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ABSTRACT

Abnormalities in the lungs can be detected from the sound produced by
the lungs. Diseases that occur in the lungs or respiratory tract can produce
a distinctive lung sound. One of the examples of the lung sound is the
pulmonary crackle caused by pneumonia or chronic bronchitis. Various
digital signal processing techniques are developed to detect pulmonary
crackle sound automatically, such as the measurement of signal complexity
using Tsallis entropy (TE). In this study, TE measurements were
performed through several orders on the multiscale pulmonary crackle

signal. The pulmonary crackle signal was decomposed using the coarse-
grained procedure since the lung sound as the biological signal had a
multiscale property. In this paper, we used 21 pulmonary crackle sound and
22 normal lung sound for the experiment. The results showed that the
second order TE on the scale of 1-15 had the highest accuracy of 97.67%.
This result was better compared to the use of multi-order TE from the
previous study, which resulted in an accuracy of 95.35%.
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1. Introduction

Pulmonary crackle is one of the adventitious lung sounds caused by lung diseases such as
bronchopneumonia or bronchiectasis [1]. It is a lung sound with short, non-musical and discontinuous
duration with the frequency in the range of 150 - 2000 Hz [2]. This lung sound can be detected by
doctors using a stethoscope through auscultation technique. The accuracy of this technique is often
uncertain for being highly dependent upon the physician expertise, affected by noise, and subjective [3].
Various methods of digital signal processing have been developed to overcome the limitation of the
auscultation technique, particularly to recognize the pulmonary crackle sound automatically.

Some researchers used a number of different methods for the analysis of pulmonary crackles. Yeginer
and Kahya used a wavelet network for pulmonary crackle feature extraction [4]. This method was
reported to be more resistant to noise in comparison to other traditional methods. Meanwhile, in [2],
pulmonary crackle analysis was performed using time-frequency and time-scale methods. Windowed
Fourier Transforms (WFT) with various types of windows has been used in the time-frequency analysis;
while wavelet transforms with various mother wavelets was used in time-scale analysis. Classification
using a support vector machine overall resulted in the accuracy of 81%. A more extensive discussion in
the use of the wavelet for pulmonary crackle analysis was presented in [5]. The sub-bands used for
pulmonary crackle analysis included D3, D4, and D5.

Commonly, the signal complexity measurement is used for pulmonary sound analysis as it represents
the sound features [6]. The measurement methods of the signal complexity for examples include fractal
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[7], entropy [8], and chaos analysis [9]. Pulmonary sounds are believed to have multiscale properties as
in the other biological signals [10]. Therefore, the lung sound analysis using multiscale signal complexity
approach is believed to be able to increase the accuracy of the classification.

One of the metrics for measuring signal complexity is TE [11] often referred to as non-additive
entropy and used in various biological signal studies. TE application includes electroencephalogram
(EEG) signal analysis [12], electrocardiogram signals (ECG) analysis in coronary artery disease [13], and
lung sounds in chronic obstructive pulmonary disease (COPD) [14]. TE is used in a lung sound analysis
because lung sound is a non-additive signal. Pulmonary crackle sound is not a crackle sound added to a
normal lung sound but different from lung sound that represents a pathological condition. In these
studies, TE is usually used with order = 2. Therefore, other parameters have been needed as a specific
feature for the analyzed biological signal. A different approach was performed in [15] using TE with the
order of 1-10 as the features of the lung sound. The results showed that TE with non-extensivity
parameter, q = 2, 3, and 4 resulted in an accuracy of 95.35% for pulmonary crackle classification.

In this study, multiscale analysis and TE with various non-extensivity parameter were combined.
Coarse-grained procedure process as in [10] was applied to the signal to form a new signal sequence with
a different scale. Furthermore, TE measurements with certain non-extensivity parameter were used to
generate the signal features. The results were the scale and the best non-extensivity parameter that
produced the highest accuracy. Multilayer perceptron (MLP) and three-fold cross-validation (3fold-CV)
were used in the previous study [15] to make the results from this study comparable to the previous
ones. It was found that the proposed method resulted in higher accuracy compared to the multi-order

TE.

2. Method

Fig. 1 shows the process used in this study. It began through the normalization process to the lung
sound to equalize the data. Following this, the multiscale process using coarse-grained procedure was
conducted. It was then continued with the TE calculation of each scaled signal. The TE value would be
the signal features and classified using multilayer perceptron (MLP). The detail of each process is
described in the next subsection.

Coarse- i .
Normalization rained Tsta”IS Multilayer
B v rogy Perceptron
procedure calculation

Fig. 1. Block diagram of the process

2.1. Lung Sound Data

Pulmonary sound data in this study consisted of normal lung sound and crackle sound. Data was
taken from various sources on the internet and has been used in the previous study [15]. The normal
sound was recorded from a 26 years-old-man; while the pulmonary crackle sound was taken from
patients with interstitial pulmonary fibrosis and patient with cystic fibrosis. There were 21 crackle sound
data; whereas there were 22 normal lung sound data. The normal pulmonary sound is the sound of the
lung in normal conditions which is nonmusical, soft and audible on inspiration and at the beginning of
expiration. The disappearance of this sound indicates some problems in the lung sound generation
process, such as airway constriction or obstruction [16]. Crackle is an adventitious sound of the lung
that is explosive, short, non-musical and discontinuous [17]. The examples of diseases that produce
crackles are congestive heart failure (CHF), pneumonia and chronic bronchitis [16]. The examples of
pulmonary sound signals are shown in Fig. 2.

The data of the lung sound with a length of one breathing cycle (one inspiration and one expiration)
is in the form of file wave with a sampling frequency of 8000 Hz. Normalization was done to the data as
in the Equation (1) and (2) [15].

Rizal et.al (Multiscale tsallis entropy for pulmonary crackle detection)
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y(@) = x(n) — -2V x (D) (1)

where x is the input signal, N is the number of the data sample, and y is the output signal result of the
zero-mean process. After this process, amplitude normalization was applied using (2).

x(n)

max|x| (2)

y(n) =

where x is the input signal, y is the output signal and then becomes the input of the coarse-
grained procedure.
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Fig. 2. Pulmonary sound signals (a) Crackle sound (b) Normal lung sound

2.2. Coarse-Grained Procedure

Coarse-grained procedure forms a new signal with a different scale using a moving average process
[10]. This procedure can be expressed mathematically as in (3).

@ _1yjr ;
Vi = lisgoneerXi » 1SS

3

8=

where x(i) is an input signal; while y? is a signal from the coarse-grained procedure at the scale of 7.
The example of the signal from the coarse-grained procedure scale two is as in (4).

y = XD forj=1,2,..,N/2 )
The scale of 7 = 1 — 20 was used in this study and then was reduced to observe the effect of the

number of the scales on the accuracy.

2.3. Tsallis Entropy

Tsallis proposed TE in 1988 as the general form of Boltzmann-Gibbs Statistics [11]. It is
mathematically expressed as in the (5).

w
_ 1_21':1 pg

TE i (5)

where Pi is a discrete probability, q is the extensivity parameter or order, and W is a microscopic
configuration.

TE is also known as non-additive entropy: if there are two identical systems, then the total entropy
from both systems is not equal to the sum of TEI and TE2. It can be written mathematically as in (6).

TE(A,B) = TE(A) + TE(B) + (1 — q)TE(A)TE(B) (6)

If the non-extensivity parameter order q = 1, the TE is a normal Shannon entropy. TE is used to
determine the signal that quickly changes, and the dynamic system with the long-range interactions or
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that can be far from equilibrium [18]. It is also used to extract the features of the crackle sound as
explained in [15].

2.4. Multilayer Perceptron and N-fold Cross-Validation

Multilayer perceptron (MLP) is one of the classes from the neural network that is often used for
classification. It consists of at least three layers: input, hidden, and output layers as shown in Fig. 3. The
input layer has the same node numbers with the total features of the data, and the number of the nodes
in the output layer is similar to the data class. On the other hand, a total node in the hidden layer is
determined by trial and error [19]. In this study, the output layer = 2 was used while the input one was
adjusted with the total features to be used. In this research, we reduced the number of scales to observe
the effect of the number of features on the accuracy. The number of nodes in the hidden layer was
altered to obtain the highest accuracy. Fig. 3 simply illustrates the MLP configuration.

Since MLP is one of the models with supervised learning, N-fold cross-validation (N fold CV) was
used to divide the training and the testing data. In the N fold CV, data was divided into N dataset in
which one data set became the testing data, and N-1 dataset became the training data. This process was
repeated until each data set had become the testing data. This method was beneficial to reduce the high
variance in the clarification result due to the uneven data partition between testing and training data
[19]. In this paper, we used N = 3. Since the number of data was 22 for normal lung sound and 21 for
crackle sound; thus, we would have 7-8 data for each dataset.

Input layer Hidden layer Output layer

Fig. 3. MLP Configuration

3. Results and Discussion

The results of the coarse-grained process procedure for crackle sound and normal lung sound are
presented in Fig. 4 and Fig. 5 respectively. Here, the shape of the crackle sound did not significantly
change, but the total sample data decreased to N/7, where N was the total sample data at the beginning,
and 7 was a scale. This is related to the nature of the coarse-grained procedure that averages some 7 for
each scale. The signal at scale 7 = 1 is the original signal. The higher scale 7 will decrease the variance

of the signal.

Fig. 6 shows the result of the TE measurements with q = 2 and q=5 and scale of 1 —20. Both figures
had a number of different patterns. If at q = 2, the TE values were separated on a scale of 1 to 10 and
coincided on a scale of 10 to 20, then TE values at q =5 were almost separated for all scales. The TE
values at q = 5 were lower than the TE values at q = 2 because of the dividing factor of q-1 in the
equation (5). Moreover, since the p < 1, if the q value increased, then the pd value decreased.

The absolute TE values from crackle sound were lower than the absolute values of TE from the
normal lung sound. This indicated that the signal complexity from the pulmonary crackle sound was
lower than that of the normal lung sound. The larger the scale 7, the lower the absolute TE values would
be. It was because the generated signal from the coarse-grained process procedure flattened so that the
signal variance also decreased. At scale 1 where the measured TE signal was the original signal, the TE
absolute value was the highest compared to the other TE absolute values from other scales.

Rizal et.al (Multiscale tsallis entropy for pulmonary crackle detection)
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Fig. 5. The normal sound at the scale of 1 — 5

Table 1 lists the output of the Analysis of Variance (ANOVA) of the TE values from each order at
the scale of 1 to 20. The larger F-value and smaller p-value indicated that the features between classes
were more distinctive [12]. Table 1 shows that all F-values > F-critical value the p-values < 0.05,

indicating that the features from each class were statistically different.

Table 2 shows the accuracy of the classification using MLP and 3-fold CV. The TE achieved the
highest accuracy value (97.67%) with q = 2 and a scale of 1 to 15. The scale reduction tended to increase
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the accuracy up to the scale of 1 to 10. Furthermore, scale reduction has reduced accuracy. The TE with
the odd order (q = 3, 5, 7, and 9) had a similar accuracy at all scales. This finding was consistent with
the previous study where the TE with odd order generated the same data characteristic [15].
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Fig. 6. TE masurement (a) q = 2 at the scale of 1 to 20 (b) q = 5 at the scale of 1 to 20
Table 1. F-value and P-value of Analysis of Variance (ANOVA)
TE order F-value P-value
q=2 10.00239 0.001626
q=3 147.8435 3.29E-31
q=4 5.014238 0.025428
q=5 139.7581 1.01E-29
q=6 7.43833 0.006532
q=7 135.0655 7.47E-29
q=28 11.57175 0.000705
q=9 131.9915 2.79E-28
q=10 15.95544 7.12E-05
Table 2. Accuracy (%) of pulmonary crackle classification using various scales and TE orders
TE Scale Scale Scale Scale Scale scale Scale original
order 1- 20 1-15 1-10 1-5 1-4 1-3 1-2 signal
q=2 90.7 97.67 81.4 76.74 74.42 74.42 74.42 76.74
q=3 90.7 90.7 90.7 90.7 93.02 86.05 86.05 90.07
q=4 88.37 93.02 93.02 74.42 60.46 60.46 53.49 51.16
q=5 90.7 90.7 90.7 90.7 93.02 86.05 86.05 90.07
q=6 88.37 90.7 95.35 83.72 74.42 53.49 53.49 53.49
q=7 90.7 90.7 90.7 90.7 93.02 86.05 86.05 90.07
q=38 88.37 90.7 95.35 90.7 88.37 48.84 53.49 53.49
q=9 90.7 90.7 90.7 90.7 93.02 86.05 86.05 90.07
q=10 74.42 76.74 72.09 72.09 69.77 67.44 67.44 67.44

The odd non-extensivity parameter q had the better average accuracy but not at the highest. The TE
with an odd order had accuracy up to 90.07% for an original signal while TE with even order had
relatively low accuracy for their original signal. Fig. 7 indicates that the TE with q = 7 had more
distinctive values between the normal and pulmonary crackle compared to the TE with q = 6 at scale 7
= 1. The odd TE also had relatively less separated TE values compared to the even TE.

The multiscale process in this study provided complete information on pulmonary sound signals.
The higher the scale, the lower the signal complexity of the lung sound would be. This also applies to

Rizal et.al (Multiscale tsallis entropy for pulmonary crackle detection)
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the order of the TE, the higher the order, the less the signal complexity of the measured signal. A
correct selection of the scale and order will then give the maximum results.
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Fig. 7. TE values for (a) TE with even order, q = 6 for scale 1-20 (b) TE with odd order, q = 7 for scale 1-20

A multiscale approach to lung sound analysis has been performed in several studies. In [20], they
used multiscale entropy (MSE) for pulmonary sound analysis in an alveolitis patient. The sample entropy
was measured on the coarse-grained procedure signal up to level 4. The paper did not measure the
accuracy of classification but showed that MSE was more consistent as a feature compared to the feature
from the other spectral methods [20]. A multiscale Hjorth descriptor for lung sound analysis was used
in another study [6]. Signal complexity was measured using the Hjorth descriptor on a scale of 1-20
using the coarse-grained procedure. The best results were achieved at complexity on a scale of 1-5 with
an accuracy of 95.06% for 81 data in 5 classes. This result was better compared to the measurement of
Hjorth descriptor on a single scale [21]. There is also a study that modified the texture analysis
commonly used for image analysis with multiscale process [22]. Modified grey level different matrix
(GLDM) was used to extract the features of the respiratory sound in the multiscale scheme. Gradient
entropy on a scale of 1-10 yielded the highest accuracy of 91.36% using the same approach as in [6].

The use of TE in the respiratory sound analysis is presented by Morillo et al. [14]. TE was combined
with Shannon entropy, Renyi entropy, and other ten features which resulted in 26 parameters that were
used to analyze the breathing sounds. Using principal component analysis (PCA) for features reduction
and support vector machine (SVM) as a classifier, the accuracy of 75.8% was reported. The research did
not explain the role of TE because in the next process PCA was used to reduce the dimension of features.
In [23] seven entropies were used as the features for the lung sound classification. Those entropies were
Shannon entropy, spectral entropy, Tsallis entropy (TE), Renyi entropy, wavelet entropy, permutation
entropy, sample entropy, and approximation entropy. TE produced the highest accuracy of 69.7% when
used as a single feature for five classes of lung sound data. Meanwhile, a composite of seven entropies
would increase the accuracy up to 92.93%. When we removed Shannon entropy as the feature, the
accuracy increased at 94.85%. Coarse-grained procedures combined with the fractal dimension for
classification of pulmonary sounds provided a quite high classification accuracy [24]. Using Petrosian C
and scale 1-5 the resulting accuracy was 98.99% with SVM as a classifier. A similar study was conducted
to compare the accuracy of coarse-grained procedures combined with various entropy for pulmonary
sound classification [25]. Multiscale Tsallis entropy produces 91.92% accuracy for five data classes. In
this study, the effect of order selection on TE was not analyzed. All research described above were used
different lung sound dataset, so it could not compare directly.

TE with different order q was used for pulmonary lung sound features extraction [15]. The paper
used the same data as in this study, and the highest accuracy was 95.35% for q = 2, 3, 4. Multiscale TE
method produced better accuracy but used more features compared to multi-order TE. Multiscale
analysis proofed to increase the classification accuracy. Table 3 displays a comparison between the
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proposed method and other multiscale methods and TE as the features in lung sound analysis. A
comparison using the same dataset can be the next work in subsequent research.

Table 3. Comparison of Multiscale TE and other multiscale feature extraction and Tsallis entropy for lung
sound classification

Scale and feature

Reference Data Method Result
for the best result

81 data, 5 class of Multiscale Hjorth descriptor,

(6] data MLP Acc 95.06 % Scale 1-10, Complexity
81 data, 5 class of Multiscale gray level 0 Scale 1-10, Gradient
[22] data difference Acc91.36 % entropy, D =10
384 inspiratory
/expiratory BLS Accuracy N.A,
segments for healthy . MSE more o
[20] subjects,384 BLS Multiscale entropy consistent than Scale 1-4, m=2, r =0.2
segments for other feature
patients
. Acc 95.35%, Se B
[15] 43 data, 2 class Multiorder TE 90.48% Sp 100% TE,q=2,3,4
mean frequency, median
frequency, spectral crest
if;ori’ Sn}imnonTe nhrl OPY> Acc 75.8%, Se
[14] 16 COPD patients cny .e °pY> .sa s 73.76%, Sp 17 features using PCA,
entropies, Relative power 97.67%
(RP) factors in octave bands, ’
second order moment,
skewness, and kurtosis
Entropies (Shannon, Renyi, Single entropy: .
spectral, Tsallis, wavelet 69.7% Single entropy: TE
[23] 99 data, 5 class . ’ ’ . Composite entropies: 7
permutation, sample, Composite entrobies - Shanon
approximate) entropies: 94.95 % P
ir:ic;s;d 43 data, 2 class TE on multiscale signal Acc 97.67% Scale 1-15,q =2

Acc = accuracy, Se = sensitivity, Sp = specificity

The research has some limitations such as the small number of samples and scale reduction done by
trial and error. In the study, the data used had no noise. Some noise that may appear in lung sounds
such as heart sounds, swallowing sounds and environmental sounds [26], [27]. Reduction of noise in
pulmonary sounds is a separate field in pulmonary sound research [28], [29], [30]. Therefore, the effect
of noise on the obtained TE cannot be observed. Since TE measured non-additive entropy, the addition
of noise to the lung sound will change the TE value nonlinearly. This will affect the performance of TE
for pulmonary sound analysis. Multiscale TE testing for more lung sound classes, a variety of noise
additions is discussed in subsequent research.

4. Conclusion

This paper presents the multiscale measurements of Tsallis entropy in various non-extensivity orders
for pulmonary crackle analysis. Multiscale analysis on lung sound accommodates the lungs’ multiscale
properties, while Tsallis entropy is used to reveal the lungs’ signal complexity. In this paper, we used the
coarse-grained procedure to decompose lung sound into several scales. Multiscale Tsallis entropy with
order q = 2 in 15 scales yielded the highest accuracy of 97.67%. This result was found better than multi-
order Tsallis entropy that only yielded an accuracy of 95.35%. However, the proposed method has a
drawback, which is the use of more features compared to multi-order TE. The future study could
combine the scale and order of TE to improve the obtained accuracy. A feature subset selection method
can be used in this case. Moreover, TE measurements of other various classes of the lungs can be
conducted to obtain more comprehensive abilities of TE for classification.
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