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1. Introduction 

Clustering data streams is one of active research topic in data mining. The streams clustering 
processes data in a single pass and summarizes them in real-time, while using limited resources. Many 
techniques have been proposed for clustering data streams [1]–[7]. Nevertheless, small number of them 
have been developed for monitoring and detecting change of the clustering structures [8]–[10]. E-
Stream [9] is an evolution-based stream clustering technique that has been developed to detect change 
of the evolving clustering structures. However, its runtime increases and its performance drops when 
perform on streams with large number of dimensions. 

Complexity of the stream clustering methods is increased when perform on data with large number 
of dimensions. The use of dimension projection technique [2], [11]–[17] is one possible solution to 
reduce complexity in dealing high dimensional streams. The concept of “projected clustering” has been 
introduced in HP-Stream [2]. With its dimension projection mechanism, HPStream is able to 
determine the specific set of cluster dimensions. Similar to HPStream, SED-Stream [18] is developed 
to deal with high dimensional data streams. By using the standard-deviation of the attributes, SED-
Stream is able to select relevant subset of cluster dimensions. Experimental results over several stream 
datasets demonstrate that SED-Stream is able to generate higher clustering quality. 
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 Clustering data streams is one of active research topic in data mining.  
However, runtime of the existing stream clustering algorithms increases 
and their performance drop in the face of large number of dimensions. 
Complexity of the stream clustering methods is increased when perform on 
data with large number of dimensions. In order to reduce the clustering 
complexity, one possible solution consists in determining the appropriate 
subset of cluster dimensions via dimension projection. SED-Stream is an 
efficient clustering algorithm that supports high dimension data streams. 
The aim of this paper is to increase performance of SED-Stream in terms 
of both clustering quality and execution time. In order to improve the 
clustering process, background or domain expert knowledge are integrated 
as “constraints” in SEDC-Stream. The new algorithm, SEDC-Stream, 
supports the evolving characteristics of the dynamic constraints which are 
activation, fading, outdating and prioritization. SEDC-Stream algorithm is 
able to reduce cluster splitting time, and place new incoming points to their 
suitable clusters. Compared to SED-Stream on the three real-world 
streams datasets, SEDC-Stream is able to generate a better clustering 
performance in terms of both purity and f-measure.  
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One way to improve quality of the clustering result is via the use of domain expert knowledge [19], 
[20]. Semi-supervised stream clustering is a technique that performs cluster analysis over data streams 
by using domain expert knowledge as “constraint”. Although large number of stream clustering 
techniques have been proposed, a small number of them have been involved in semi-supervised manner 
[21]–[23]. A conceptual model for analyzing data streams using constraints has been proposed in Ruiz 
et al. [24]. The traditional K-means is extended to obtain the Constraint-based K-means algorithm [25]. 
C-Denstream [26] is the extended version of Denstream, by utilizing constraints during the clustering 
process. An instance-level Must-link constraint is defined as a pair of instances (x,y) that must be 
members to the same cluster [1]. Must-Link constraints are integrated as background knowledge in E-
stream [9] to obtain a semi-supervised stream clustering technique named CE-Steam [27]. By adapting 
its clustering structure over the continuous flow of data points, CE-Stream continuously updates its 
constraints based on their hit-rates. 

The main goal of this paper is to improve performance of the existing evolution-based stream 
clustering algorithms such as E-Stream [9], CE-Stream [27] and SED-Stream [18]. To deal with high 
dimensional data streams, the idea is to combine dimension selection technique with the use of domain 
expert knowledge as constraints. The new algorithm is named SEDC-Stream (Constraint-based 
discriminative dimension selection for clustering data streams with large number of dimensions). For 
dimension selection, attributes of each cluster are projected to its discriminative dimension attributes. 
During the progression of data streams, SEDC-Stream locates all the active clusters while determining 
their discriminative attributes. Two types of instance-level constraints, Must-link and Cannot-link, are 
introduced and integrated in a semi-supervised manner. SEDC-Stream does support the evolving 
characteristics of the dynamic constraints which are constraint activation, fading, outdating and 
prioritization. SEDC-Stream is able to reduce an excessive splitting during the clustering process, and 
place new incoming points to their suitable clusters, during the data streams progression. Compared to 
SED-Stream on three real-world streams datasets [28], [29], the results reveal that SEDC-Stream has 
improved both the clustering output quality and the execution time. 

To summarize, the new SEDC-Stream algorithm provides the following mechanisms to support high 
dimensional data streams are discriminative dimension selection to support the evolving clustering 
structure; and Integration of activated, faded and obsolete instance-level constraints during the 
progression of data streams.  SEDC-Stream outperforms the existing evolution-based stream clustering 
algorithms such as E-Stream, CE-Stream and SED-Stream in terms of clustering quality. 

The remaining of this paper is structured as follows. Section 2 divided into two sections. In section 
2.1, definitions and concepts related to the stream clustering, discriminative dimension selection, and 
stream constraints are given, while in section 2.2, the SEDC-Stream is presented in detail. In section 3, 
the performance of SEDC-Stream and SED-Stream are compared over three real-world stream datasets. 
In section 4, the conclusion and the future works are explained. 

2. Method 

2.1. Basic Concepts 

In the following, basic concepts and techniques related to the stream clustering, discriminative 
dimension selection, and stream constraints are given. 

2.1.1. Cluster Representation 

Assume that data streams consist of a set of data points 𝑋1 …  𝑋𝑘  arriving at time stamps 𝑇1 …  𝑇𝑘. 
Each data point 𝑋𝑖 contains 𝑑 dimensions, denoted as 𝑋𝑖  =  (𝑥1

𝑖 … 𝑥𝑑
𝑖). During the progression of 

data streams, there exist a large number of incoming data points that cannot be stored into the limited-
size memory. Instead, cluster representation is used. In Aggarwal et. al. [2], a fading cluster structure 
(FCS) was introduced. Later, Udommanetanakit et. al. [9] proposed FCH that extended FCS by adding 
-bin histogram to detect change of the clustering structure. In Chairukwattana et. al. [30], the notion 
of dimension projection was added into 𝐹𝐶𝐻. Finally, 𝐹𝐶𝐻 is defined as 𝐹𝐶𝐻 =
 (𝐹𝐶1(𝑡), 𝐹𝐶2(𝑡), 𝑊(𝑡), 𝐵𝑆(𝑡), 𝐻(𝑡)). The description of 𝐹𝐶𝐻 can be described as follows. 
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Let 𝑁 be the total number of data points of such cluster, 𝑇𝑖 be the time when data point xi is 
retrieved, and 𝑡 be the current time. The fading weight of data point 𝑥𝑖 is defined as 𝑓(𝑡 − 𝑇𝑖)  where   
𝑓(𝑡)  =  2 − 𝜆𝑡 and 𝜆 is the user-defined decay rate. 

𝑭𝑪𝟏(𝒕) is a vector of weighted sum of each dimension at time 𝑡. The 𝑗𝑡ℎ dimension is 

𝐹𝐶1𝑗(𝑡) =  ∑ 𝑓(𝑡 − 𝑇𝑖) ∙ (𝑋𝑗
𝑖)𝑁

𝑖=1   

𝑭𝑪𝟐(𝒕) is a vector of weighted sum of square of each dimension at time 𝑡. The 𝑗th dimension is 

𝐹𝐶2𝑗(𝑡) = ∑ 𝑓(𝑡 − 𝑇𝑖) ∙ (𝑋𝑗
𝑖)

2𝑁
𝑖=1   

𝑾(𝒕) is a sum of all weights of data points in the cluster at time 𝑡, i.e.,     

W(𝑡) =  ∑ 𝑓(𝑡 − 𝑇𝑖)
𝑁
𝑖=1   

𝑩𝑺(𝒕) is a bit vector of projected dimensions at time t. For the 𝑗th dimension is  

𝐵𝑆(𝑡) = {
1, 𝑖𝑓 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 𝑗 𝑖𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 𝑎 𝑠𝑒𝑡 𝑜𝑓 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 (4)

Note that the number of projected dimensions in each cluster may be different. 

𝑯(𝒕) is a  − 𝑏𝑖𝑛 histogram with equal intervals of data values. For the 𝑗th dimension at time t, the 
𝑚th bin histogram is   

H𝑚
𝑗 (𝑡) =  ∑ 𝑓(𝑡 − 𝑇𝑖) ∙ (𝑋𝑗

𝑖) ∙ (𝑦1,𝑚
𝑖 )𝑁

𝑖=1   

where    

y
m
i = {1, if m ∙ r + min(xj) ≤ xi

j
≤ (m + 1) ∙ r + min(xj);  r =

max(xj)-min(xj)

α

0, otherwise.
 

   Note that the value of bin width (𝑟) may be different in each dimension.   

 Each cluster can be categorized as active or inactive cluster when its weight is greater than or 
lower than the user-specified threshold active_cluster_weigth respectively. The active clusters are capable 
of merging with their nearest incoming data points resulted in their self-evolution clustering structure. 
Contrastingly, to become an active cluster, such inactive clusters must be merged together with other 
inactive or active clusters. 

 

2.1.2. Distance Functions 

Here, the distance functions are modified in order to deal with the different subset of projected 
dimensions of each cluster. We recall the notion of 𝐵𝑆(𝑡) (in section 2.1.1) which is a bit vector 
represented the projected dimensions of such cluster at timestamp 𝑡. The distances functions can be 
defined as follows. 

Cluster-Point distance 𝑑𝑖𝑠𝑡(𝐶, 𝑋𝑖)  is measured from a center of the active cluster 𝐶 to a data point 
𝑋𝑖. For each dimension 𝑗, the distance is normalized by the radius (standard deviation) of the cluster 
radius 𝑗𝑐. The 𝑑𝑖𝑠𝑡(𝐶, 𝑋𝑖)  function at timestamp 𝑡 is 

𝑑𝑖𝑠𝑡(𝐶, 𝑋𝑖) =
1

𝑛
∙ ∑ |

𝑐𝑒𝑛𝑡𝑒𝑟𝐶
𝑗

−𝑥𝑖
𝑗

𝑟𝑎𝑑𝑖𝑢𝑠𝐶
𝑗 |𝑗∈𝐵𝑆(𝑡)   
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where 𝑛 is the number of projected dimensions of cluster 𝐶 represented by bit vector 𝐵𝑆(𝑡). Thus, an 
incoming data point is then merged into its closet active cluster i.e. having minimum Cluster-Point 
distance. 

Cluster-Cluster distance 𝑑𝑖𝑠𝑡(𝐶𝑎, 𝐶𝑏) is measured between two cluster centers (𝐶𝑎 and 𝐶𝑏). The 
𝑑𝑖𝑠𝑡(𝐶𝑎, 𝐶𝑏) function at timestamp 𝑡 is 

𝑑𝑖𝑠𝑡(𝐶𝑎, 𝐶𝑏) =
1

𝑛
∙ ∑ |𝑐𝑒𝑛𝑡𝑒𝑟𝐶𝑎

𝑗 − 𝑐𝑒𝑛𝑡𝑒𝑟𝐶𝑏

𝑗
|𝑗∈𝐵𝑆(𝑡)   

where n is the total number of projected dimensions represented by bit vector 𝐵𝑆(𝑡). Note that 𝐵𝑆(𝑡) 
corresponds to union set of the projected dimensions of these two clusters. Therefore, a pair of clusters 
can be merged by determining its cluster-cluster distance. 

2.1.3. Instance-Level Stream Constraint 

 In the following, definitions related to instance-level stream constraint are given. More detailed 
explanation of these concepts can be found in [27]. We also refer to the notation of data streams, data 
point and fading weight as introduced in section 2.1.1. 

 Must-link constraint denoted as 𝑀𝐿 is a pair of data points (𝑀𝐿𝑥, 𝑀𝐿𝑦) that must be assigned to 

the same cluster. 

Cannot-link constraint denoted as 𝐶𝐿 is a pair of data points (𝐶𝐿𝑥, 𝐶𝐿𝑦) that must not be assigned 

to the same cluster. 

Active constraint denoted as 𝐴𝐿 is a must-link or cannot-link constraint where all weights of its 
data points (𝐴𝐿𝑥, 𝐴𝐿𝑦) are greater than user-specified threshold 𝑊. 

Constraint weight is the minimum weight of the active constraint data points 𝐴𝐿𝑥 and 𝐴𝐿𝑦, and 

can be defined as 

𝐶𝑇𝑤𝑖𝑔ℎ𝑡 = min (𝑤𝑒𝑖𝑔ℎ𝑡(𝐴𝐿𝑥), 𝑤𝑒𝑖𝑔ℎ𝑡(𝐴𝐿𝑦))  

Constraint fading function is used to gradually reduce weight of active constraints over time. 
Obviously, lifetime of constraints is much longer than lifetime of data points. Thus, the constraint fading 
function can be defined as 

𝑓𝑎𝑑(𝑡) = 2−𝛾𝑟
𝑡
  

where r is the time interval. 

Constraint Hit-Rate specifies the number of times when a constraint is utilized within the stream 
clustering process. For effective data processing, constraints are sorted by their hit-rate in descending 
order. 

Check Active and Update Constraints is a function to activate constraints before being used. This 
can be done by matching such constraints with the satisfied incoming data points. However, constraints 
are faded and obsolete over time.  

Prioritize Constraints is a function to sort constraints based on their hit-rate resulted in effective 
computation.  

2.2. SEDC-Stream Algorithm 

2.2.1. Discriminative Dimension Selection 

When clustering over high-dimensional data streams, the problem of data sparsity frequently 
happens. One possible solution to deal with this problem is to apply the projected clustering technique 
which has been proposed in [8]. For each cluster, projected clustering technique determines specific 
subset of relevant dimensions. As result, data points are less spread since their intra-dissimilarity within 
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a cluster is minimized.  Unfortunately, the distance between clusters (inter-dissimilarity) may become 
closer. The reason is that, in some specific dimensions, there exist the overlapped ranges which can be 
covered by radii of several other clusters, as shown in Fig. 1. 

Another approach named “discriminative dimension selection” for projected clustering is proposed 
[18]. Unlike the traditional projected clustering, the discriminative dimension selection consists in 
identifying all the discriminative dimensions. A discriminative dimension is highly relevant to its cluster 
and very distinguished from the other clusters. To determine all the discriminative dimensions, two 
steps performed which are dimension uniqueness filtered-out and dimension radii ranking. Dimension 
uniqueness is the number of clusters for which their radii are overlapped. For a given dimension, if its 
dimension uniqueness is more than the overlapped ratio, then the dimensions (and its overlapped 
dimensions) are filtered out, and all the remaining dimensions are ranked according to their radii. 
Discriminative dimensions are selected by choosing the remaining dimensions at the top |𝐹𝐶𝐻|𝑙 ranks 
where |𝐹𝐶𝐻| is the number of clusters and 𝑙 is the average number of selected dimensions for each 
cluster. 

 

Fig. 1.  Example of discriminative dimension selection (overlapped threshold= 0.7)  

and its associated bit vector [18] 

Let 𝑙 be the average number of selected dimensions for each cluster, and 𝑣 be the overlapped 
threshold. At first step, 𝑙 and 𝑣 are set to 1 and 0.7, respectively. The discriminative dimension selection 
mechanism and its associated bit vector are explained in Fig. 1. Suppose that, at time stamps 𝑡, the 
clustering output is composed of 4 clusters using 2 dimensions. First, for each cluster, dimension radius 
is computed based on its 𝐹𝐶𝐻. The radius of one cluster may be overlapped by the other clusters’ radius 
i.e. dimension #1 of cluster #1, #2 and #3. If the number of overlapped clusters ratio is more than v 
(0.7), then all the overlapped dimensions are filtered out. After that, the remaining dimensions are 
ranked (in ascending order) based on their radii. Finally, the dimensions that are at the top |𝐹𝐶𝐻|𝑙 
ranks will be selected as discriminative dimensions i.e. dimension #1 and #2 of cluster #3 and dimensions 
#2 of cluster #4 (in grey color). Notice that, the number of discriminative selected dimensions may be 
different in each cluster. 

2.2.2. Use of Must-Link constraints to guide the clustering process 

Must-link constraints are utilized to guide the cluster splitting process. An active cluster can be split 
into two clusters in case of existing of two separate density areas in such cluster dimension. However, 
this might mislead cluster splitting as shown in Fig. 2. The first and second dense area (represented by 
blue circle) might be split since there is a largest gap between those two areas. Unfortunately, these two 
dense areas belong to the same class. To prevent the improper cluster splitting, the must-link constraints 
must be applied. 

Regarding to cluster splitting process, FCH (Fading Cluster Histogram) is used to determine the 
best split point (i.e. 𝑖th bin of FCH) as shown in Fig. 2.  Here, must-link constraints are taken into 
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account. The cluster splitting is ignored if there exists at least one active constraint 𝑀𝐿(𝑀𝐿𝑥, 𝑀𝐿𝑦) 

such that both 𝑀𝐿𝑥 and 𝑀𝐿𝑦 separately appear in the 1st to 𝑖 − 1 bin of 𝐹𝐶𝐻 and the 𝑖th to the last bin 

of 𝐹𝐶𝐻. 

 

Fig. 2.  FCH on Cluster Splitting 

2.2.3. Use of Cannot-Link constraints to guide the clustering process 

Cannot-link constraints are utilized to guide cluster assignment of a new data point. Intuitively, a 
new data point is to be assigned to its closest cluster. However, in some circumstances, the new data 
point might be in conflict with the members of the closest cluster. With only few numbers of inaccurate-
assigned new data points, the resulting clustering structure might be changed. To overcome this 
problem, cannot- link constraints 𝐶𝐿(𝐶𝐿𝑥, 𝐶𝐿𝑦) can be used to guide the clustering process to find 

suitable cluster for the new incoming data point by considering both smallest distance and without 
violation of the cannot-link constraint(s). 

2.2.4. SEDC-Stream algorithm 

 This section describes SEDC-Stream main algorithm. SEDC-Stream combines dimension 
selection technique with the use of background knowledge as constraints as introduced in section 2.2.1 
and section 2.2.2 respectively. To guide the clustering process, background knowledge is used as 
constraints in two scenarios based the types of constraints.  First, must-link constraints are used to 
prevent cluster-splitting. In some circumstances, SEDC-Stream detects the cluster-splitting behavior 
which results in a separation of data points (𝑀𝐿𝑥, 𝑀𝐿𝑦) of the activated must-link constraint 𝑀𝐿. It 

implies that all the data points within the cluster are still related, and the splitting operation is not 
necessary. Second, cannot-link constraints are used in placing a new incoming data point into its suitable 
cluster. A new incoming data point is normally added into its closest cluster. However, if cannot-link 
constraint is activated, then the data point will be added to the cluster with smallest distance and without 
conflict to the cannot-link constraint. For dimension selection, any active cluster is projected to its 
discriminative dimensions that are highly relevant to its cluster and very distinguished from the other 
clusters.  

The main algorithm of SEDC-Stream is given in Fig. 3. In line 1, a new data point is retrieved. In 
line 2, constraints are activated and are updated their weights if they satisfied with the new data point. 
In line 3, all clusters are faded. The clusters with weight less than user-specified threshold (ƛ) are deleted. 
In line 4, to speed up the execution time, constraints are sorted according to their weight.  In line 5, any 
cluster can be split when behavior inside the cluster is obviously separated except there is a signal from 
must-link constraint (MLS). In line 6, the overlapping-active clusters are merged. In line 7, when the 
number of cluster count exceeds the limit, it begins to merge the closet pair of clusters until the number 
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of cluster count reaches the limit. In line 8, constraints are faded and deleted if their weight is less than 
user-specified threshold (ƛ). In line 9, it checks all clusters whether their statuses are active. In line 10-
12, all active clusters are re-projected to their new discriminative dimensions if members in the set of 
active clusters are changed.  In line 13-18, the incoming data point is included into its closet cluster that 
does not satisfy any cannot-link constraints, if its distance is within radius_factor (as an input parameter). 
Otherwise, a new isolated data point is created from this incoming data point. Then the algorithm 
returns to the top and waits for a new data point. 

 

Fig. 3.  Main SEDC-Stream algorithm 

 The modified and added functions from E-stream are given in Fig. 4 and briefly described as 
follows. 

FadingAll: All clusters are faded. Then, clusters with small weight (i.e. less than 𝜀) are deleted. 

CheckSplit: In the discriminative dimensions of any active cluster, if there is a splitting point and no 
established must-link constraints after splitting, then the cluster splitting process can be done. 
Otherwise, SEDC-Stream ignores splitting. 

MergeOverlapCluster:  The pairs of active overlapped clusters can be merged, unless they are the 
results of cluster splitting process. Notice that, only active clusters that include the new incoming data 
points are considered due to their self-revolution change.  

LimitMaximumCluster: If the total number of clusters reaches the maximum_cluster threshold, the 
closest pair of clusters is merged until the number of remaining clusters does not exceed the 
maximum_cluster. If there exists a new active cluster, DiscriminateProjectDimension method is 
performed after receiving a new data point to extract its discriminate dimensions as described in section 
2.2.1.  

FindClosestCluster: An incoming data point is assigned to its closet active cluster. This is done by 
determining the minimum cluster-point distance (CPDistance). Note that the distance is calculated only 
the discriminative dimensions of such active cluster. 

 

Algorithm SEDC-Stream 

 

Input          𝑋𝑡  :  data point X at time t              𝑀𝐿𝑆   :  activated constraint-set 

                  ƛ       :  decay rate                                𝑊       :  weight Threshold 

                 𝐼𝑀𝐿𝑆  :  input constraint-set 

 

1:  Retrieve new data 𝑋𝑡 

2:  CheckActive&UpdateConstraints (IMLS,MLS,W) 

3:  FadingAllCluster(ƛ) 

4:  PrioritizeConstraints(MLS) 

5:  ClusterSplitting(MLS) 

6:  MergeOverlapCluster() 

7:  LimitMaximumCluster() 

8:  FadingConstraints(ƛ) 

9:  CheckActiveCluster() 

10:   IF (found new active cluster(s) or active cluster(s) turn into inactive cluster(s) ) 

11:         DiscriminativeDimensionSelection() 

13:   (minDistance, index)  FindClosetCluster() 

14:   IF minDistance < radius_factor 

15:        ClusterAssignment(𝑋𝑡, 𝐹𝐶𝐻[𝑖𝑛𝑑𝑒𝑥]) // add Xt into its suitable  cluster 

16:   ELSE 

17: Create new 𝐹𝐶𝐻 from 𝑋𝑡  

18:   END 

19:  Waiting for new data 
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Notice that, after merging process in the MergeOvelapCluster and LimitMaximumCluster 
procedures, there are 3 cases of discriminative projected dimensions (BS). First, if both clusters are active 
clusters, the result is bitwise OR operation on both BS. Second, if it has only one active cluster, the 
result is the BS of active cluster. Otherwise the result is all dimensions (all bits of BS is set to 1). 

Procedure DiscriminativeDimensionSelection 
1:  Compute the |FCHactive|*d radius along d dimensions 

2:  Find the number of overlap |FCHactive|*d 

3:  If the number of overlap is greater than threshold,   

     neglect it. 

4:  Pick |FCHactive|*l remaining dimensions with the  

     least radius. 

5:  Set bit vector for each cluster reflecting its projected  

     dimensions (from line 4). 

 

Procedure CheckSplit 
1: for i 1 to |FCHactive| 

2:    for i 1 to d 

3:       if(BS(FCHactivei|j ) == 1)  //discriminative dimension 

4:          if(FCHactivei 
j has split point(s)) 

5:              if there is no separation of activated must-link  

                    constraint(s) after splitting  

6:                  split FCHactive using jth dimension 

7:                  S  S  { (i, |FCH|) } 

 
Procedure MergeOverlapCluster 
1:  for i  1 to |FCHactive| 

2:     for j  i+1 to |FCHactive| 

3:        overlap[i,j]  CCDistance(FCHactivei, FCHactivej) 

4:        m  merge_threshold 

5:        if(overlap[i,j]) > m*(FCHactivei.sd + FCHactivei.sd) 

6:            if(i,j) not in S 

7:                merge(FCHactivei, FCHactivej) 

 

Procedure FindClosetCluster 
1:  for i 1 to |FCHactive| 

2:     dist[i]  CPDistance(FCHactivei, Xi) 

3:  (mindistance, i)  min(dist[i]) 

4:  return (mindistance, i) 

Procedure FadingAll 
1:  for i 1 to |FCH| 

2:       Fading FCHi 

3:       If (FCHi.w < ε) // weight of cluster less than ε 

4:            delete FCHi 

 

Procedure LimitMaximumCluster  
1:   while |FCHactive| > maximum_cluster 

2:      for i  1 to |FCH| 

3:          for j  i+1 to |FCH| 

4:              dist[i,j]  CCDistance(FCHi, FCHj) 

5:      (first, second)  argmin(i,j)(dist[i,j]) 

6:      merge(FCHfirst, FCHsecond) 

 
Procedure CCDistance (FCH

i
, FCH

j
)  

1:  Create BStemp and set all bit to 1 

2:  if (both FCHi and FCHj are active clusters) 

3:     BStemp = BS(FCHi) | BS(FCHj) 

4:  else if (FCHi or FCHj  is active cluster) 

5:   Set BStemp as the same as BS of the active cluster 

6:  for k 1 to d 

7:     if (BStemp
k == 1) 

8:         distance = abs(center(FCHi )k - center(FCHj )k) 

9: d' = the number of bits in BStemp with value of 1 

10: distance = distance / d' 

11: return distance 

 
Procedure CPDistance(FCH

i
, X

i
)  

1:  for k 1 to d 

2:      if(BS(FCHi|k ) == 1) //discriminative dimension 

3:         distance = abs(center(FCHi )k - center(FCHj )k) 

4:  d' = the number of bits in BStemp with value of 1 

5:  distance = distance / d' 

6:  return distance 

Fig. 4.  Details of each procedure in SEDC-Stream. 

3. Results and Discussion 

In this section, clustering quality of SEDC-Stream will be demonstrated. The experiments are 
performed on three well-known streams datasets:  Forest Cover Type dataset [28], KDD-99 dataset 
[28], and Electricity dataset [29]. For comparison, SED-Stream [18] and SEDC-Stream have been 
implemented using C++. All the experiments are conducted on a 2.6 GHz Intel® Core i5 with 8GB 
memory. All the parameter settings of SEDC-Stream are as the following: stream speed, horizon and 
decay rate are set to 500, 2 and 0.1 which are similar to SED-Stream. 

3.1. Clustering Performance Comparision  

The first dataset is Forest Cover Type dataset which contains 581,012 instances with 10 numerical 
attributes of 7 classes. First 300,000 instances are used to evaluate the performance of both clustering 
algorithms and the data is split into smaller chunk of size 25,000 instances for evaluation. Fig. 5 shows 
that SEDC-Stream achieve better f-measure almost all the time of clustering, and gains comparable 
purity as SED-Stream. 
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Fig. 5.  F-measure and purity of SEDC-Stream on Forest Cover Type dataset 

 

The second dataset is KDD-99 dataset, which contains 250,000 instances with 43 attributes of 23 
classes. The results in Fig. 6 show that SEDC-Stream outperforms SED-stream in term of f-measure 
with equivalent purity.  

 

Fig. 6.  F-measure and purity of SEDC-Stream on KDD-99 dataset 

 

The last dataset is Electricity dataset, which contains 45,312 instances with 8 attributes of 2 classes. 
As shown in Fig. 7, SEDC-Stream can achieve much higher f-measure, with lower purity compared to 
SED-Stream. 

 

Fig. 7.  F-measure and purity of SEDC-Stream on Electricity dataset 

3.2. Performance on Integrating Instance-level Constraints 

To evaluate performance of SEDC-Stream on constraint selection, two types of constraints are used 
which are must-link constraints and cannot-link constraints. As explained in the previous section, both 
types of constraints are the constraints between a pair of instances. Must-link constraints (ML) indicate 
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that the two instances should be in the same cluster, and cannot-link constraints (CL) indicates that 
the two instances should not be grouped into the same cluster. 

Constraints are very expensive; therefore, SEDC-Stream is designed to use only a small number of 
constraints (less than 0.01%). For example, with Forest Cover Type dataset contains 300,000 instances; 
therefore 300,000 x 299,999/2 is about 45 million pairs of instances. For example, with Forest Cover 
Type dataset containing 300,000 instances, about 45 million pairs of instances (300,000 x 299,999/2) are 
generated. Only 0.0004% (200 constraints) of them is used in SEDC-Stream algorithm. Notice also 
that, even with very small number of constraints, those constraints are able to help improving the quality 
of the output clustering, as shown in the previous section. 

Because SEDC-Stream used both must-link and cannot-link constraints, in this section, both types 
of constraints are evaluated separately. The results in Fig. 8 show that using both types of constraints 
can achieve higher f-measure.  Note that the original SED-stream with or without constraints obtains 
very similar level of purity, so those results are omitted. Both types of constraints achieve indifferent 
purity. 

 

Fig. 8.  Cluster quality when only must-link or cannot-link or both constraints are allowed 

 

3.3. Time Complexity 

Compared to SED-Stream, SEDC-Stream require additional time to evaluate constraint conditions 
and to use those constraints to maintain the output clustering. Thus, SEDC-Stream uses more time to 
perform the clustering than SED-Stream in almost datasets as shown in Fig. 9. With the high-
dimensional datasets, it is clearly seen that the execution time of SEDC-Stream is significantly higher 
than SED-stream (i.e. Forest Cover Type and Electricity datasets). However, SEDC-Stream is faster 
than SED-Stream on KDD-99 dataset. This can be explained by the following observations. First, only 
a few attributes are used in the clustering process, and only 13 from 30 pairs of constraints meet the 
constraint conditions. Thus, a very few additional time is used in order to manage the constraints.  
Second, unnecessary clustering operations are dramatically decreased. This is due to less numbers of 
output clusters which are resulted from clustering-splitting prevention of must-link constraints. 
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Fig. 9.  F-measure and purity of SEDC-Stream on electricity dataset 

4. Conclusion 

This paper proposed SEDC-Stream, an evolution-based clustering algorithm for high dimensional 
data streams. Two solutions have proposed to alleviate the complexity of high dimensional data streams 
processing: dimension selection & use of constraints. Dimension selection is able to find evolving 
clusters with subgroups of discriminative dimensions during the progression of data streams. During the 
stream progression, instance-level constraints which are must-link and cannot-link constraints are 
integrated by means of constraints prioritization, activation, fading and outdating in order to improve 
the clustering output. 

Several research directions are possible to improve the proposed algorithm. First, the use of 
background or domain expert knowledge in a semi-supervised clustering manner. Indeed, the use of 
constraints may not be appropriate with respect to the dynamic nature of data streams. Exploiting 
background knowledge as single labeled data points (not pair of points) is more appropriate for data 
streams. Labeled data points can be immediately utilized for determining the class of clusters, and 
effectively identifying the most appropriate clustering structure evolution operations. Second, an 
alternate and efficient version of SEDC-Stream for generating arbitrary shape clusters is needed. Indeed, 
trying to minimize the squared error, SEDC-Stream is only able to generate spherical shape clusters. 
Clusters with arbitrary shapes are observed in many application areas of science. Online density-based 
and hierarchical clustering can be combined to obtain an efficient evolution-based and shape-based 
clustering algorithm for high dimensional data streams. 
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