 for D_Net and ENet_GS1, ENet_GS2, ENet_GS3 for E_Net). 

3.3.1. Ensemble Voting (Approach One) 
After training the classifier models, we utilized ensemble voting on the three sub-trained models to 

improve overall performance, as detailed in Section 3.6. We used Eq. (12) for Soft Voting (SV) and Eq. 

(13) for Hard Voting (HV). Ensemble voting was applied to two types of subsets: GSV and GHV denote 

ensembles of sub-models trained on GAN-based data augmentation, where DNet_GSV and DNet_GHV 

refer to the DNet model, and ENet_GSV and ENet_GHV refer to the E_Net model. For models trained 

on non-GAN subsets, which utilize the original imbalanced data, the ensembles include DNet_SV and 

DNet_HV for D_Net, as well as ENet_SV and ENet_HV for E_Net. 

3.3.2. Training On Multimodal Feature Fusion (Approach Two) 
Feature-level fusion was explored by extracting vectors from the global pooling layers of trained 

submodels (both GAN-balanced and non-GAN). These vectors, which capture salient image 

representations, were concatenated into a single feature vector: 

𝐹𝐹𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝐹𝐹1 ⊕ 𝐹𝐹2 ⊕ 𝐹𝐹3   (14) 

where 𝐹𝐹1, 𝐹𝐹2, and 𝐹𝐹3 represent feature vectors obtained from three submodels, and ⊕ denotes 

concatenation. A final standardization step ensured the uniform contribution of all features before 

classification. 

𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
𝐹𝐹𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓−μ

σ
   (15) 

We applied feature fusion to the optimal sub-dataset for this method, which we selected based on 

validation accuracy. The extracted features were concatenated and standardized using Eqs (14) and (15). 

These processed features were then used to train four ML classifiers, implemented with the scikit-learn 

library using default parameters, except for specific configurations we trained LR for up to 1000 iterations 

to ensure convergence; we configured XGBoost for multiclass classification with objective="multi: 

softmax" and num_class=3; we defined the MLP as a neural network with two hidden layers (128 and 

64 neurons), ReLU activation, and trained it for 500 iterations; and we trained CatBoost with 500 

boosting iterations, a learning rate of 0.1, and a maximum tree depth of 6. We duplicated the entire 

pipeline across DNet, ENet, and their hybrid variants: DNet_SF, ENet_SF, DNet_GSF, and ENet_GSF, 

where SF denotes submodel feature fusion based on submodels trained on the original subdataset, and 

GSF represents feature fusion from submodels trained on the GAN-augmented subdataset. 

4. Results and Discussion 
We evaluated the quality of GAN-generated images using the Fréchet Inception Distance (FID) [29] 

and the Multi-Scale Structural Similarity Index (MS-SSIM) [30]. FID measures the distance between 

the feature distributions of real and synthetic images, where lower values indicate higher fidelity. MS-

SSIM assesses perceptual similarity, with values closer to 1 reflecting greater visual resemblance. As 

shown in Table 1, the FID and MS-SSIM scores remained similar across the three subdatasets, indicating 

that the GAN consistently generated high-quality and perceptually realistic CXR images. Fig. 5 

illustrates this comparison, showing real images in the top row and corresponding synthetic samples in 

the bottom row, which highlight the realism and diversity of the generated images. After augmentation, 

we balanced each subdataset with 2,176 samples per class (Normal, COVID-19, Viral Pneumonia), while 

keeping the validation and testing sets unchanged. 
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(a) Real (b) Real (c) Real 

   

(d) Generated (e) Generated (f) Generated 

Fig. 5. Sample real (top row) and generated (bottom row) CXR images of Viral pneumonia 

Table 1.  FID Scores for Generated Images Across Subdatasets 

4.1. Evaluation metrics 
Although accuracy is commonly used to evaluate classifier performance, it can overemphasize majority 

classes in imbalanced datasets and thus serves as an unreliable standalone metric [31], [32]. To establish 

a more robust evaluation framework, particularly for imbalanced classification tasks, we consider multiple 

complementary metrics: 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 (𝐴𝐴𝐴𝐴𝐴𝐴) = 𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹+𝐹𝐹𝐹𝐹

   (16) 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃) = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

   (17) 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

   (18) 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

   (19) 

𝐹𝐹1 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (𝐹𝐹1) = 2⋅𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃⋅𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃+𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

   (20) 

G − Mean = �Spec × 𝑆𝑆ens   (21) 

𝑀𝑀𝑀𝑀𝑀𝑀 = (𝑇𝑇𝑇𝑇×𝑇𝑇𝑇𝑇)−(𝐹𝐹𝐹𝐹×𝐹𝐹𝐹𝐹)
�(𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹)(𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹)(𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹)(𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹)

   (22) 

where TP (true positives), TN (true negatives), FP (false positives), and FN (false negatives) are 

derived from the confusion matrix, in addition to threshold-dependent metrics such as accuracy and F1 

score, we employ the Matthews Correlation Coefficient (MCC), which considers all four elements of 

Subdataset Subdataset 1 Subdataset 2 Subdataset 3 
FID Score 72.588 72.757 72.348 

MS SSIM 0.546 0.542 0.548 
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the confusion matrix and quantifies the correlation between predicted and actual labels. To further 

evaluate classifier behavior across varying thresholds, we analyze curve-based metrics. The Receiver 

Operating Characteristic (ROC) curve, evaluated by the Area Under the Curve (AUC), illustrates the 

trade-off between the true positive rate (TPR) and the false positive rate (FPR). However, recent studies 

suggest that AUC may overestimate performance in highly imbalanced datasets [33], [34]. Therefore, 

we also emphasize the Area Under the Precision-Recall Curve (AUPRC), which is more informative for 

imbalanced classification tasks [35]. By directly assessing the trade-off between precision and recall, 

AUPRC offers a more reliable estimate of a model's ability to identify minority-class instances while 

minimizing false positives correctly [35]. 

4.2. Classification Results Based On Balanced And Imbalanced Subdatasets 
This section evaluates the effectiveness of GAN-based synthetic data balancing at the subsataset level 

for DNet and ENet architectures. Table 2 and Table 3 show that this approach significantly improves 

classifier performance by harmonizing the precision-sensitivity trade-off and increasing sensitivity for 

minority classes. The observed gains in G-mean, F1 score, MCC, and AUROC are statistically significant 

(paired t-test, p < 0.05), confirming the method’s effectiveness. In DNet models, GAN balancing 

increased accuracy from 0.978 to 0.984 and F1 score from 0.972 to 0.978 (+0.6%) in DNet_B1, and 

improved precision by 1.6% (0.964 to 0.980) in DNet_B2. All GAN-augmented DNet variants reached 

an AUROC of 0.999, with DNet_B2 and DNet_B3 achieving AUPRC of 0.997. MCC rose to 0.966.  

Table 2.  Classification results of DNet-based models on subdatasets with and without balancing 

 Model Acc Prec Sens F1 Spec G-Mean MCC AUROC AUPRC 

Without 

GAN 

Balancing 

DNet_S1 0.978 0.967 0.977 0.972 0.987 0.982 0.954 0.998 0.995 

DNet_S2 0.973 0.964 0.973 0.968 0.984 0.979 0.945 0.998 0.996 

DNet_S3 0.979 0.967 0.978 0.972 0.987 0.982 0.955 0.998 0.996 

With 

GAN 

Balancing 

DNet_GS1 0.984 0.975 0.982 0.978 0.990 0.986 0.966 0.998 0.993 

DNet_GS2 0.983 0.980 0.976 0.978 0.988 0.982 0.965 0.999 0.997 
DNet_GS3 0.982 0.975 0.980 0.977 0.989 0.984 0.963 0.999 0.997 

ENet models showed even stronger improvements. ENet_GS3 increased sensitivity by 1.6% (0.965 

to 0.981), specificity by 0.2% (0.983 to 0.985), and reached the highest accuracy (0.985) and F1-Score 

(0.979, +0.8%). All augmented ENet variants reached AUROC of 0.999, with AUPRC rising to 0.997 

in ENet_GS2. MCC reached 0.968. 

Table 3.  Classification results of ENet-based models on subdatasets with and without balancing 

 Model Acc Prec Sens F1 Spec G-Mean MCC AUROC AUPRC 

Without 

GAN 

Balancing 

ENet_S1 0.975 0.967 0.966 0.966 0.980 0.973 0.943 0.997 0.988 

ENet_S2 0.976 0.955 0.980 0.967 0.987 0.983 0.950 0.998 0.995 

ENet_S3 0.980 0.978 0.965 0.971 0.983 0.974 0.957 0.997 0.994 

With 

GAN 

Balancing 

ENet_GS1 0.983 0.978 0.975 0.976 0.980 0.980 0.963 0.999 0.995 

ENet_GS2 0.983 0.981 0.973 0.977 0.980 0.980 0.964 0.999 0.997 

ENet_GS3 0.985 0.978 0.981 0.979 0.985 0.985 0.968 0.999 0.997 
To compare GAN-based augmentation with traditional methods, we evaluated DNet on the 

imbalanced subdataset 2 (DNet_S2), comparing GAN-augmented (DNet_GS2) against SMOTE 

(Synthetic Minority Over-sampling Technique), ADASYN (Adaptive Synthetic Sampling), and 

geometric oversampling. As depicted in Fig. 6, GAN-augmented DNet_GS2 achieved the highest 

AUPRC (0.997), outperforming both the baseline (AUPRC 0.996) and other oversampling methods 

(SMOTE/Geometric: 0.996/0.994 AUPRC). These findings highlight GAN's superiority in generating 

synthetic data for class balancing, offering better precision-sensitivity trade-offs than conventional 

oversampling techniques. 
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Fig. 6. Performance comparison of GAN with different oversampling methods 

4.3. Ablation Study Of Ensemble Voting Strategies With Balanced And Imbalanced Subsets 
To investigate the contributions of ensemble voting strategies and GAN-based data augmentation 

the DNet model achieved an F1 score of 0.972 and a sensitivity of 0.978. At the same time, ENet 

obtained 0.973 and 0.970, respectively, reflecting performance limitations induced by skewed class 

distributions (Table 4 and Table 5, "Original" rows). SV consistently outperformed HV in both 

architectures. For DNet (Table 4), SV elevated F1-Score by +0.3%, G-Mean by +0.3%, and MCC by 

+0.4% relative to HV.  

Table 4.  Classification results for DNet using the original imbalanced dataset, an ensemble of submodels 

without GAN balancing, and an ensemble with GAN balancing 

 Model Acc Prec Sens F1 Spec G-Mean MCC AUROC AUPRC 
Original Enet 0.979 0.976 0.970 0.973 0.983 0.977 0.955 0.997 0.992 

Ensemble voting SV 0.986 0.979 0.983 0.981 0.990 0.987 0.970 0.999 0.996 

HV 0.983 0.975 0.978 0.977 0.988 0.983 0.964 0.983 0.980 

GAN+ Ensemble 

voting 

GSV 0.990 0.985 0.987 0.986 0.994 0.990 0.979 0.999 0.998 
GHV 0.990 0.985 0.985 0.985 0.993 0.989 0.978 0.989 0.987 

 

For ENet (Table 5), SV enhanced F1 score by +0.4%, sensitivity by +0.5%, and AUPRC by +1.6%. 

These gains are attributed to SV's confidence-weighted aggregation, which refines boundary decisions, 

particularly critical under class imbalance. Integrating GAN-generated samples further improved 

performance for both voting strategies. In DNet (Table 4), GSV increased precision by +2.0% (from 

0.967 to 0.987), MCC by +2.1% (from 0.955 to 0.976), and achieved an AUPRC of 0.998. In ENet 

(Table 5), GSV delivered a +0.9% precision gain, +1.7% sensitivity improvement, and +1.1% higher 

AUPRC compared to GHV. Although both GSV and GHV surpassed non-GAN ensembles, GSV 

consistently demonstrated superior performance in key metrics, including MCC and F1-Score. 

Table 5.  Classification results for ENet using the original imbalanced dataset, an ensemble of submodels 

without GAN balancing, and an ensemble with GAN balancing 

 Model Acc Prec Sens F1 Spec G-Mean MCC AUROC AUPRC 
Original Dnet 0.979 0.967 0.978 0.972 0.986 0.982 0.955 0.998 0.995 

Ensemble voting SV 0.982 0.973 0.983 0.978 0.989 0.986 0.963 0.999 0.998 

HV 0.981 0.972 0.978 0.975 0.988 0.983 0.959 0.983 0.979 

GAN+ Ensemble 

voting 

GSV 0.989 0.987 0.983 0.985 0.991 0.987 0.976 0.999 0.998 
GHV 0.988 0.984 0.983 0.984 0.991 0.987 0.975 0.993 0.993 

4.4. Ablation Study Of Feature Fusion And Machine Learning Classifiers On Balanced And 
Imbalanced Subsets 

Integrating GAN-augmented multimodal feature fusion resulted in significant improvements in 

classification performance for both DNet and ENet architectures (Table 6 and Table 7). These findings 

highlight the synergy between GAN-driven minority-class augmentation and feature fusion, which 

jointly address class imbalance and enhance the representation of discriminative features. For DNet, the 
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baseline DNet_Orig demonstrated strong accuracy (0.978–0.980), but revealed notable gaps between 

sensitivity (0.967–0.976) and specificity (0.984–0.986), suggesting room for improvement in class 

separation. Multimodal feature fusion without GAN balancing (DNet_SF) yielded small gains in F1-

Score (e.g., from 0.974 to 0.983 with MLP) and MCC (from 0.958 to 0.973 with MLP). Still, it 

preserved a statistically significant sensitivity-specificity imbalance (p < 0.05). In contrast, the GAN-

augmented DNet_GSF model markedly narrowed this gap. For XGBoost, specificity increased from 

0.984 to 0.994 (+1.0%), and sensitivity rose from 0.969 to 0.991 (+2.2%), thereby significantly narrowing 

the sensitivity-specificity gap. All DNet_GSF classifiers also achieved near-perfect AUROC values of 

0.999, and AUPRC reached 0.998 for LR, XGBoost, and CatBoost, indicating clear improvements over 

DNet_Orig.  

Table 6.  Classification results of models using DNet feature extraction from the original dataset (DNet_Orig) 

(single model) versus feature fusion from submodels, both without (DNet_SF) and with GAN balancing 

(DNet_GSF), evaluated across various classifiers (LR, XGBoost, MLP, CatBoost). 

 Model Acc Prec Sens F1 Spe G-Mean MCC AUROC AUPRC 
Original 

DNet_Orig 

LR 0.978 0.973 0.967 0.970 0.984 0.975 0.954 0.998 0.994 

XGBoost 0.978 0.973 0.969 0.971 0.984 0.976 0.954 0.998 0.994 

MLP 0.980 0.972 0.976 0.974 0.986 0.981 0.958 0.996 0.992 

CatBoost 0.980 0.974 0.972 0.973 0.985 0.979 0.957 0.998 0.995 

submodels 

feature 

fusion 

DNet_SF 

LR 0.984 0.984 0.973 0.981 0.986 0.979 0.967 0.999 0.997 

XGBoost 0.986 0.986 0.978 0.983 0.988 0.983 0.971 0.999 0.996 

MLP 0.986 0.984 0.979 0.981 0.989 0.984 0.973 0.998 0.995 

CatBoost 0.987 0.984 0.978 0.981 0.989 0.984 0.970 0.999 0.997 

GAN+ 

submodels 

feature 

fusion  

DNet_GSF 

LR 0.991 0.987 0.985 0.986 0.993 0.989 0.980 0.999 0.998 

XGBoost 0.992 0.988 0.991 0.989 0.994 0.993 0.983 0.999 0.998 
MLP 0.992 0.989 0.988 0.989 0.994 0.991 0.983 0.999 0.997 

CatBoost 0.991 0.987 0.989 0.988 0.994 0.991 0.982 0.999 0.998 

Similarly, the baseline ENet_Orig performed slightly worse than DNet_Orig, with sensitivity (0.959 

to 0.965) and MCC (0.945 to 0.952) values lagging behind. Feature fusion without GAN balancing 

(ENet_SF) improved certain metrics, such as XGBoost sensitivity (from 0.959 to 0.980, a 2.1% increase) 

and MCC (from 0.945 to 0.975). However, it still exhibited discrepancies in specificity and sensitivity. 

By contrast, the ENet_GSF approach nearly aligned sensitivity (0.986–0.987) and specificity (0.993–

0.994). For MLP specifically, specificity increased from 0.982 to 0.994 (+1.2%) and sensitivity from 

0.965 to 0.987 (+2.2%), substantially reducing the sensitivity-specificity gap. As with DNet_GSF, all 

ENet_GSF classifiers attained MCC values reaching 0.983, AUROC values of 0.999, and an AUPRC of 

0.998, confirming their robustness and improved balanced classification performance. 

Table 7.  Classification results of models using ENet feature extraction from the original dataset (ENet_Orig) 

(single model) versus feature fusion from submodels, both without (ENet_SF) and with GAN balancing 

(ENet_GSF), evaluated across various classifiers (LR, XGBoost, MLP, CatBoost) 

 Model Acc Prec Sens F1 Spe G-Mean MCC AUROC AUPRC 
Original 

DNet_Orig 

LR 0.977 0.978 0.965 0.971 0.982 0.973 0.952 0.997 0.992 

XGBoost 0.974 0.971 0.959 0.965 0.980 0.970 0.945 0.995 0.989 

MLP 0.976 0.969 0.965 0.967 0.982 0.973 0.948 0.994 0.987 

CatBoost 0.976 0.976 0.964 0.970 0.981 0.972 0.950 0.997 0.992 

submodels 

feature 

fusion 

DNet_SF 

LR 0.987 0.985 0.978 0.981 0.989 0.984 0.972 0.999 0.997 

XGBoost 0.988 0.986 0.980 0.983 0.991 0.986 0.975 0.999 0.997 

MLP 0.986 0.984 0.978 0.981 0.989 0.984 0.971 0.998 0.996 

CatBoost 0.987 0.984 0.978 0.981 0.989 0.984 0.971 0.999 0.995 

GAN+ 

submodels 

feature 

fusion  

DNet_GSF 

LR 0.991 0.987 0.987 0.987 0.993 0.990 0.980 0.999 0.998 

XGBoost 0.991 0.989 0.986 0.987 0.993 0.990 0.982 0.999 0.997 
MLP 0.992 0.990 0.987 0.989 0.994 0.991 0.983 0.999 0.998 

CatBoost 0.990 0.987 0.987 0.987 0.993 0.990 0.980 0.999 0.998 
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4.5. Comparison With State-Of-The-Art Methods 
Fig. 7 comprehensively compares the proposed method with several state-of-the-art approaches on 

a multiclass CXR dataset that encompasses COVID-19, Viral pneumonia, and Normal classes. Win et 
al. [36] employ an ensemble strategy combining multiple high-performing CNNs through majority 

voting, effectively capturing complementary feature representations to enhance decision robustness. 

Verma et al. [37] integrate class-weighted loss functions within a VGG16 backbone to mitigate bias 

toward overrepresented classes. Chamseddine et al. [38] apply SMOTE (Synthetic Minority Over-

sampling Technique) in conjunction with DenseNet201, thereby augmenting minority class samples to 

enhance classifier sensitivity. Mohan et al. [39] propose a custom CNN architecture enhanced through 

data augmentation pipelines, achieving better generalization under skewed class distributions. Expanding 

beyond traditional CNN architectures, Nahiduzzaman et al. [40] introduce a hybrid pipeline that 

leverages a lightweight CNN for initial feature extraction, the Pearson Correlation Coefficient (PCC) for 

dimensionality reduction, and the Extreme Learning Machine (ELM) for rapid, low-complexity 

classification. This approach demonstrates that simplicity and efficiency can yield competitive 

performance. In contrast, Wang et al. [41] take a model-free approach, proposing a semantic-powered 

few-shot learning framework that aligns radiology report semantics with image features using a Report 

Image Explanation Cell (RIEC). Their method, further enhanced by a multi-task collaborative diagnosis 

strategy (MCDS), not only performs well with minimal annotated data but also provides strong 

interpretability, though it relies heavily on the availability and quality of radiology reports.As shown in 

Fig. 7, our approach demonstrates superior Accuracy, F1-score, and AUC [36]–[41] 

  

Fig. 7. Comparison of state-of-the-art methods with our proposed approach on imbalanced multiclass CXR 

data 

4.6. Deployment Considerations and Explainable AI 
To support interpretability and foster clinical trust, we employed Gradient-weighted Class Activation 

Mapping (Grad-CAM) to visualize the salient regions within CXR images most strongly influencing the 

CNN model's predictions. These class-discriminative heatmaps highlight areas contributing to positive 

classifications for COVID-19 and viral pneumonia, as illustrated in Fig. 8. While Grad-CAM 

visualizations offer valuable preliminary insights into potential disease-specific biomarkers, their clinical 

validity remains contingent upon expert annotation, which is currently limited. Nonetheless, these 

visualizations serve as a bridge between AI model reasoning and clinical interpretability, potentially 

guiding future radiological and pathological investigations. We tested our models on the Kaggle platform 

equipped with an NVIDIA Tesla P100 GPU (16 GB VRAM). Using a batch of five images, the ensemble 

model achieved an average inference time of 34.32 seconds, while the multimodal fusion model recorded 

0.0021 seconds. These values reflect the actual performance of our system under the specified GPU 

environment. From a theoretical and future-oriented perspective, the system we designed is intended to 

support integration into clinical environments through a modular architecture that could eventually 

adhere to healthcare interoperability standards such as HL7 and FHIR. This includes potential 
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interaction with hospital information systems via secure APIs, automated report generation, and 

integration with Electronic Health Records (EHRs). Furthermore, the models could be adapted for 

deployment on mobile devices or edge computing platforms, enabling real-time point-of-care 

diagnostics in diverse clinical settings. 

      

(a) (b) (c) (d) (e) (f) 

      

(g) (h) (i) (j) (k) (l) 

Fig. 8. Grad-CAM-based localization of disease-relevant regions using DenseNet201 activations for correctly 

classified cases. The first row (a–f) displays CXR from the COVID-19 class, while the second row (g–l) 

presents cases of viral pneumonia. Each pair includes the original image (left) and the Grad-CAM overlay 

(right), highlighting regions that contributed most to the model's decision. The activated areas correspond 

to radiological features such as bilateral opacities and localized infiltrates, offering insight into how 

DenseNet201 distinguishes between the two conditions based on deep feature representations 

4.7. Discussion 
This study proposes a comprehensive framework to address class imbalance in CXR classification, 

integrating GAN-based augmentation, ensemble voting, and multimodal feature fusion. Our approach 

demonstrated significant improvements in classification performance and generalizability. Specifically, 

soft voting outperformed hard voting by effectively leveraging classifier confidence, while feature fusion 

using multiple submodels enhanced interclass separability and mitigated overfitting. These results build 

upon prior research advocating for synthetic oversampling in imbalanced medical datasets. For example, 

Abbas et al. [42] reported performance gains using synthetic COVID-19 CXRs in binary classification 

tasks, though their scope was limited. Our work extends this to multiclass settings and incorporates 

ensemble learning and feature integration, aligning with previous research that emphasizes multidomain 

feature integration for robust classification in imbalanced datasets [43], [44]. 

Nonetheless, limitations persist. The reliance on GAN-generated samples raises concerns regarding 

the authenticity and variability of synthetic pathologies. These samples may not capture subtle or rare 

morphological features, which could potentially impair robustness in diverse clinical environments. 

Moreover, the evaluation was limited to a single publicly available dataset, which restricted 

generalizability and increased the risk of dataset-specific overfitting. Ethical considerations must also be 

acknowledged. Although synthetic data generation offers privacy advantages, improper validation may 

introduce bias or undermine clinician trust. Transparency regarding data provenance and responsible use 

guidelines will be critical moving forward. To aid model interpretability, we employed Grad-CAM to 

visualize class-discriminative regions; however, in the absence of annotated biomarkers, these 

visualizations could not be clinically validated. Future studies should incorporate expert radiologist review 

to assess whether the model's attention aligns with established diagnostic markers. Beyond algorithmic 

performance, the clinical utility of such a framework merits further exploration. In high-volume or 

resource-limited settings, automated triage using AI models can reduce diagnostic delays and optimize 

referral workflows, particularly for conditions such as COVID-19 or atypical pneumonias. Moreover, 

automation may alleviate radiologists' workload and reduce operational costs, supporting scalable and 

equitable healthcare delivery. A further limitation is the lack of expert validation for model predictions. 
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While quantitative metrics such as MCC and F1-score provide useful benchmarks, they are insufficient 

for assessing clinical reliability. Radiologists did not review our framework, and no inter-reader or intra-

reader agreement was measured. Addressing this gap will be essential for clinical adoption. Future 

research will focus on external validation using multi-institutional and prospective datasets to evaluate 

the robustness of the model under dataset shifts. Real-world clinical trials with embedded feedback and 

integration into radiology workflows are also needed to assess inference latency and practical utility. 

Additionally, we plan to explore advanced methods, such as self-supervised learning, transformer-based 

architectures, and hybrid radiomics–deep learning pipelines, to enhance performance, interpretability, 

and generalization further. 

5. Conclusion 
This study presented a CXR classification framework that addresses class imbalance through GAN-

based data augmentation, multimodal feature fusion, and ensemble learning. The framework reduces 

bias and enhances reliability by generating synthetic samples for underrepresented classes and controlling 

the influence of dominant ones. Experimental results show that soft voting ensembles and multimodal 

fusion, when combined with GAN-based augmentation, each independently improve diagnostic 

performance. This results in high accuracy, balanced sensitivity and precision, and strong F1-scores and 

MCC values. Future work will focus on improving GAN architectures and exploring advanced imbalance 

mitigation strategies, such as contrastive and meta-learning, to further enhance classification outcomes. 

Validation on multi-institutional datasets will assess generalizability, and lightweight models will be 

considered to reduce computational demands. The proposed framework demonstrates the effectiveness 

of combining data-driven augmentation with multimodal feature fusion and ensemble methods for 

addressing class imbalance in medical imaging. 
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