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1. Introduction  

Flood disasters continue to occur in many countries around the world and especially in Malaysia. In 
the recent years river flooding and accompanying landslides, quite frequently occurred in Malaysia, which 
causes tremendous causalities and properties damage. A sufficiently advanced warning time may save 
lives and properties by allowing time and effect various structural and another adjustment. Early advanced 
warning can be achieved through advances in mathematical modeling [1], [2]. A variety of techniques 
has been developed for flood forecasting which leads to the issue of flood warning system. Artificial 
intelligence techniques have recently been introduced, including the Artificial Neural Network (ANN) 
and Support Vector Machine (SVM) [3]. Among these models, ANN has been found suitable for 
modeling the river flow, flood water level other than rainfall-runoff process. Moreover, ANN is a quick 
and flexible approach which gives very promising results event with long duration series of time 
forecasting [4]. 
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 Many different Artificial Neural Networks (ANN) models of flood have 
been developed for forecast updating. However, the model performance, 
and error prediction in which forecast outputs are adjusted directly based 
on models calibrated to the time series of differences between observed and 
forecast values, are very interesting and challenging task. This paper 
presents an improved lead time flood forecasting using Non-linear Auto 
Regressive Exogenous Neural Network (NARXNN), which shows better 
performance in term of forecast precision and produces minimum error 
compared to neural network method using Radial Basis Function (RBF) in 
examined 12-hour ahead of time. First, RBF forecasting model was 
employed to predict the flood water level of Kelantan River at Kuala Krai, 
Kelantan, Malaysia. The model is tested for 1-hour and 7-hour ahead of 
time water level at flood location. The same analysis has also been taken by 
NARXNN method. Then, a non-linear neural network model with 
exogenous input promoted with enhancing a forecast lead time to 12-hour. 
Both about the performance comparison has briefly been analyzed. The 
result verified the precision of error prediction of the presented flood 
forecasting model.  
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The design of such a system has been early introduced in [5], three kinds of ANN namely multilayer 
feedforward neural network (MLFN), Elman partial recurrent neural network (Elman) and time delay 
neural network (TDNN) as presented suitable for rainfall forecasting in urban catchment. An empirical 
modelling also called black box modelling has been studied recently in [6], without making many 
references to physical or hydrological process because this is an event-based modelling and applied in 
catchment area. Even though the networks could make forecast of rainfall for one step time of 15 minutes 
ahead. On the other hand, an adaptive-network-based fuzzy inference system (ANFIZ) has been 
successfully demonstrated by [7] for water level forecasting in the next three hours. Furthermore, an 
improved flood forecasting fuzzy inference system based Takagi-Sugeno subtractive clustering method 
has been proposed by [8]. As in [9] provided a fully-online neuro fuzzy model with limited data for flow 
basin forecasting.  

Flood water level forecasting has been presented recently by [10], the feed forward multilayer 
perceptron (MLP) with Cuckoo search (CS) algorithm model could perform better for 2 hour ahead of 
time. Recent studies in Malaysia about disaster risk including floods has been discussed by the researchers 
[11], [12], [13], [14] and [15]. Studied a predictive and comparative analysis of NARX and Nonlinear 
Input-Output (NIO) time series prediction has been recently presented by Philip [16]. Some different 
ANN technique has been discussed over there, and these often addressed for forecasting updating, 
include error prediction thus far is opened issue in forecasting performance. The performance 
requirements for the model can also be defined in terms of the requirements at forecasting point, for 
example, the required accuracy of the forecasts of peak water level, or the lead time provided for surge 
forecasts. Although there was proposed a flood control and optimization technique to investigate the 
effects of multiple uncertainties [17]. The proposed method can provide valuable risk information and 
enable risk-informed decisions with higher reliability. 

Unfortunately few studies has been carried out on forecasting performance [18], [19] to meet these 
requirements. However, these requirements may not always be achievable with the reliable data and 
models, and this needs to be factored into the overall design. It is officially important that forecasting 
performance include lead time and error correction is one of the key design criteria, and may dictate the 
overall design of the model. Despite prior evidence by the researchers [13] and [15], maximum lead time 
can only adjust for 7 hour and the precise of performance not more than 80%. Hence, the aim of this 
work is to provide multi-step lead time flood water level forecasting utilizing the upper-river water level 
station as input employed with NARX and RBF neural network technique. Kelantan River at Kuala 
Krai, Kelantan, Malaysia was selected as Flood Forecasting Point (FFP) in this work. Both of the 
performance comparison and output updating error adjustment is also discussed.  

2. Method 

Flood water level model and forecast are applied to the Kelantan River catchment as shown in Fig. 
1, for predicting flood water level during high flow periods. Kelantan River is located at latitudes 6° 12’ 
N and longitudes 102° 13’ E. Kelantan River is the main river in Kelantan which occupied 85% of Kota 
Bharu, state of Kelantan, Malaysia.  

 

Fig. 1. Flood Forecasting Point (FFP), Kelantan River at Kuala Krai – Malaysia 
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It drains a catchment area of about 12,700 km2 in north-east Malaysia including part of the Taman 
Negara National Park, and flows northwards into the South China Sea with a total population reaches 
± 490,000 people in 2010 [20]. The catchment every year receives average 2,900 mm of rainfall due to 
its subtropical area. 

The real-time water level dataset is obtained from the Department of Irrigation and Drainage (DID), 
Malaysia. These data were collected by their Supervisory Control and Data Acquisition (SCADA) system. 
These water level include four upper-rivers as shown in Fig. 1 and one FFP considered were collected 
from January 2011 until January 2012. The real-time water level during flood event data in November 
2011 was chosen to evaluate and develop the flood forecast model. Total there were 2880 raw-line data 
used in 15 minutes time interval. The multi-step ahead of time flood forecasting has been evaluated, and 
1 hour, 7 hour and 12 hour lead of time presented in this work. 

2.1. Radial Basis Function Neural Networks 

Radial Basis Function (RBF) is one of the most popular types in neural network that recently became 
a powerful function or tool uses for approximation, modeling and forecasting [1], [15], time series 
prediction [21], RBF as surrogate modeling [22], [23] multi-input multi-output (MIMO) control and 
optimization [24], [25] and classification problem [26].  

The RBF architecture and their input used in this work as has shown in Fig. 2. The network consists 
of three layers: an input layer, a hidden layer, and an output layer.  
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Fig. 2.  The RBF neural network forecasting model 

Here, R denotes the number of inputs, four upstream-rivers water level and one flood water level at 
FFP. While Q the number of output, predicted water level of the Kelantan River at the Kuala Krai at 
time n + T and T will be 1, 7 and 12 hour ahead of time. Equation (1) is used to calculate the output of 
the RBF NN for Q = 1, the output of the RBFNN in Fig. 2 is calculated according to (1). 
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where ὼ ɴ ד  is an input vector,   ɲȢ is a basis function, ȿȿ Ȣȿȿ denotes the Euclidean norm, ύ  
are the weights in the output layer, S1 is the number of neurons (and centers) in the hidden layer and 
ὅ  ɴד  are the RBF centers in the input vector space. Equation (1) can also be written in (2).  

( ), ( )Tx w x wh f=
  (2) 
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The output of the neuron in a hidden layer is a nonlinear function of the distance given by Equation 
(5). 

()
2 2/xx e bf -=

  (5) 

where β is the spread parameter of the RBF. For training, the least squares formula was used to find the 
second layer weights while the centers are set using the available data samples. 

In this research, 2880 data were divided into three parts include train datasets, validation datasets, 
and test datasets. The training datasets were set to 50% simply as 1440 data, and validation data was set 
to 25% which is 720 data sets, and the remaining also 25% then used for testing data. WL1, WL2, 
WL3, and WL4 represents the water level in upstream rivers, while y is represented water level at flood 
location or FFP and ļ ὲ Ὕ represents predicted flood water level. 

The training data is the largest data set and used by the neural network to learn pattern present in 
the data and to fit the parameter. While validation data are used to tune the parameter and validate the 
network model. Then, for final check of the RBFNN model, testing samples data were used. Here, 720 
samples data were evaluated to assess the performance and generalization ability of the network model. 
Data normalization [27] is done in this work in order to keep the samples data within the same range, 
noise minimalized, detect trends and flatten the distribution of the variable. These data were scaled 
between -1 to +1.  

This idea can be illustrated in Fig. 3, it shows the models of actual-observed and normalized data. 
These sample data were renormalized back to obtain the actual predicted flood water value at the output. 
The basis function ὅ is set equal to input vector from training data sets, 5. Then 12 number of spreads 
is used in the training process. A large spread implies a lot of neurons required to fit a fast-changing 
function, where a small spread is means less neuron to fit smooth function and the network may not 
generalized well. 

 

 (a) (b) 

Fig. 3.  Flood water level model during high flow periods; (a) actual level and (b) Normalize-based data. 

2.2. Nonlinear Autoregressive Exogenous Neural Networks 

The NARX neural network is derived from a class of discrete-time nonlinear systems, i.e., the non-
linear autoregressive with exogenous input (NARX) models [28]. The model is used to perform a multi-
step ahead flood forecasting in this work, which includes 1 hour, 7 hour and 12 hour lead of time. Actual 
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model of flood at FFP is chosen as exogenous variable in the neural network model. The mathematical 
form of the NARX feed-forward is defined by the expression in (6). 

ώ ὸ Ὢώὸ ρȟώὸ ςȟȣȟώὸ ὲ ȟ   

όὸ ρȟόὸ ςȟȣȟόὸ ὲ   (6) 

Where ό ὸ and ώ ὸ represent the inputs and outputs, respectively, of the network at a discrete 
time step t; ὲ  and ὲ  are the input and output layers, respectively, of the network; and Ὢ is a nonlinear 

function that is generally unknown and can be approximated by the common feedforward network. The 
outputs ώ ὸ are regressed onto previous values of the independent or exogenous input signal, 
improving the convergence time of the network. Each neuron produces an output that is fed back into 
the hidden node, which transforms the non-linear variables into an output that learns the time series 
behavior [28], [29]. 

A total of 2880 data were partitioned into two parts; the first 75% and 25% respectively used for 
training and testing the network. These input series and output series respectively of flood water level 
can be expressed in vector matrix (7) and (8). In which, WL1 (1) represents first water level data in 
upstream river 1 until last (2880) water level data in upstream river 1, river 2, river 3, and river 4. And 
then one flood river location as Flood Forecasting Point (FFP). 
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Output series =  ὊὊὖρ   ὊὊὖς   ὊὊὖσ ȣ  ὊὊὖςψψπ     (8) 

To represent 1hr, 7hr and 12hr lead of time, a new set of 75% inputs [(N+T)x4] and 25% [(N+T)x1] 
validation output is provided in order to perform multi-step-ahead prediction. These inputs are used for 
doing the forecasting process and validated how good the network was performing by plotting the 
forecasting result with the real outputs of T ahead of time. To begin this process, the input and output 
vector matrices as constructing in Fig. 4.  

 

Fig. 4.  The input and target data vector matrices used in NARX technique 

A normalization function was applied between -1 to +1 as the same analysis in RBF approach. In this 
work, a Levenberg-Marquardt (LM) training function [30] chosen in order to optimize the solution. 
The NARXNN architecture with 4 input series and 1 output series respectively represent for 4 upstream 
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rivers water level and 1 water level in the downstream river, as illustrated in Fig. 5. The flood water level 
forecast using NARX algorithm as follows: (1) first, read input data which is water level in four upstream 
rivers and one water river in flood location; (2) defining input and output, four input data and one 
predicted output data; (3) partitioning training and testing data; (4) train data using Levenberg-
Marquardt backpropagation technique then saved the trained neural network model; and (5) predict 
time-step ahead output as test data using trained data. 
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Fig. 5.  Closed-loop NARX Neural Network model 

3. Results and Discussion 

The performance of RBF and NARX network model was evaluated using Root Mean Square Error 
(RMSE) to measure the differences between estimated river water river output, ļ ὲ Ὕ and actual 
reference river water level, ώ. It is stated in (9). In order to validate how the networks was performing, 
by evaluating the regression value of forecasted model and the actual water level. The value of best fit is 
calculated according to Equation (10). 

ὙὓὛὉ В  Ὁ  Ὑ   (9) 

ὄὩίὸ ὊὭὸρππ ὼ 
 

  
  (10) 

where, Ὁ is the estimated variable or predicted flood water level, ļ ὲ Ὕ. Ὑ is the reference variable 
or measured water level model, y and N is the total of number of data. It is shown in Fig. 6 that RBFNN-
trained data is used to perform the simulation for 720 validation data.  

 

Fig. 6.  Multi-step T hour ahead of RBF model and actual 
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 To ensure the accurate of the model, 720 data then tested. Unlike RBFNN model, 75% raw-line 
datasets were examined for training process in NARX model. These trained data then employed to 25% 
datasets for testing process. Result of forecasted model using NARX network as shown in Fig. 7. While 
Table 1 shows the performance evaluation and its parameters used in this work. The NARX neural 
network model has shown remarkable achievements in this work. 

 
Fig. 7.  Multi-step T hour ahead of NARX model and actual  

Table 1.  Flood water level forecasting performance result 

Algorithm T ahead (hr) NumCenter ValSpread RMSE BestFit Regression 
 1 5 12 0.0091 98.12% 0.99983 

RBF-NN 7 5 12 0.0891 85.35% 0.99005 

 12 5 12 0.1439 76.95% 0.97518 

 T ahead (hr) NumCenter TapedDelay RMSE BestFit Regression 

 1 10 2 0.0746 87.19% 0.99231 

NARX-NN 7 10 2 0.0842 85.56% 0.98963 

 12 10 2 0.1154 80.23% 0.98358 
 

 According to Table 1, it is can be analyzed that RBF-NN technique able to produce good 
performance indicated by error value and best fit evaluation in examined 1-hour ahead of time. Unlike 
the RBF-NN however, NARX network shows better performance compare with RBF network in term 
of forecasting accuracy and error distribution respectively in examined 7-hour and 12-hour ahead of 
time. Using the default NARX network as 10 neurons and taped delay line is 2, this network able to 
produce 0.1154 RMSE with the best fit 80.23% for 12-hour lead of time flood forecasting. While RBF-
NN can approach the best fit value 76.95%. The results of the correlational analysis are summarized in 
Fig. 8. 

 
Fig. 8.  12 hour ahead of time both RBF and NARX neural networks model  
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It is also can be observed that the best fit of this network still performs better for more than 80% in 
multi-step ahead of time. In this case, it indicates that the use of NARX network for flood water level 
forecasting provides the most accurate prediction with an error 0.0842 and 0.1154 for 7-hour and 12-
hour time ahead respectively to the actual flood model. However, the RBF network promises a simple 
network structure and elapsed time needed for examining the flood forecasting model. With a constant 
number of neuron and spread value, the RBF network performs with best fit more than 75% precision 
to the actual flood model for 12-hour ahead of time. 

4. Conclusion 

The suitable of non-linear autoregressive networks model with exogenous input in short-term flood 
water level forecasting has been examined in this research. Since the performance of flood forecasting 
model, include the forecasting precision is still in opened issue. Additionally, the radial basis function 
neural network employed in order to compare the reasonably good performance of flood forecasting 
model. Even though performance RBF model fall behind with NARX in term of multi-step lead of time 
forecasting, the RBF network configuration promises a simply model and smaller. Unlike the RBF 
model, NARX shows better performance even for forecasts a multi-step time ahead of flood water level. 
The NARX relatively produce minimum error with 80% highly best fit approximation in examined 12-
hour ahead of time forecasting. Furthermore, numerous input variables such as rainfall-runoff 
information, wind speed and stream flow of catchment can be considered for future work in advance. 
Exploring more possible parameters setting will make the network to learn the pattern movement of the 
numerous data. This makes sense to build a robustness of forecasting model. 

Acknowledgment  

The authors wish to express their sincerest gratitude to the Malaysia-Japan International Institute of 
Technology, Universiti Teknologi Malaysia for supporting and providing the facilities of this research. 
The Department of Irrigation and Drainage, Malaysia for providing the observed flood water level data. 
And The Universitas Muhammadiyah Malang for supporting this study. 

References 

[1] Fi-John Chang, J.-M. Liang, and Y.-C. Chen, “Flood Forecasting Using Radial Basis Function Neural 
Networks,” IEEE Trans. Syst. Man. Cybern., vol. 31, no. 4, pp. 530–535, 2001, doi: 10.1109/5326.983936. 

[2] A. Y. Shamseldin and K. M. O’Connor, “A non-linear neural network technique for updating of river flow 
forecasts,” Hydrol. Earth Syst. Sci. Discuss., vol. 5, no. 4, pp. 577–598, 2001, doi: 10.5194/hess-5-577-2001. 

[3] L. Lu and S. Zhang, “Short-term Water Level Prediction using Different Artificial Intelligent Models,” in 
2016 Fifth International Conference on Agro-Geoinformatics (Agro-Geoinformatics), 2009, doi:  
10.1109/Agro-Geoinformatics.2016.7577678. 

[4] J. Abbot and J. Marohasy, “Skilful rainfall forecasts from artificial neural networks with long duration series 
and single-month optimization,” Atmos. Res., vol. 197, no. July, pp. 289–299, 2017, doi: 10.1016/j.atmosres. 
2017.07.015. 

[5] K. C. Luk, J. E. Ball, and A. Sharma, “An application of artificial neural networks for rainfall forecasting,” 
Math. Comput. Model., vol. 33, no. 6, pp. 683–693, 2001, doi: 10.1016/S0895-7177(00)00272-7. 

[6] C. L. Jun, Z. S. Mohamed, A. L. S. Peik, S. F. M. Razali, and S. Sharil, “Flood forecasting model using 
empirical method for a small catchment area,” J. Eng. Sci. Technol., vol. 11, no. 5, pp. 666–672, 2016, 
available at: Google Scholar. 

[7] F. J. Chang and Y. T. Chang, “Adaptive neuro-fuzzy inference system for prediction of water level in 
reservoir,” Adv. Water Resour., vol. 29, no. 1, pp. 1–10, 2006, doi: 10.1016/j.advwatres.2005.04.015. 

[8] A. K. Lohani, N. K. Goel, and K. K. S. Bhatia, “Improving real time flood forecasting using fuzzy inference 
system,” J. Hydrol., vol. 509, pp. 25–41, 2014, doi: 10.1016/j.jhydrol.2013.11.021. 

[9] M. Ashrafi, L. H. C. Chua, C. Quek, and X. Qin, “A fully-online Neuro-Fuzzy model for flow forecasting 
in basins with limited data,” J. Hydrol., vol. 545, pp. 424–435, 2017, doi: 10.1016/j.jhydrol.2016.11.057. 

https://doi.org/10.1109/5326.983936
https://doi.org/10.5194/hess-5-577-2001
https://doi.org/10.1109/Agro-Geoinformatics.2016.7577678
https://doi.org/10.1109/Agro-Geoinformatics.2016.7577678
https://doi.org/10.1016/j.atmosres.2017.07.015
https://doi.org/10.1016/j.atmosres.2017.07.015
https://doi.org/10.1016/S0895-7177(00)00272-7
https://scholar.google.com/scholar?hl=id&as_sdt=0%2C5&q=Flood+forecasting+model+using+empirical+method+for+a+small+catchment+area&btnG=
https://doi.org/10.1016/j.advwatres.2005.04.015
https://doi.org/10.1016/j.jhydrol.2013.11.021
https://doi.org/10.1016/j.jhydrol.2016.11.057


ISSN 2442-6571 International Journal of Advances in Intelligent Informatics 9 
 Vol. 5, No. 1, March 2019, pp. 1-10 

 

 Faruq et.al (The use of radial basis function and non-linear autoregressive exogenous neural networks ᶬ) 

[10] S. Phitakwinai, S. Auephanwiriyakul, and N. Theera-Umpon, “Multilayer perceptron with Cuckoo search 
in water level prediction for flood forecasting,” Proc. 2016 Int. Jt. Conf. Neural Networks, vol. 2016–Octob, 
no. 1, pp. 519–524, 2016, doi: 10.1109/IJCNN.2016.7727243. 

[11] N. W. Chan, “Impacts of disasters and disasters risk management in Malaysia: The case of floods,” Econ. 
Welf. Impacts Disasters East Asia Policy Responses., no. December, pp. 503–551, 2012, doi:  
10.1007/978-4-431-55022-8_12. 

[12] M. S. Bin Khalid and S. B. Shafiai, “Flood Disaster Management in Malaysia: An Evaluation of the 
Effectiveness Flood Delivery System,” Int. J. Soc. Sci. Humanit., vol. 5, no. 4, pp. 398–402, 2015, doi: 
10.7763/IJSSH.2015.V5.488. 

[13] F. A. Ruslan, A. M. Samad, M. Tajjudin, and R. Adnan, “7 hours flood prediction modelling using NNARX 
structure: Case study Terengganu,” Proceeding - 2016 IEEE 12th Int. Colloq. Signal Process. its Appl. CSPA 
2016, no. November, pp. 263–268, 2016, doi: 10.1109/CSPA.2016.7515843. 

[14] S. Shafiai and M. S. Khalid, “Flood Disaster Management in Malaysia: A Review of Issues of Flood Disaster 
Relief during and Post-Disaster,” Int. Soft Sci. Conf., no. 1983, pp. 1–8, 2016, doi: 10.15405/epsbs. 
2016.08.24. 

[15] Abu Bakar, M.A, Abdul Aziz F.A., Mohd Hussein S.F., Abdullah S.S., Ahmad F. “Flood Water Level 
Modeling and Prediction Using Radial Basis Function Neural Network: Case Study Kedah,” Model. Des. 
Simul. Syst. AsiaSim, vol. 751, pp. 225–234, 2017, doi: 10.1007/978-981-10-6463-0_20. 

[16] O. O. Philip and B. T. Adeleke, “Predictive and Comparative Analysis of NARX and NIO Time Series 
Prediction,” Am. J. Eng. Res., vol. 6, no. 9, pp. 155–165, 2017, available at: http://www.ajer.org/papers/ 
v6(09)/T0609155165.pdf. 

[17] F. Zhu, P. A. Zhong, Y. Sun, and W. W. G. Yeh, “Real-Time Optimal Flood Control Decision Making 
and Risk Propagation Under Multiple Uncertainties,” Water Resour. Res., vol. 53, no. 12, pp. 10635–10654, 
2017, doi: 10.1002/2017WR021480. 

[18] W. K. Lee and T. A. Tuan Resdi, “Simultaneous hydrological prediction at multiple gauging stations using 
the NARX network for Kemaman catchment, Terengganu, Malaysia,” Hydrol. Sci. J., vol. 61, no. 16, pp. 
2930–2945, 2016, doi: 10.1080/02626667.2016.1174333. 

[19] A. Wibowo, S. H. Arbain, and N. Z. Abidin, “Combined multiple neural networks and genetic algorithm 
with missing data treatment: Case study of water level forecasting in Dungun River - Malaysia,” IAENG 
Int. J. Comput. Sci., vol. 45, no. 2, 2018, available at: http://www.iaeng.org/IJCS/issues_v45/issue_2/ 
IJCS_45_2_03.pdf. 

[20] Department of Information, Ministry of Communications and Multimedia, “Population by States and 
Ethnic Group,” Malaysia, 2017, available at: https://www.mcmc.gov.my/skmmgovmy/media/General/pdf/ 
MCMC-Internet-Users-Survey-2017.pdf. 

[21] H. Haviluddin and A. Jawahir, “Comparing of ARIMA and RBFNN for short-term forecasting,” Int. J. Adv. 
Intell. Informatics, vol. 1, no. 1, pp. 15–22, 2015, doi: 10.26555/ijain.v1i1.10. 

[22] M. F. N. Shah, S. S. Abdullah, and A. Faruq, “Multi-objective optimization of mimo control system using 
surrogate modeling,” in IEEE International Conference on Control System, Computing and Engineering, 2011, 
pp. 138–143, doi: 10.1109/ICCSCE.2011.6190511. 

[23] A. Faruq, S. S. Abdullah, M. Fauzi, and S. Nor, “Optimization of depth control for Unmanned Underwater 
Vehicle using surrogate modeling technique,” in 2011 4th International Conference on Modeling, Simulation 
and Applied Optimization, ICMSAO 2011, 2011, doi: 10.1109/ICMSAO.2011.5775543. 

[24] M. F. N. Shah, M. A. Zainal, A. Faruq, and S. S. Abdullah, “Metamodeling approach for PID controller 
optimization in an evaporator process,” in 2011 4th International Conference on Modeling, Simulation and 
Applied Optimization, ICMSAO 2011, 2011, doi: 10.1109/ICMSAO.2011.5775616. 

[25] A. Faruq, M. F. N. Shah, and S. S. Abdullah, “Multi-objective optimization of PID controller using pareto-
based surrogate modeling algorithm for MIMO evaporator system,” Int. J. Electr. Comput. Eng., vol. 8, no. 
1, pp. 556–565, 2018, doi: 10.11591/ijece.v8i1.pp556-565. 

https://doi.org/10.1109/IJCNN.2016.7727243
https://doi.org/10.1007/978-4-431-55022-8_12
https://doi.org/10.1007/978-4-431-55022-8_12
https://doi.org/10.7763/IJSSH.2015.V5.488
https://doi.org/10.1109/CSPA.2016.7515843
https://doi.org/10.15405/epsbs.2016.08.24
https://doi.org/10.15405/epsbs.2016.08.24
https://doi.org/10.1007/978-981-10-6463-0_20
http://www.ajer.org/papers/v6(09)/T0609155165.pdf
http://www.ajer.org/papers/v6(09)/T0609155165.pdf
https://doi.org/10.1002/2017WR021480
https://doi.org/10.1080/02626667.2016.1174333
http://www.iaeng.org/IJCS/issues_v45/issue_2/IJCS_45_2_03.pdf
http://www.iaeng.org/IJCS/issues_v45/issue_2/IJCS_45_2_03.pdf
https://www.mcmc.gov.my/skmmgovmy/media/General/pdf/MCMC-Internet-Users-Survey-2017.pdf
https://www.mcmc.gov.my/skmmgovmy/media/General/pdf/MCMC-Internet-Users-Survey-2017.pdf
https://doi.org/10.26555/ijain.v1i1.10
https://doi.org/10.1109/ICCSCE.2011.6190511
https://doi.org/10.1109/ICMSAO.2011.5775543
https://doi.org/10.1109/ICMSAO.2011.5775616
https://doi.org/10.11591/ijece.v8i1.pp556-565


10 International Journal of Advances in Intelligent Informatics   ISSN 2442-6571 

 Vol. 5, No. 1, March 2019, pp. 1-10 

 

 Faruq et.al (The use of radial basis function and non-linear autoregressive exogenous neural networks ᶬ) 

[26] J. Tian, M. Li, F. Chen, and N. Feng, “Learning Subspace-Based RBFNN Using Coevolutionary Algorithm 
for Complex Classification Tasks,” IEEE Trans. Neural Networks Learn. Syst., vol. 27, no. 1, pp. 47–61, 
2016, doi: 10.1109/TNNLS.2015.2411615. 

[27] W. Yan, “Toward automatic time-series forecasting using neural networks,” IEEE Trans. Neural Networks 
Learn. Syst., vol. 23, no. 7, pp. 1028–1039, 2012, doi: 10.1109/TNNLS.2012.2198074. 

[28] H. Xie, H. A. O. Tang, and Y. Liao, “Time Series Prediction Based On Narx Neural Networks : An 
Advanced Approach,” in Proceedings of the Eighth International Conference on Machine Learning and 
Cybernetics, 2009, no. July, pp. 12–15, doi: 10.1109/ICMLC.2009.5212326. 

[29] I. M. Yassin, M. F. A. Khalid, S. H. Herman, I. Pasya, N. A. Wahab, and Z. Awang, “Multi-Layer 
Perceptron (MLP)-Based Nonlinear Auto-Regressive with Exogenous Inputs (NARX) Stock Forecasting 
Model,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 7, no. 3, pp. 1098–1103, 2017, doi: 10.18517/ijaseit.7.3.1363. 

[30] S. M. Guzman, J. O. Paz, and M. L. M. Tagert, “The Use of NARX Neural Networks to Forecast Daily 
Groundwater Levels,” Water Resour. Manag., vol. 31, no. 5, pp. 1591–1603, 2017, doi:  
10.1007/s11269-017-1598-5. 

 

https://doi.org/10.1109/TNNLS.2015.2411615
https://doi.org/10.1109/TNNLS.2012.2198074
https://doi.org/10.1109/ICMLC.2009.5212326
https://doi.org/10.18517/ijaseit.7.3.1363
https://doi.org/10.1007/s11269-017-1598-5
https://doi.org/10.1007/s11269-017-1598-5

