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1. Introduction 

Pulmonary crackle is one of the adventitious lung sounds caused by lung diseases such as 
bronchopneumonia or bronchiectasis [1]. It is a lung sound with short, non-musical and discontinuous 
duration with the frequency in the range of 150 - 2000 Hz [2]. This lung sound can be detected by 
doctors using a stethoscope through auscultation technique. The accuracy of this technique is often 
uncertain for being highly dependent upon the physician expertise, affected by noise, and subjective [3]. 
Various methods of digital signal processing have been developed to overcome the limitation of the 
auscultation technique, particularly to recognize the pulmonary crackle sound automatically. 

Some researchers used a number of different methods for the analysis of pulmonary crackles. Yeginer 
and Kahya used a wavelet network for pulmonary crackle feature extraction [4]. This method was 
reported to be more resistant to noise in comparison to other traditional methods. Meanwhile, in [2], 
pulmonary crackle analysis was performed using time-frequency and time-scale methods. Windowed 
Fourier Transforms (WFT) with various types of windows has been used in the time-frequency analysis; 
while wavelet transforms with various mother wavelets was used in time-scale analysis. Classification 
using a support vector machine overall resulted in the accuracy of 81%. A more extensive discussion in 
the use of the wavelet for pulmonary crackle analysis was presented in [5]. The sub-bands used for 
pulmonary crackle analysis included D3, D4, and D5. 

Commonly, the signal complexity measurement is used for pulmonary sound analysis as it represents 
the sound features [6]. The measurement methods of the signal complexity for examples include fractal 
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 Abnormalities in the lungs can be detected from the sound produced by 
the lungs. Diseases that occur in the lungs or respiratory tract can produce 
a distinctive lung sound. One of the examples of the lung sound is the 
pulmonary crackle caused by pneumonia or chronic bronchitis. Various 
digital signal processing techniques are developed to detect pulmonary 
crackle sound automatically, such as the measurement of signal complexity 
using Tsallis entropy (TE). In this study, TE measurements were 
performed through several orders on the multiscale pulmonary crackle 
signal. The pulmonary crackle signal was decomposed using the coarse-
grained procedure since the lung sound as the biological signal had a 
multiscale property. In this paper, we used 21 pulmonary crackle sound and 
22 normal lung sound for the experiment. The results showed that the 
second order TE on the scale of 1-15 had the highest accuracy of 97.67%. 
This result was better compared to the use of multi-order TE from the 
previous study, which resulted in an accuracy of 95.35%.  
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[7], entropy [8], and chaos analysis [9]. Pulmonary sounds are believed to have multiscale properties as 
in the other biological signals [10]. Therefore, the lung sound analysis using multiscale signal complexity 
approach is believed to be able to increase the accuracy of the classification.   

One of the metrics for measuring signal complexity is TE [11] often referred to as non-additive 
entropy and used in various biological signal studies. TE application includes electroencephalogram 
(EEG) signal analysis [12], electrocardiogram signals (ECG) analysis in coronary artery disease [13], and 
lung sounds in chronic obstructive pulmonary disease (COPD) [14]. TE is used in a lung sound analysis 
because lung sound is a non-additive signal. Pulmonary crackle sound is not a crackle sound added to a 
normal lung sound but different from lung sound that represents a pathological condition. In these 
studies, TE is usually used with order = 2. Therefore, other parameters have been needed as a specific 
feature for the analyzed biological signal. A different approach was performed in [15] using TE with the 
order of 1-10 as the features of the lung sound. The results showed that TE with non-extensivity 
parameter, q = 2, 3, and 4 resulted in an accuracy of 95.35% for pulmonary crackle classification. 

In this study, multiscale analysis and TE with various non-extensivity parameter were combined. 
Coarse-grained procedure process as in [10] was applied to the signal to form a new signal sequence with 
a different scale. Furthermore, TE measurements with certain non-extensivity parameter were used to 
generate the signal features. The results were the scale and the best non-extensivity parameter that 
produced the highest accuracy. Multilayer perceptron (MLP) and three-fold cross-validation (3fold-CV) 
were used in the previous study [15] to make the results from this study comparable to the previous 
ones. It was found that the proposed method resulted in higher accuracy compared to the multi-order 
TE. 

2. Method 

Fig. 1 shows the process used in this study. It began through the normalization process to the lung 
sound to equalize the data. Following this, the multiscale process using coarse-grained procedure was 
conducted. It was then continued with the TE calculation of each scaled signal. The TE value would be 
the signal features and classified using multilayer perceptron (MLP). The detail of each process is 
described in the next subsection.    

 

Fig. 1.  Block diagram of the process 

2.1. Lung Sound Data 

Pulmonary sound data in this study consisted of normal lung sound and crackle sound. Data was 
taken from various sources on the internet and has been used in the previous study [15]. The normal 
sound was recorded from a 26 years-old-man; while the pulmonary crackle sound was taken from 
patients with interstitial pulmonary fibrosis and patient with cystic fibrosis. There were 21 crackle sound 
data; whereas there were 22 normal lung sound data. The normal pulmonary sound is the sound of the 
lung in normal conditions which is nonmusical, soft and audible on inspiration and at the beginning of 
expiration. The disappearance of this sound indicates some problems in the lung sound generation 
process, such as airway constriction or obstruction [16]. Crackle is an adventitious sound of the lung 
that is explosive, short, non-musical and discontinuous [17]. The examples of diseases that produce 
crackles are congestive heart failure (CHF), pneumonia and chronic bronchitis [16]. The examples of 
pulmonary sound signals are shown in Fig. 2. 

The data of the lung sound with a length of one breathing cycle (one inspiration and one expiration) 
is in the form of file wave with a sampling frequency of 8000 Hz. Normalization was done to the data as 
in the Equation (1) and (2) [15]. 
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𝑦(𝑛) = 𝑥(𝑛) −
1

𝑁
∑ 𝑥(𝑖)𝑁

𝑖   

where x is the input signal, N is the number of the data sample, and y is the output signal result of the 
zero-mean process. After this process, amplitude normalization was applied using (2).   

𝑦(𝑛) =
𝑥(𝑛)

𝑚𝑎𝑥|𝑥|
  

where x is the input signal, y is the output signal and then becomes the input of the coarse-
grained procedure. 

  
(a) (b) 

Fig. 2.  Pulmonary sound signals (a) Crackle sound (b) Normal lung sound 

2.2. Coarse-Grained Procedure  

Coarse-grained procedure forms a new signal with a different scale using a moving average process 
[10]. This procedure can be expressed mathematically as in (3). 

𝑦𝑗
(𝜏)

=
1

𝜏
∑ 𝑥𝑖

𝑗𝜏
𝑖=(𝑗−1)𝜏+1   ,   1 ≤ 𝑗 ≤

𝑁

𝜏
  

where x(i) is an input signal; while yj
(τ) is a signal from the coarse-grained procedure at the scale of τ. 

The example of the signal from the coarse-grained procedure scale two is as in (4). 

𝑦𝑗
(2)

=
𝑥(𝑗)+𝑥(𝑗+1)

2
   𝑓𝑜𝑟 𝑗 = 1, 2, … , 𝑁/2  

The scale of τ = 1 – 20 was used in this study and then was reduced to observe the effect of the 
number of the scales on the accuracy.  

2.3. Tsallis Entropy 

Tsallis proposed TE in 1988 as the general form of Boltzmann-Gibbs Statistics [11]. It is 
mathematically expressed as in the (5). 

𝑇𝐸 =
1−∑ 𝑝𝑖

𝑞𝑊
𝑖=1

𝑞−1
  

where Pi is a discrete probability, q is the extensivity parameter or order, and W is a microscopic 
configuration.  

TE is also known as non-additive entropy: if there are two identical systems, then the total entropy 
from both systems is not equal to the sum of TE1 and TE2. It can be written mathematically as in (6). 

𝑇𝐸(𝐴, 𝐵) = 𝑇𝐸(𝐴) + 𝑇𝐸(𝐵) + (1 − 𝑞)𝑇𝐸(𝐴)𝑇𝐸(𝐵)  

If the non-extensivity parameter order q = 1, the TE is a normal Shannon entropy. TE is used to 
determine the signal that quickly changes, and the dynamic system with the long-range interactions or 
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that can be far from equilibrium [18]. It is also used to extract the features of the crackle sound as 
explained in [15].   

2.4. Multilayer Perceptron and N-fold Cross-Validation  

Multilayer perceptron (MLP) is one of the classes from the neural network that is often used for 
classification. It consists of at least three layers: input, hidden, and output layers as shown in Fig. 3. The 
input layer has the same node numbers with the total features of the data, and the number of the nodes 
in the output layer is similar to the data class. On the other hand, a total node in the hidden layer is 
determined by trial and error [19]. In this study, the output layer = 2 was used while the input one was 
adjusted with the total features to be used. In this research, we reduced the number of scales to observe 
the effect of the number of features on the accuracy. The number of nodes in the hidden layer was 
altered to obtain the highest accuracy. Fig. 3 simply illustrates the MLP configuration.  

Since MLP is one of the models with supervised learning, N-fold cross-validation (N fold CV) was 
used to divide the training and the testing data. In the N fold CV, data was divided into N dataset in 
which one data set became the testing data, and N-1 dataset became the training data. This process was 
repeated until each data set had become the testing data. This method was beneficial to reduce the high 
variance in the clarification result due to the uneven data partition between testing and training data 
[19]. In this paper, we used N = 3. Since the number of data was 22 for normal lung sound and 21 for 
crackle sound; thus, we would have 7-8 data for each dataset.  

 

Fig. 3.  MLP Configuration 

3. Results and Discussion 

The results of the coarse-grained process procedure for crackle sound and normal lung sound are 
presented in Fig. 4 and Fig. 5 respectively. Here, the shape of the crackle sound did not significantly 
change, but the total sample data decreased to N/τ, where N was the total sample data at the beginning, 
and τ was a scale. This is related to the nature of the coarse-grained procedure that averages some τ for 
each scale. The signal at scale τ = 1 is the original signal. The higher scale τ will decrease the variance 
of the signal.   

Fig. 6 shows the result of the TE measurements with q = 2 and q=5 and scale of 1 – 20. Both figures 
had a number of different patterns. If at q = 2, the TE values were separated on a scale of 1 to 10 and 
coincided on a scale of 10 to 20, then TE values at q =5 were almost separated for all scales. The TE 
values at q = 5 were lower than the TE values at q = 2 because of the dividing factor of q-1 in the 

equation (5). Moreover, since the p < 1, if the q value increased, then the pq value decreased.  

The absolute TE values from crackle sound were lower than the absolute values of TE from the 
normal lung sound. This indicated that the signal complexity from the pulmonary crackle sound was 
lower than that of the normal lung sound. The larger the scale τ, the lower the absolute TE values would 
be. It was because the generated signal from the coarse-grained process procedure flattened so that the 
signal variance also decreased. At scale 1 where the measured TE signal was the original signal, the TE 
absolute value was the highest compared to the other TE absolute values from other scales. 
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Fig. 4.  Crackle sound at the scale of 1 – 5 

 

Fig. 5.  The normal sound at the scale of 1 – 5 

Table 1 lists the output of the Analysis of Variance (ANOVA) of the TE values from each order at 
the scale of 1 to 20.  The larger F-value and smaller p-value indicated that the features between classes 
were more distinctive [12].  Table 1 shows that all F-values > F-critical value the p-values < 0.05, 
indicating that the features from each class were statistically different.  

Table 2 shows the accuracy of the classification using MLP and 3-fold CV. The TE achieved the 
highest accuracy value (97.67%) with q = 2 and a scale of 1 to 15. The scale reduction tended to increase 
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the accuracy up to the scale of 1 to 10. Furthermore, scale reduction has reduced accuracy. The TE with 
the odd order (q = 3, 5, 7, and 9) had a similar accuracy at all scales. This finding was consistent with 
the previous study where the TE with odd order generated the same data characteristic [15]. 

  
(a) (b) 

Fig. 6.  TE masurement (a) q = 2 at the scale of 1 to 20 (b) q = 5 at the scale of 1 to 20 

Table 1.  F-value and P-value of Analysis of Variance (ANOVA) 

TE order F-value P-value 
q = 2  10.00239 0.001626 

q = 3 147.8435 3.29E-31 

q = 4 5.014238 0.025428 
q = 5 139.7581 1.01E-29 

q = 6 7.43833 0.006532 

q = 7 135.0655 7.47E-29 

q = 8 11.57175 0.000705 
q = 9 131.9915 2.79E-28 

q = 10 15.95544 7.12E-05 

Table 2.  Accuracy (%) of pulmonary crackle classification using various scales and TE orders 

TE 

order 

Scale  

1- 20 

Scale 

1-15 

Scale  

1-10 

Scale  

1-5 

Scale  

 1-4 

scale   

1-3 

Scale  

1-2 

original 

signal 

q = 2 90.7 97.67 81.4 76.74 74.42 74.42 74.42 76.74 

q = 3 90.7 90.7 90.7 90.7 93.02 86.05 86.05 90.07 

q = 4 88.37 93.02 93.02 74.42 60.46 60.46 53.49 51.16 

q = 5 90.7 90.7 90.7 90.7 93.02 86.05 86.05 90.07 

q = 6 88.37 90.7 95.35 83.72 74.42 53.49 53.49 53.49 

q = 7 90.7 90.7 90.7 90.7 93.02 86.05 86.05 90.07 

q = 8 88.37 90.7 95.35 90.7 88.37 48.84 53.49 53.49 

q = 9 90.7 90.7 90.7 90.7 93.02 86.05 86.05 90.07 

q = 10 74.42 76.74 72.09 72.09 69.77 67.44 67.44 67.44 

 

The odd non-extensivity parameter q had the better average accuracy but not at the highest. The TE 
with an odd order had accuracy up to 90.07% for an original signal while TE with even order had 
relatively low accuracy for their original signal. Fig. 7 indicates that the TE with q = 7 had more 
distinctive values between the normal and pulmonary crackle compared to the TE with q = 6 at scale τ 
= 1. The odd TE also had relatively less separated TE values compared to the even TE.  

The multiscale process in this study provided complete information on pulmonary sound signals. 
The higher the scale, the lower the signal complexity of the lung sound would be. This also applies to 
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the order of the TE, the higher the order, the less the signal complexity of the measured signal. A 
correct selection of the scale and order will then give the maximum results. 

  
(a) (b) 

Fig. 7.  TE values for (a) TE with even order, q = 6 for scale 1-20 (b) TE with odd order, q = 7 for scale 1-20  

A multiscale approach to lung sound analysis has been performed in several studies. In [20], they 
used multiscale entropy (MSE) for pulmonary sound analysis in an alveolitis patient. The sample entropy 
was measured on the coarse-grained procedure signal up to level 4. The paper did not measure the 
accuracy of classification but showed that MSE was more consistent as a feature compared to the feature 
from the other spectral methods [20]. A multiscale Hjorth descriptor for lung sound analysis was used 
in another study [6]. Signal complexity was measured using the Hjorth descriptor on a scale of 1-20 
using the coarse-grained procedure. The best results were achieved at complexity on a scale of 1-5 with 
an accuracy of 95.06% for 81 data in 5 classes. This result was better compared to the measurement of 
Hjorth descriptor on a single scale [21]. There is also a study that modified the texture analysis 
commonly used for image analysis with multiscale process [22]. Modified grey level different matrix 
(GLDM) was used to extract the features of the respiratory sound in the multiscale scheme. Gradient 
entropy on a scale of 1-10 yielded the highest accuracy of 91.36% using the same approach as in [6].  

The use of TE in the respiratory sound analysis is presented by Morillo et al. [14]. TE was combined 
with Shannon entropy, Renyi entropy, and other ten features which resulted in 26 parameters that were 
used to analyze the breathing sounds. Using principal component analysis (PCA) for features reduction 
and support vector machine (SVM) as a classifier, the accuracy of 75.8% was reported. The research did 
not explain the role of TE because in the next process PCA was used to reduce the dimension of features. 
In [23] seven entropies were used as the features for the lung sound classification. Those entropies were 
Shannon entropy, spectral entropy, Tsallis entropy (TE), Renyi entropy, wavelet entropy, permutation 
entropy, sample entropy, and approximation entropy. TE produced the highest accuracy of 69.7% when 
used as a single feature for five classes of lung sound data. Meanwhile, a composite of seven entropies 
would increase the accuracy up to 92.93%. When we removed Shannon entropy as the feature, the 
accuracy increased at 94.85%. Coarse-grained procedures combined with the fractal dimension for 
classification of pulmonary sounds provided a quite high classification accuracy [24]. Using Petrosian C 
and scale 1-5 the resulting accuracy was 98.99% with SVM as a classifier. A similar study was conducted 
to compare the accuracy of coarse-grained procedures combined with various entropy for pulmonary 
sound classification [25]. Multiscale Tsallis entropy produces 91.92% accuracy for five data classes. In 
this study, the effect of order selection on TE was not analyzed. All research described above were used 
different lung sound dataset, so it could not compare directly. 

TE with different order q was used for pulmonary lung sound features extraction [15]. The paper 
used the same data as in this study, and the highest accuracy was 95.35% for q = 2, 3, 4. Multiscale TE 
method produced better accuracy but used more features compared to multi-order TE. Multiscale 
analysis proofed to increase the classification accuracy. Table 3 displays a comparison between the 
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proposed method and other multiscale methods and TE as the features in lung sound analysis. A 
comparison using the same dataset can be the next work in subsequent research.  

Table 3.  Comparison of Multiscale TE and other multiscale feature extraction and Tsallis entropy for lung 

sound classification 

Reference Data Method Result 
Scale and feature 

for the best result 

[6] 
81 data, 5 class of 

data 

Multiscale Hjorth descriptor, 

MLP 
Acc 95.06 % Scale 1-10, Complexity 

[22] 
81 data, 5 class of 

data 

Multiscale gray level 

difference 
Acc 91.36 % 

Scale 1-10, Gradient 

entropy, D =10 

[20] 

384 inspiratory 
/expiratory BLS 

segments for healthy 

subjects,384 BLS 

segments for 
patients 

Multiscale entropy 

Accuracy N.A,  

MSE more 

consistent than 

other feature 

Scale 1-4, m=2, r =0.2 

[15] 43 data, 2 class Multiorder TE 
Acc 95.35%, Se 

90.48%, Sp 100% 
TE, q= 2, 3, 4 

[14] 16 COPD patients 

mean frequency, median 

frequency, spectral crest 

factor, Shannon entropy, 
Rényi entropy, Tsallis 

entropies,  Relative power 

(RP) factors in octave bands, 

second order moment, 
skewness, and kurtosis 

Acc 75.8%, Se 

73.76%, Sp 

97.67% 

17 features using PCA,  

[23] 99 data, 5 class 

Entropies (Shannon, Renyi, 

spectral, Tsallis, wavelet, 

permutation, sample, 
approximate) 

Single entropy: 

69.7% 

Composite 
entropies: 94.95 % 

Single entropy: TE 

Composite entropies: 7 

entropies - Shanon  

Proposed 

method 
43 data, 2 class TE on multiscale signal Acc 97.67% Scale 1-15, q = 2 

Acc = accuracy, Se = sensitivity, Sp = specificity 
 

The research has some limitations such as the small number of samples and scale reduction done by 
trial and error. In the study, the data used had no noise. Some noise that may appear in lung sounds 
such as heart sounds, swallowing sounds and environmental sounds [26], [27]. Reduction of noise in 
pulmonary sounds is a separate field in pulmonary sound research [28], [29], [30]. Therefore, the effect 
of noise on the obtained TE cannot be observed. Since TE measured non-additive entropy, the addition 
of noise to the lung sound will change the TE value nonlinearly. This will affect the performance of TE 
for pulmonary sound analysis. Multiscale TE testing for more lung sound classes, a variety of noise 
additions is discussed in subsequent research.  

4. Conclusion 

This paper presents the multiscale measurements of Tsallis entropy in various non-extensivity orders 
for pulmonary crackle analysis. Multiscale analysis on lung sound accommodates the lungs’ multiscale 
properties, while Tsallis entropy is used to reveal the lungs’ signal complexity. In this paper, we used the 
coarse-grained procedure to decompose lung sound into several scales. Multiscale Tsallis entropy with 
order q = 2 in 15 scales yielded the highest accuracy of 97.67%. This result was found better than multi-
order Tsallis entropy that only yielded an accuracy of 95.35%. However, the proposed method has a 
drawback, which is the use of more features compared to multi-order TE. The future study could 
combine the scale and order of TE to improve the obtained accuracy. A feature subset selection method 
can be used in this case. Moreover, TE measurements of other various classes of the lungs can be 
conducted to obtain more comprehensive abilities of TE for classification. 
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