
International Journal of Advances in Intelligent Informatics ISSN 2442-6571

Vol. 4, No. 3, November 2018, pp. 167-179 167

 https://doi.org/10.26555/ijain.v4i3.271 http://ijain.org ijain@uad.ac.id

Constraint-based discriminative dimension selection for
high-dimensional stream clustering

Kitsana Waiyamai a,1,*, Thanapat Kangkachit b,2

a Department of Computer Engineering, Kasetsart University, Bangkok, Thailand
b College of Innovative Technology and Engineering, Dhurakij Pundit University, Bangkok, Thailand
1 fengknw@ku.ac.th; 2 thanapat.kan@dpu.ac.th

* corresponding author

1. Introduction

Clustering data streams is one of active research topic in data mining. The streams clustering
processes data in a single pass and summarizes them in real-time, while using limited resources. Many
techniques have been proposed for clustering data streams [1]–[7]. Nevertheless, small number of them
have been developed for monitoring and detecting change of the clustering structures [8]–[10]. E-
Stream [9] is an evolution-based stream clustering technique that has been developed to detect change
of the evolving clustering structures. However, its runtime increases and its performance drops when
perform on streams with large number of dimensions.

Complexity of the stream clustering methods is increased when perform on data with large number
of dimensions. The use of dimension projection technique [2], [11]–[17] is one possible solution to
reduce complexity in dealing high dimensional streams. The concept of “projected clustering” has been
introduced in HP-Stream [2]. With its dimension projection mechanism, HPStream is able to
determine the specific set of cluster dimensions. Similar to HPStream, SED-Stream [18] is developed
to deal with high dimensional data streams. By using the standard-deviation of the attributes, SED-
Stream is able to select relevant subset of cluster dimensions. Experimental results over several stream
datasets demonstrate that SED-Stream is able to generate higher clustering quality.

ARTICL E INFO

ABSTRACT

Article history

Selected paper from The 2018 4th

International Conference on Science

in Information Technology (ICSITech)

(Melaka-Malaysia, 30-31 October

2018) (http://icsitech.org/). Peer-

reviewed by ICSITech Scientific

Committee and Editorial Team of

IJAIN journal.

Received July 1, 2018

Revised August 30, 2018

Accepted September 9, 2018

Available Online November 30, 2018

 Clustering data streams is one of active research topic in data mining.
However, runtime of the existing stream clustering algorithms increases
and their performance drop in the face of large number of dimensions.
Complexity of the stream clustering methods is increased when perform on
data with large number of dimensions. In order to reduce the clustering
complexity, one possible solution consists in determining the appropriate
subset of cluster dimensions via dimension projection. SED-Stream is an
efficient clustering algorithm that supports high dimension data streams.
The aim of this paper is to increase performance of SED-Stream in terms
of both clustering quality and execution time. In order to improve the
clustering process, background or domain expert knowledge are integrated
as “constraints” in SEDC-Stream. The new algorithm, SEDC-Stream,
supports the evolving characteristics of the dynamic constraints which are
activation, fading, outdating and prioritization. SEDC-Stream algorithm is
able to reduce cluster splitting time, and place new incoming points to their
suitable clusters. Compared to SED-Stream on the three real-world
streams datasets, SEDC-Stream is able to generate a better clustering
performance in terms of both purity and f-measure.

This is an open access article under the CC–BY-SA license.

Keywords

Incremental stream clustering

High-dimensional data streams

Dimension selection

Projected clustering

Constraint-based clustering

https://doi.org/10.26555/ijain.v4i3.271
http://ijain.org/index.php/IJAIN/index
mailto:ijain@uad.ac.id?subject=[IJAIN]
fengknw@ku.ac.th
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://crossmark.crossref.org/dialog/?doi=10.26555/ijain.v4i3.271&domain=pdf

168 International Journal of Advances in Intelligent Informatics ISSN 2442-6571

 Vol. 4, No. 3, November 2018, pp. 167-179

 Waiyamai & Kangkachit (Constraint-based discriminative dimension selection for high-dimensional stream clustering)

One way to improve quality of the clustering result is via the use of domain expert knowledge [19],
[20]. Semi-supervised stream clustering is a technique that performs cluster analysis over data streams
by using domain expert knowledge as “constraint”. Although large number of stream clustering
techniques have been proposed, a small number of them have been involved in semi-supervised manner
[21]–[23]. A conceptual model for analyzing data streams using constraints has been proposed in Ruiz
et al. [24]. The traditional K-means is extended to obtain the Constraint-based K-means algorithm [25].
C-Denstream [26] is the extended version of Denstream, by utilizing constraints during the clustering
process. An instance-level Must-link constraint is defined as a pair of instances (x,y) that must be
members to the same cluster [1]. Must-Link constraints are integrated as background knowledge in E-
stream [9] to obtain a semi-supervised stream clustering technique named CE-Steam [27]. By adapting
its clustering structure over the continuous flow of data points, CE-Stream continuously updates its
constraints based on their hit-rates.

The main goal of this paper is to improve performance of the existing evolution-based stream
clustering algorithms such as E-Stream [9], CE-Stream [27] and SED-Stream [18]. To deal with high
dimensional data streams, the idea is to combine dimension selection technique with the use of domain
expert knowledge as constraints. The new algorithm is named SEDC-Stream (Constraint-based
discriminative dimension selection for clustering data streams with large number of dimensions). For
dimension selection, attributes of each cluster are projected to its discriminative dimension attributes.
During the progression of data streams, SEDC-Stream locates all the active clusters while determining
their discriminative attributes. Two types of instance-level constraints, Must-link and Cannot-link, are
introduced and integrated in a semi-supervised manner. SEDC-Stream does support the evolving
characteristics of the dynamic constraints which are constraint activation, fading, outdating and
prioritization. SEDC-Stream is able to reduce an excessive splitting during the clustering process, and
place new incoming points to their suitable clusters, during the data streams progression. Compared to
SED-Stream on three real-world streams datasets [28], [29], the results reveal that SEDC-Stream has
improved both the clustering output quality and the execution time.

To summarize, the new SEDC-Stream algorithm provides the following mechanisms to support high
dimensional data streams are discriminative dimension selection to support the evolving clustering
structure; and Integration of activated, faded and obsolete instance-level constraints during the
progression of data streams. SEDC-Stream outperforms the existing evolution-based stream clustering
algorithms such as E-Stream, CE-Stream and SED-Stream in terms of clustering quality.

The remaining of this paper is structured as follows. Section 2 divided into two sections. In section
2.1, definitions and concepts related to the stream clustering, discriminative dimension selection, and
stream constraints are given, while in section 2.2, the SEDC-Stream is presented in detail. In section 3,
the performance of SEDC-Stream and SED-Stream are compared over three real-world stream datasets.
In section 4, the conclusion and the future works are explained.

2. Method

2.1. Basic Concepts

In the following, basic concepts and techniques related to the stream clustering, discriminative
dimension selection, and stream constraints are given.

2.1.1. Cluster Representation

Assume that data streams consist of a set of data points 𝑋1 … 𝑋𝑘 arriving at time stamps 𝑇1 … 𝑇𝑘.
Each data point 𝑋𝑖 contains 𝑑 dimensions, denoted as 𝑋𝑖 = (𝑥1

𝑖 … 𝑥𝑑
𝑖). During the progression of

data streams, there exist a large number of incoming data points that cannot be stored into the limited-
size memory. Instead, cluster representation is used. In Aggarwal et. al. [2], a fading cluster structure
(FCS) was introduced. Later, Udommanetanakit et. al. [9] proposed FCH that extended FCS by adding
-bin histogram to detect change of the clustering structure. In Chairukwattana et. al. [30], the notion
of dimension projection was added into 𝐹𝐶𝐻. Finally, 𝐹𝐶𝐻 is defined as 𝐹𝐶𝐻 =
 (𝐹𝐶1(𝑡), 𝐹𝐶2(𝑡), 𝑊(𝑡), 𝐵𝑆(𝑡), 𝐻(𝑡)). The description of 𝐹𝐶𝐻 can be described as follows.

ISSN 2442-6571 International Journal of Advances in Intelligent Informatics 169
 Vol. 4, No. 3, November 2018, pp. 167-179

 Waiyamai & Kangkachit (Constraint-based discriminative dimension selection for high-dimensional stream clustering)

Let 𝑁 be the total number of data points of such cluster, 𝑇𝑖 be the time when data point xi is
retrieved, and 𝑡 be the current time. The fading weight of data point 𝑥𝑖 is defined as 𝑓(𝑡 − 𝑇𝑖) where
𝑓(𝑡) = 2 − 𝜆𝑡 and 𝜆 is the user-defined decay rate.

𝑭𝑪𝟏(𝒕) is a vector of weighted sum of each dimension at time 𝑡. The 𝑗𝑡ℎ dimension is

𝐹𝐶1𝑗(𝑡) = ∑ 𝑓(𝑡 − 𝑇𝑖) ∙ (𝑋𝑗
𝑖)𝑁

𝑖=1   

𝑭𝑪𝟐(𝒕) is a vector of weighted sum of square of each dimension at time 𝑡. The 𝑗th dimension is

𝐹𝐶2𝑗(𝑡) = ∑ 𝑓(𝑡 − 𝑇𝑖) ∙ (𝑋𝑗
𝑖)

2𝑁
𝑖=1   

𝑾(𝒕) is a sum of all weights of data points in the cluster at time 𝑡, i.e.,

W(𝑡) = ∑ 𝑓(𝑡 − 𝑇𝑖)
𝑁
𝑖=1   

𝑩𝑺(𝒕) is a bit vector of projected dimensions at time t. For the 𝑗th dimension is

𝐵𝑆(𝑡) = {
1, 𝑖𝑓 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 𝑗 𝑖𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 𝑎 𝑠𝑒𝑡 𝑜𝑓 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 (4)

Note that the number of projected dimensions in each cluster may be different.

𝑯(𝒕) is a  − 𝑏𝑖𝑛 histogram with equal intervals of data values. For the 𝑗th dimension at time t, the
𝑚th bin histogram is

H𝑚
𝑗 (𝑡) = ∑ 𝑓(𝑡 − 𝑇𝑖) ∙ (𝑋𝑗

𝑖) ∙ (𝑦1,𝑚
𝑖)𝑁

𝑖=1   

where

y
m
i = {1, if m ∙ r + min(xj) ≤ xi

j
≤ (m + 1) ∙ r + min(xj); r =

max(xj)-min(xj)

α

0, otherwise.
 

 Note that the value of bin width (𝑟) may be different in each dimension.

 Each cluster can be categorized as active or inactive cluster when its weight is greater than or
lower than the user-specified threshold active_cluster_weigth respectively. The active clusters are capable
of merging with their nearest incoming data points resulted in their self-evolution clustering structure.
Contrastingly, to become an active cluster, such inactive clusters must be merged together with other
inactive or active clusters.

2.1.2. Distance Functions

Here, the distance functions are modified in order to deal with the different subset of projected
dimensions of each cluster. We recall the notion of 𝐵𝑆(𝑡) (in section 2.1.1) which is a bit vector
represented the projected dimensions of such cluster at timestamp 𝑡. The distances functions can be
defined as follows.

Cluster-Point distance 𝑑𝑖𝑠𝑡(𝐶, 𝑋𝑖) is measured from a center of the active cluster 𝐶 to a data point
𝑋𝑖. For each dimension 𝑗, the distance is normalized by the radius (standard deviation) of the cluster
radius 𝑗𝑐. The 𝑑𝑖𝑠𝑡(𝐶, 𝑋𝑖) function at timestamp 𝑡 is

𝑑𝑖𝑠𝑡(𝐶, 𝑋𝑖) =
1

𝑛
∙ ∑ |

𝑐𝑒𝑛𝑡𝑒𝑟𝐶
𝑗

−𝑥𝑖
𝑗

𝑟𝑎𝑑𝑖𝑢𝑠𝐶
𝑗 |𝑗∈𝐵𝑆(𝑡)   

170 International Journal of Advances in Intelligent Informatics ISSN 2442-6571

 Vol. 4, No. 3, November 2018, pp. 167-179

 Waiyamai & Kangkachit (Constraint-based discriminative dimension selection for high-dimensional stream clustering)

where 𝑛 is the number of projected dimensions of cluster 𝐶 represented by bit vector 𝐵𝑆(𝑡). Thus, an
incoming data point is then merged into its closet active cluster i.e. having minimum Cluster-Point
distance.

Cluster-Cluster distance 𝑑𝑖𝑠𝑡(𝐶𝑎, 𝐶𝑏) is measured between two cluster centers (𝐶𝑎 and 𝐶𝑏). The
𝑑𝑖𝑠𝑡(𝐶𝑎, 𝐶𝑏) function at timestamp 𝑡 is

𝑑𝑖𝑠𝑡(𝐶𝑎, 𝐶𝑏) =
1

𝑛
∙ ∑ |𝑐𝑒𝑛𝑡𝑒𝑟𝐶𝑎

𝑗 − 𝑐𝑒𝑛𝑡𝑒𝑟𝐶𝑏

𝑗
|𝑗∈𝐵𝑆(𝑡)   

where n is the total number of projected dimensions represented by bit vector 𝐵𝑆(𝑡). Note that 𝐵𝑆(𝑡)
corresponds to union set of the projected dimensions of these two clusters. Therefore, a pair of clusters
can be merged by determining its cluster-cluster distance.

2.1.3. Instance-Level Stream Constraint

 In the following, definitions related to instance-level stream constraint are given. More detailed
explanation of these concepts can be found in [27]. We also refer to the notation of data streams, data
point and fading weight as introduced in section 2.1.1.

 Must-link constraint denoted as 𝑀𝐿 is a pair of data points (𝑀𝐿𝑥, 𝑀𝐿𝑦) that must be assigned to

the same cluster.

Cannot-link constraint denoted as 𝐶𝐿 is a pair of data points (𝐶𝐿𝑥, 𝐶𝐿𝑦) that must not be assigned

to the same cluster.

Active constraint denoted as 𝐴𝐿 is a must-link or cannot-link constraint where all weights of its
data points (𝐴𝐿𝑥, 𝐴𝐿𝑦) are greater than user-specified threshold 𝑊.

Constraint weight is the minimum weight of the active constraint data points 𝐴𝐿𝑥 and 𝐴𝐿𝑦, and

can be defined as

𝐶𝑇𝑤𝑖𝑔ℎ𝑡 = min (𝑤𝑒𝑖𝑔ℎ𝑡(𝐴𝐿𝑥), 𝑤𝑒𝑖𝑔ℎ𝑡(𝐴𝐿𝑦))  

Constraint fading function is used to gradually reduce weight of active constraints over time.
Obviously, lifetime of constraints is much longer than lifetime of data points. Thus, the constraint fading
function can be defined as

𝑓𝑎𝑑(𝑡) = 2−𝛾𝑟
𝑡
  

where r is the time interval.

Constraint Hit-Rate specifies the number of times when a constraint is utilized within the stream
clustering process. For effective data processing, constraints are sorted by their hit-rate in descending
order.

Check Active and Update Constraints is a function to activate constraints before being used. This
can be done by matching such constraints with the satisfied incoming data points. However, constraints
are faded and obsolete over time.

Prioritize Constraints is a function to sort constraints based on their hit-rate resulted in effective
computation.

2.2. SEDC-Stream Algorithm

2.2.1. Discriminative Dimension Selection

When clustering over high-dimensional data streams, the problem of data sparsity frequently
happens. One possible solution to deal with this problem is to apply the projected clustering technique
which has been proposed in [8]. For each cluster, projected clustering technique determines specific
subset of relevant dimensions. As result, data points are less spread since their intra-dissimilarity within

ISSN 2442-6571 International Journal of Advances in Intelligent Informatics 171
 Vol. 4, No. 3, November 2018, pp. 167-179

 Waiyamai & Kangkachit (Constraint-based discriminative dimension selection for high-dimensional stream clustering)

a cluster is minimized. Unfortunately, the distance between clusters (inter-dissimilarity) may become
closer. The reason is that, in some specific dimensions, there exist the overlapped ranges which can be
covered by radii of several other clusters, as shown in Fig. 1.

Another approach named “discriminative dimension selection” for projected clustering is proposed
[18]. Unlike the traditional projected clustering, the discriminative dimension selection consists in
identifying all the discriminative dimensions. A discriminative dimension is highly relevant to its cluster
and very distinguished from the other clusters. To determine all the discriminative dimensions, two
steps performed which are dimension uniqueness filtered-out and dimension radii ranking. Dimension
uniqueness is the number of clusters for which their radii are overlapped. For a given dimension, if its
dimension uniqueness is more than the overlapped ratio, then the dimensions (and its overlapped
dimensions) are filtered out, and all the remaining dimensions are ranked according to their radii.
Discriminative dimensions are selected by choosing the remaining dimensions at the top |𝐹𝐶𝐻|𝑙 ranks
where |𝐹𝐶𝐻| is the number of clusters and 𝑙 is the average number of selected dimensions for each
cluster.

Fig. 1. Example of discriminative dimension selection (overlapped threshold= 0.7)

and its associated bit vector [18]

Let 𝑙 be the average number of selected dimensions for each cluster, and 𝑣 be the overlapped
threshold. At first step, 𝑙 and 𝑣 are set to 1 and 0.7, respectively. The discriminative dimension selection
mechanism and its associated bit vector are explained in Fig. 1. Suppose that, at time stamps 𝑡, the
clustering output is composed of 4 clusters using 2 dimensions. First, for each cluster, dimension radius
is computed based on its 𝐹𝐶𝐻. The radius of one cluster may be overlapped by the other clusters’ radius
i.e. dimension #1 of cluster #1, #2 and #3. If the number of overlapped clusters ratio is more than v
(0.7), then all the overlapped dimensions are filtered out. After that, the remaining dimensions are
ranked (in ascending order) based on their radii. Finally, the dimensions that are at the top |𝐹𝐶𝐻|𝑙
ranks will be selected as discriminative dimensions i.e. dimension #1 and #2 of cluster #3 and dimensions
#2 of cluster #4 (in grey color). Notice that, the number of discriminative selected dimensions may be
different in each cluster.

2.2.2. Use of Must-Link constraints to guide the clustering process

Must-link constraints are utilized to guide the cluster splitting process. An active cluster can be split
into two clusters in case of existing of two separate density areas in such cluster dimension. However,
this might mislead cluster splitting as shown in Fig. 2. The first and second dense area (represented by
blue circle) might be split since there is a largest gap between those two areas. Unfortunately, these two
dense areas belong to the same class. To prevent the improper cluster splitting, the must-link constraints
must be applied.

Regarding to cluster splitting process, FCH (Fading Cluster Histogram) is used to determine the
best split point (i.e. 𝑖th bin of FCH) as shown in Fig. 2. Here, must-link constraints are taken into

172 International Journal of Advances in Intelligent Informatics ISSN 2442-6571

 Vol. 4, No. 3, November 2018, pp. 167-179

 Waiyamai & Kangkachit (Constraint-based discriminative dimension selection for high-dimensional stream clustering)

account. The cluster splitting is ignored if there exists at least one active constraint 𝑀𝐿(𝑀𝐿𝑥, 𝑀𝐿𝑦)

such that both 𝑀𝐿𝑥 and 𝑀𝐿𝑦 separately appear in the 1st to 𝑖 − 1 bin of 𝐹𝐶𝐻 and the 𝑖th to the last bin

of 𝐹𝐶𝐻.

Fig. 2. FCH on Cluster Splitting

2.2.3. Use of Cannot-Link constraints to guide the clustering process

Cannot-link constraints are utilized to guide cluster assignment of a new data point. Intuitively, a
new data point is to be assigned to its closest cluster. However, in some circumstances, the new data
point might be in conflict with the members of the closest cluster. With only few numbers of inaccurate-
assigned new data points, the resulting clustering structure might be changed. To overcome this
problem, cannot- link constraints 𝐶𝐿(𝐶𝐿𝑥, 𝐶𝐿𝑦) can be used to guide the clustering process to find

suitable cluster for the new incoming data point by considering both smallest distance and without
violation of the cannot-link constraint(s).

2.2.4. SEDC-Stream algorithm

 This section describes SEDC-Stream main algorithm. SEDC-Stream combines dimension
selection technique with the use of background knowledge as constraints as introduced in section 2.2.1
and section 2.2.2 respectively. To guide the clustering process, background knowledge is used as
constraints in two scenarios based the types of constraints. First, must-link constraints are used to
prevent cluster-splitting. In some circumstances, SEDC-Stream detects the cluster-splitting behavior
which results in a separation of data points (𝑀𝐿𝑥, 𝑀𝐿𝑦) of the activated must-link constraint 𝑀𝐿. It

implies that all the data points within the cluster are still related, and the splitting operation is not
necessary. Second, cannot-link constraints are used in placing a new incoming data point into its suitable
cluster. A new incoming data point is normally added into its closest cluster. However, if cannot-link
constraint is activated, then the data point will be added to the cluster with smallest distance and without
conflict to the cannot-link constraint. For dimension selection, any active cluster is projected to its
discriminative dimensions that are highly relevant to its cluster and very distinguished from the other
clusters.

The main algorithm of SEDC-Stream is given in Fig. 3. In line 1, a new data point is retrieved. In
line 2, constraints are activated and are updated their weights if they satisfied with the new data point.
In line 3, all clusters are faded. The clusters with weight less than user-specified threshold (ƛ) are deleted.
In line 4, to speed up the execution time, constraints are sorted according to their weight. In line 5, any
cluster can be split when behavior inside the cluster is obviously separated except there is a signal from
must-link constraint (MLS). In line 6, the overlapping-active clusters are merged. In line 7, when the
number of cluster count exceeds the limit, it begins to merge the closet pair of clusters until the number

ISSN 2442-6571 International Journal of Advances in Intelligent Informatics 173
 Vol. 4, No. 3, November 2018, pp. 167-179

 Waiyamai & Kangkachit (Constraint-based discriminative dimension selection for high-dimensional stream clustering)

of cluster count reaches the limit. In line 8, constraints are faded and deleted if their weight is less than
user-specified threshold (ƛ). In line 9, it checks all clusters whether their statuses are active. In line 10-
12, all active clusters are re-projected to their new discriminative dimensions if members in the set of
active clusters are changed. In line 13-18, the incoming data point is included into its closet cluster that
does not satisfy any cannot-link constraints, if its distance is within radius_factor (as an input parameter).
Otherwise, a new isolated data point is created from this incoming data point. Then the algorithm
returns to the top and waits for a new data point.

Fig. 3. Main SEDC-Stream algorithm

 The modified and added functions from E-stream are given in Fig. 4 and briefly described as
follows.

FadingAll: All clusters are faded. Then, clusters with small weight (i.e. less than 𝜀) are deleted.

CheckSplit: In the discriminative dimensions of any active cluster, if there is a splitting point and no
established must-link constraints after splitting, then the cluster splitting process can be done.
Otherwise, SEDC-Stream ignores splitting.

MergeOverlapCluster: The pairs of active overlapped clusters can be merged, unless they are the
results of cluster splitting process. Notice that, only active clusters that include the new incoming data
points are considered due to their self-revolution change.

LimitMaximumCluster: If the total number of clusters reaches the maximum_cluster threshold, the
closest pair of clusters is merged until the number of remaining clusters does not exceed the
maximum_cluster. If there exists a new active cluster, DiscriminateProjectDimension method is
performed after receiving a new data point to extract its discriminate dimensions as described in section
2.2.1.

FindClosestCluster: An incoming data point is assigned to its closet active cluster. This is done by
determining the minimum cluster-point distance (CPDistance). Note that the distance is calculated only
the discriminative dimensions of such active cluster.

Algorithm SEDC-Stream

Input 𝑋𝑡 : data point X at time t 𝑀𝐿𝑆 : activated constraint-set

 ƛ : decay rate 𝑊 : weight Threshold

 𝐼𝑀𝐿𝑆 : input constraint-set

1: Retrieve new data 𝑋𝑡

2: CheckActive&UpdateConstraints (IMLS,MLS,W)

3: FadingAllCluster(ƛ)

4: PrioritizeConstraints(MLS)

5: ClusterSplitting(MLS)

6: MergeOverlapCluster()

7: LimitMaximumCluster()

8: FadingConstraints(ƛ)

9: CheckActiveCluster()

10: IF (found new active cluster(s) or active cluster(s) turn into inactive cluster(s))

11: DiscriminativeDimensionSelection()

13: (minDistance, index)  FindClosetCluster()

14: IF minDistance < radius_factor

15: ClusterAssignment(𝑋𝑡, 𝐹𝐶𝐻[𝑖𝑛𝑑𝑒𝑥]) // add Xt into its suitable cluster

16: ELSE

17: Create new 𝐹𝐶𝐻 from 𝑋𝑡

18: END

19: Waiting for new data

174 International Journal of Advances in Intelligent Informatics ISSN 2442-6571

 Vol. 4, No. 3, November 2018, pp. 167-179

 Waiyamai & Kangkachit (Constraint-based discriminative dimension selection for high-dimensional stream clustering)

Notice that, after merging process in the MergeOvelapCluster and LimitMaximumCluster
procedures, there are 3 cases of discriminative projected dimensions (BS). First, if both clusters are active
clusters, the result is bitwise OR operation on both BS. Second, if it has only one active cluster, the
result is the BS of active cluster. Otherwise the result is all dimensions (all bits of BS is set to 1).

Procedure DiscriminativeDimensionSelection
1: Compute the |FCHactive|*d radius along d dimensions

2: Find the number of overlap |FCHactive|*d

3: If the number of overlap is greater than threshold,

 neglect it.

4: Pick |FCHactive|*l remaining dimensions with the

 least radius.

5: Set bit vector for each cluster reflecting its projected

 dimensions (from line 4).

Procedure CheckSplit
1: for i 1 to |FCHactive|

2: for i 1 to d

3: if(BS(FCHactivei|j) == 1) //discriminative dimension

4: if(FCHactivei
j has split point(s))

5: if there is no separation of activated must-link

 constraint(s) after splitting

6: split FCHactive using jth dimension

7: S  S  { (i, |FCH|) }

Procedure MergeOverlapCluster
1: for i  1 to |FCHactive|

2: for j  i+1 to |FCHactive|

3: overlap[i,j]  CCDistance(FCHactivei, FCHactivej)

4: m  merge_threshold

5: if(overlap[i,j]) > m*(FCHactivei.sd + FCHactivei.sd)

6: if(i,j) not in S

7: merge(FCHactivei, FCHactivej)

Procedure FindClosetCluster
1: for i 1 to |FCHactive|

2: dist[i]  CPDistance(FCHactivei, Xi)

3: (mindistance, i)  min(dist[i])

4: return (mindistance, i)

Procedure FadingAll
1: for i 1 to |FCH|

2: Fading FCHi

3: If (FCHi.w < ε) // weight of cluster less than ε

4: delete FCHi

Procedure LimitMaximumCluster
1: while |FCHactive| > maximum_cluster

2: for i  1 to |FCH|

3: for j  i+1 to |FCH|

4: dist[i,j]  CCDistance(FCHi, FCHj)

5: (first, second)  argmin(i,j)(dist[i,j])

6: merge(FCHfirst, FCHsecond)

Procedure CCDistance (FCH

i
, FCH

j
)

1: Create BStemp and set all bit to 1

2: if (both FCHi and FCHj are active clusters)

3: BStemp = BS(FCHi) | BS(FCHj)

4: else if (FCHi or FCHj is active cluster)

5: Set BStemp as the same as BS of the active cluster

6: for k 1 to d

7: if (BStemp
k == 1)

8: distance = abs(center(FCHi)k - center(FCHj)k)

9: d' = the number of bits in BStemp with value of 1

10: distance = distance / d'

11: return distance

Procedure CPDistance(FCH

i
, X

i
)

1: for k 1 to d

2: if(BS(FCHi|k) == 1) //discriminative dimension

3: distance = abs(center(FCHi)k - center(FCHj)k)

4: d' = the number of bits in BStemp with value of 1

5: distance = distance / d'

6: return distance

Fig. 4. Details of each procedure in SEDC-Stream.

3. Results and Discussion

In this section, clustering quality of SEDC-Stream will be demonstrated. The experiments are
performed on three well-known streams datasets: Forest Cover Type dataset [28], KDD-99 dataset
[28], and Electricity dataset [29]. For comparison, SED-Stream [18] and SEDC-Stream have been
implemented using C++. All the experiments are conducted on a 2.6 GHz Intel® Core i5 with 8GB
memory. All the parameter settings of SEDC-Stream are as the following: stream speed, horizon and
decay rate are set to 500, 2 and 0.1 which are similar to SED-Stream.

3.1. Clustering Performance Comparision

The first dataset is Forest Cover Type dataset which contains 581,012 instances with 10 numerical
attributes of 7 classes. First 300,000 instances are used to evaluate the performance of both clustering
algorithms and the data is split into smaller chunk of size 25,000 instances for evaluation. Fig. 5 shows
that SEDC-Stream achieve better f-measure almost all the time of clustering, and gains comparable
purity as SED-Stream.

ISSN 2442-6571 International Journal of Advances in Intelligent Informatics 175
 Vol. 4, No. 3, November 2018, pp. 167-179

 Waiyamai & Kangkachit (Constraint-based discriminative dimension selection for high-dimensional stream clustering)

Fig. 5. F-measure and purity of SEDC-Stream on Forest Cover Type dataset

The second dataset is KDD-99 dataset, which contains 250,000 instances with 43 attributes of 23
classes. The results in Fig. 6 show that SEDC-Stream outperforms SED-stream in term of f-measure
with equivalent purity.

Fig. 6. F-measure and purity of SEDC-Stream on KDD-99 dataset

The last dataset is Electricity dataset, which contains 45,312 instances with 8 attributes of 2 classes.
As shown in Fig. 7, SEDC-Stream can achieve much higher f-measure, with lower purity compared to
SED-Stream.

Fig. 7. F-measure and purity of SEDC-Stream on Electricity dataset

3.2. Performance on Integrating Instance-level Constraints

To evaluate performance of SEDC-Stream on constraint selection, two types of constraints are used
which are must-link constraints and cannot-link constraints. As explained in the previous section, both
types of constraints are the constraints between a pair of instances. Must-link constraints (ML) indicate

25000 75000 125000 175000 225000 275000

0.5

0.6

0.7

0.8

Data Points

f-
m

e
a
s
u
re

Forest Cover Type

25000 75000 125000 175000 225000 275000

0.6

0.7

0.8

0.9

Data Points

p
u
ri
ty

Forest Cover Type

SEDC

SEDCSED

SED

25000 75000 125000 175000 225000

0.7

0.8

0.9

1

Data Points

f-
m

e
a
s
u

re

KDD-99

25000 75000 125000 175000 225000

0.7

0.8

0.9

1

Data Points

p
u
ri
ty

KDD-99SEDC

SEDC

SED

SED

4000 12000 20000 28000 36000 45000

0.4

0.5

0.6

0.7

Data Points

f-
m

e
a
s
u

re

Electricity

4000 12000 20000 28000 36000 45000

0.6

0.7

0.8

0.9

Data Points

p
u
ri
ty

ElectricitySEDC

SEDC

SED

SED

176 International Journal of Advances in Intelligent Informatics ISSN 2442-6571

 Vol. 4, No. 3, November 2018, pp. 167-179

 Waiyamai & Kangkachit (Constraint-based discriminative dimension selection for high-dimensional stream clustering)

that the two instances should be in the same cluster, and cannot-link constraints (CL) indicates that
the two instances should not be grouped into the same cluster.

Constraints are very expensive; therefore, SEDC-Stream is designed to use only a small number of
constraints (less than 0.01%). For example, with Forest Cover Type dataset contains 300,000 instances;
therefore 300,000 x 299,999/2 is about 45 million pairs of instances. For example, with Forest Cover
Type dataset containing 300,000 instances, about 45 million pairs of instances (300,000 x 299,999/2) are
generated. Only 0.0004% (200 constraints) of them is used in SEDC-Stream algorithm. Notice also
that, even with very small number of constraints, those constraints are able to help improving the quality
of the output clustering, as shown in the previous section.

Because SEDC-Stream used both must-link and cannot-link constraints, in this section, both types
of constraints are evaluated separately. The results in Fig. 8 show that using both types of constraints
can achieve higher f-measure. Note that the original SED-stream with or without constraints obtains
very similar level of purity, so those results are omitted. Both types of constraints achieve indifferent
purity.

Fig. 8. Cluster quality when only must-link or cannot-link or both constraints are allowed

3.3. Time Complexity

Compared to SED-Stream, SEDC-Stream require additional time to evaluate constraint conditions
and to use those constraints to maintain the output clustering. Thus, SEDC-Stream uses more time to
perform the clustering than SED-Stream in almost datasets as shown in Fig. 9. With the high-
dimensional datasets, it is clearly seen that the execution time of SEDC-Stream is significantly higher
than SED-stream (i.e. Forest Cover Type and Electricity datasets). However, SEDC-Stream is faster
than SED-Stream on KDD-99 dataset. This can be explained by the following observations. First, only
a few attributes are used in the clustering process, and only 13 from 30 pairs of constraints meet the
constraint conditions. Thus, a very few additional time is used in order to manage the constraints.
Second, unnecessary clustering operations are dramatically decreased. This is due to less numbers of
output clusters which are resulted from clustering-splitting prevention of must-link constraints.

25000 75000 125000 175000 225000 275000

0.5

0.6

0.7

0.8

Data Points

f-
m

e
a
s
u
re

Forest Cover Type

ML+CL

ML

CL

25000 75000 125000 175000 225000

0.7

0.8

0.9

1

Data Points

f-
m

e
a
s
u
re

KDD-99

ML+CL

ML

CL

4000 12000 20000 28000 36000 45000

0.4

0.5

0.6

0.7

Data Points

f-
m

e
a
s
u
re

Electricity

ML+CL

ML

CL

ISSN 2442-6571 International Journal of Advances in Intelligent Informatics 177
 Vol. 4, No. 3, November 2018, pp. 167-179

 Waiyamai & Kangkachit (Constraint-based discriminative dimension selection for high-dimensional stream clustering)

Fig. 9. F-measure and purity of SEDC-Stream on electricity dataset

4. Conclusion

This paper proposed SEDC-Stream, an evolution-based clustering algorithm for high dimensional
data streams. Two solutions have proposed to alleviate the complexity of high dimensional data streams
processing: dimension selection & use of constraints. Dimension selection is able to find evolving
clusters with subgroups of discriminative dimensions during the progression of data streams. During the
stream progression, instance-level constraints which are must-link and cannot-link constraints are
integrated by means of constraints prioritization, activation, fading and outdating in order to improve
the clustering output.

Several research directions are possible to improve the proposed algorithm. First, the use of
background or domain expert knowledge in a semi-supervised clustering manner. Indeed, the use of
constraints may not be appropriate with respect to the dynamic nature of data streams. Exploiting
background knowledge as single labeled data points (not pair of points) is more appropriate for data
streams. Labeled data points can be immediately utilized for determining the class of clusters, and
effectively identifying the most appropriate clustering structure evolution operations. Second, an
alternate and efficient version of SEDC-Stream for generating arbitrary shape clusters is needed. Indeed,
trying to minimize the squared error, SEDC-Stream is only able to generate spherical shape clusters.
Clusters with arbitrary shapes are observed in many application areas of science. Online density-based
and hierarchical clustering can be combined to obtain an efficient evolution-based and shape-based
clustering algorithm for high dimensional data streams.

References

[1] C. C. Aggarwal, P. S. Yu, J. Han, and J. Wang, “A Framework for Clustering Evolving Data Streams,” 2003,
pp. 81–92, doi: https://doi.org/10.1016/B978-012722442-8/50016-1.

[2] C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu, “A Framework for Projected Clustering of High Dimensional
Data Streams,” 2004, pp. 852–863, doi: https://doi.org/10.1016/B978-012088469-8.50075-9.

[3] F. Cao, M. Estert, W. Qian, and A. Zhou, “Density-Based Clustering over an Evolving Data Stream with
Noise,” 2006, pp. 328–339, doi: https://doi.org/10.1137/1.9781611972764.29.

[4] J. Gao, J. Li, Z. Zhang, and P.-N. Tan, “An Incremental Data Stream Clustering Algorithm Based on Dense
Units Detection,” 2005, pp. 420–425, doi: https://doi.org/10.1007/11430919_49.

100000 150000 200000 250000 300000 50000
0

1000

2000

3000

4000

5000

Data Points

ti
m

e
 (

s
e
c
)

Forest Cover Type

20000 30000 40000 50000 10000
0

50

100

150

200

Data Points

ti
m

e
 (

s
e
c
)

Electricity

100000 150000 200000 250000 50000
0

500

1000

1500

2000

2500

Data Points

ti
m

e
 (

s
e
c
)

KDD-99

SEDC

SED

SEDC

SED

SEDC

SED

https://doi.org/10.1016/B978-012722442-8/50016-1
https://doi.org/10.1016/B978-012088469-8.50075-9
https://doi.org/10.1137/1.9781611972764.29
https://doi.org/10.1007/11430919_49

178 International Journal of Advances in Intelligent Informatics ISSN 2442-6571

 Vol. 4, No. 3, November 2018, pp. 167-179

 Waiyamai & Kangkachit (Constraint-based discriminative dimension selection for high-dimensional stream clustering)

[5] S. Mansalis, E. Ntoutsi, N. Pelekis, and Y. Theodoridis, “An evaluation of data stream clustering
algorithms,” Stat. Anal. Data Min. ASA Data Sci. J., vol. 11, no. 4, pp. 167–187, Aug. 2018, doi:
https://doi.org/10.1002/sam.11380.

[6] M. Ghesmoune, M. Lebbah, and H. Azzag, “State-of-the-art on clustering data streams,” Big Data Anal.,
vol. 1, no. 1, p. 13, 2016, available at : https://bdataanalytics.biomedcentral.com/articles/10.1186/s41044-
016-0011-3.

[7] Y. Chen and L. Tu, “Density-based clustering for real-time stream data,” in Proceedings of the 13th ACM
SIGKDD international conference on Knowledge discovery and data mining, 2007, pp. 133–142, doi:
https://doi.org/10.1145/1281192.1281210.

[8] K. Chen and L. Liu, “HE-Tree: a framework for detecting changes in clustering structure for categorical
data streams,” VLDB J., vol. 18, no. 6, pp. 1241–1260, Dec. 2009, doi: https://doi.org/10.1007/s00778-009-
0134-5.

[9] K. Udommanetanakit, T. Rakthanmanon, and K. Waiyamai, “E-Stream: Evolution-Based Technique for
Stream Clustering,” 2007, pp. 605–615, doi: https://doi.org/10.1007/978-3-540-73871-8_58.

[10] S. Gong, Y. Zhang, and G. Yu, “Clustering stream data by exploring the evolution of density mountain,”
Proc. VLDB Endow., vol. 11, no. 4, pp. 393–405, 2017, available at : https://dl.acm.org/citation.cfm?id=
3164136.

[11] C. C. Aggarwal, J. L. Wolf, P. S. Yu, C. Procopiuc, and J. S. Park, “Fast algorithms for projected clustering,”
ACM SIGMOD Rec., vol. 28, no. 2, pp. 61–72, Jun. 1999, doi: https://doi.org/10.1145/304181.304188.

[12] I. Ntoutsi, A. Zimek, T. Palpanas, P. Kröger, and H.-P. Kriegel, “Density-based Projected Clustering over
High Dimensional Data Streams,” 2012, pp. 987–998, doi: https://doi.org/10.1137/1.9781611972825.85.

[13] S. Laohakiat, S. Phimoltares, and C. Lursinsap, “A clustering algorithm for stream data with LDA-based
unsupervised localized dimension reduction,” Inf. Sci. (Ny)., vol. 381, pp. 104–123, Mar. 2017, doi:
https://doi.org/10.1016/j.ins.2016.11.018.

[14] O. Makul and M. Ekinci, “A graph form data stream clustering approach based on dimension reduction,”
in 2017 25th Signal Processing and Communications Applications Conference (SIU), 2017, pp. 1–4, doi:
https://doi.org/10.1109/SIU.2017.7960504.

[15] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan, “Automatic subspace clustering of high dimensional
data for data mining applications,” ACM SIGMOD Rec., vol. 27, no. 2, pp. 94–105, Jun. 1998, doi:
https://doi.org/10.1145/276305.276314.

[16] W. Meesuksabai, T. Kangkachit, and K. Waiyamai, “Evolution-Based Clustering Technique for Data
Streams with Uncertainty,” Kasetsart J. (Nat. Sci.), vol. 46, pp. 638–652, 2012, available at :
https://pdfs.semanticscholar.org/664b/c9c63f8d88590da15ac33d3f791e1ad9626c.pdf.

[17] I. Ahmed, I. Ahmed, and W. Shahzad, “A Novel High Dimensional and High Speed Data Streams
Algorithm: HSDStream,” Int. J. Adv. Comput. Sci. Appl., vol. 7, no. 9, 2016, doi: https://doi.org/10.14569/
IJACSA.2016.070952.

[18] K. Waiyamai, T. Kangkachit, T. Rakthanmanon, and R. Chairukwattana, “SED-Stream: discriminative
dimension selection for evolution-based clustering of high dimensional data streams,” Int. J. Intell. Syst.
Technol. Appl., vol. 13, no. 3, p. 187, 2014, doi: https://doi.org/10.1504/IJISTA.2014.065174.

[19] S. Basu, A. Banerjee, and R. J. Mooney, “Active semi-supervision for pairwise constrained clustering,” in
Proceedings of the 2004 SIAM international conference on data mining, 2004, pp. 333–344, available at :
https://epubs.siam.org/doi/abs/10.1137/1.9781611972740.31.

[20] P. S. Bradley, K. P. Bennett, and A. Demiriz, “Constrained k-means clustering,” Microsoft Res. Redmond,
pp. 1–8, 2000, available at :http://machinelearning102.pbworks.com/f/ConstrainedKMeanstr-2000-65.pdf.

[21] K. Treechalong, T. Rakthanmanon, and K. Waiyamai, “Semi-Supervised Stream Clustering Using Labeled
Data Points,” 2015, pp. 281–295, doi: https://doi.org/10.1007/978-3-319-21024-7_19.

[22] V. Antoine, N. Labroche, and V.-V. Vu, “Evidential seed-based semi-supervised clustering,” in 2014 Joint
7th International Conference on Soft Computing and Intelligent Systems (SCIS) and 15th International

https://doi.org/10.1002/sam.11380
https://bdataanalytics.biomedcentral.com/articles/10.1186/s41044-016-0011-3
https://bdataanalytics.biomedcentral.com/articles/10.1186/s41044-016-0011-3
https://doi.org/10.1145/1281192.1281210
https://doi.org/10.1007/s00778-009-0134-5
https://doi.org/10.1007/s00778-009-0134-5
https://doi.org/10.1007/978-3-540-73871-8_58
https://dl.acm.org/citation.cfm?id=3164136
https://dl.acm.org/citation.cfm?id=3164136
https://doi.org/10.1145/304181.304188
https://doi.org/10.1137/1.9781611972825.85
https://doi.org/10.1016/j.ins.2016.11.018
https://doi.org/10.1109/SIU.2017.7960504
https://doi.org/10.1145/276305.276314
https://pdfs.semanticscholar.org/664b/c9c63f8d88590da15ac33d3f791e1ad9626c.pdf
https://doi.org/10.14569/IJACSA.2016.070952
https://doi.org/10.14569/IJACSA.2016.070952
https://doi.org/10.1504/IJISTA.2014.065174
https://epubs.siam.org/doi/abs/10.1137/1.9781611972740.31
http://machinelearning102.pbworks.com/f/ConstrainedKMeanstr-2000-65.pdf
https://doi.org/10.1007/978-3-319-21024-7_19

ISSN 2442-6571 International Journal of Advances in Intelligent Informatics 179
 Vol. 4, No. 3, November 2018, pp. 167-179

 Waiyamai & Kangkachit (Constraint-based discriminative dimension selection for high-dimensional stream clustering)

Symposium on Advanced Intelligent Systems (ISIS), 2014, pp. 706–711, doi: https://doi.org/10.1109/SCIS-
ISIS.2014.7044676.

[23] C. Ruiz, M. Spiliopoulou, and E. Menasalvas, “Density-based semi-supervised clustering,” Data Min. Knowl.
Discov., vol. 21, no. 3, pp. 345–370, 2010, doi: https://doi.org/10.1007/s10618-009-0157-y.

[24] C. R. Moreno, M. Spiliopoulou, and E. Menasalvas, “User constraints over data streams,” Knowl. Discov.
from Data Streams, p. 117, 2006, available at : http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.
61.7653&rep=rep1&type=pdf#page=121.

[25] K. Wagstaff, C. Cardie, S. Rogers, S. Schrödl, and others, “Constrained k-means clustering with background
knowledge,” in ICML, 2001, vol. 1, pp. 577–584, available at : https://web.cse.msu.edu/~cse802/notes/
ConstrainedKmeans.pdf.

[26] C. Ruiz, E. Menasalvas, and M. Spiliopoulou, “C-DenStream: Using Domain Knowledge on a Data Stream,”
2009, pp. 287–301, doi: https://doi.org/10.1007/978-3-642-04747-3_23.

[27] T. Sirampuj, T. Kangkachit, and K. Waiyamai, “CE-Stream : Evaluation-based technique for stream
clustering with constraints,” in The 2013 10th International Joint Conference on Computer Science and Software
Engineering (JCSSE), 2013, pp. 217–222, doi: https://doi.org/10.1109/JCSSE.2013.6567348.

[28] K. Bache and M. Lichman, “UCI Machine Learning Repository, University of California, School of
Information and Computer Science,” Irvine, CA, 2013, available at : http://archive.ics.uci.edu/ml.

[29] M. Harries and N. S. Wales, “Splice-2 comparative evaluation: Electricity pricing,” Citeseer, Sydnesy, 1999,
available at : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.43.9013.

[30] R. Chairukwattana, T. Kangkachit, T. Rakthanmanon, and K. Waiyamai, “Efficient evolution-based
clustering of high dimensional data streams with dimension projection,” in 2013 International Computer
Science and Engineering Conference (ICSEC), 2013, pp. 185–190, doi: https://doi.org/10.1109/
ICSEC.2013.6694776.

https://doi.org/10.1109/SCIS-ISIS.2014.7044676
https://doi.org/10.1109/SCIS-ISIS.2014.7044676
https://doi.org/10.1007/s10618-009-0157-y
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.61.7653&rep=rep1&type=pdf%23page=121
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.61.7653&rep=rep1&type=pdf%23page=121
https://web.cse.msu.edu/~cse802/notes/ConstrainedKmeans.pdf
https://web.cse.msu.edu/~cse802/notes/ConstrainedKmeans.pdf
https://doi.org/10.1007/978-3-642-04747-3_23
https://doi.org/10.1109/JCSSE.2013.6567348
http://archive.ics.uci.edu/ml
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.43.9013
https://doi.org/10.1109/ICSEC.2013.6694776
https://doi.org/10.1109/ICSEC.2013.6694776

