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1. Introduction 

In the last decade, researchers began to be interested in SSA (Singular Spectrum Analysis) 
development which was first discussed by Broomhead & King [1] and Fraedrich [2]. Vautard and Ghil 
[3] were also introduced and contributed to this field so that much of the subsequent work refer to the 
results of their study. Later, some researchers [4]–[13] continued their work on the development of 
SSA as a tool of time series forecasting. 

In time series forecasting, SSA-LRF (linear recurrent formula) proposed by Golyandina et al. [4] 
decomposes time series into two separable components (signal and noise component), estimates the 
linear recurrent relations (LRR) and applies it to the last points of the signal series to obtain the forecast 
values. However, by this method, we cannot easily represent the model as a function of time. Meanwhile, 
Golyandina & Zhigljavsky [14] have proven that the signal governed by LRRs is a linear combination 
of products of polynomial, exponential and oscillatory series.   

In the meantime, researchers [15]–[17] considered SSA as a method to define some separable 
component series and modeled those each components using the Box-Jenkins method. Each component 
series is approximated by ARIMA (Autoregressive Integrated Moving Average) model.  In fact, not all 
the components of SSA decomposition can be modeled by ARIMA since the series do not satisfy the 
assumptions needed in ARIMA modeling. Therefore, the approach may not be implemented in some 
series.   
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 The study of SSA-based forecasting model is always interesting due to its 
capability in modeling trend and multiple seasonal time series. The aim of 
this study is to propose an iterative ordinary least square (OLS) for 
estimating the oscillatory with time-varying amplitude model that usually 
found in SSA decomposition. We compare the results with those obtained 
by nonlinear least square based on Levenberg Marquardt (NLM) method. 
A simulation study based on the time series data which has a linear 
amplitude modulated sinusoid component is conducted to investigate the 
error of estimated parameters of the model obtained by the proposed 
method. A real data series was also considered for the application example. 
The results show that in terms of forecasting accuracy, the SSA-based 
model where the oscillatory components are obtained by iterative OLS is 
nearly the same with that is obtained by the NLM method.  
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Recently, Suhartono et al. [18] combined the time series regression (TSR) and ARIMA to model 
components determined by SSA method. In this case, TSR is used to model the trend component while 
the ARIMA is implemented to model the seasonal component and the noise. Moreover, as mentioned 
earlier, the signal series described by Golyandina et al. [4] and Golyandina & Zhigljavsky [14] consists 
of the combination of products of polynomial, exponential and harmonic series. While this is true, the 
performance of SSA-based forecasting model discussed in Sulandari et al. [19] is greatly influenced by 
the determination of each component model. When the choice of function for each component series 
is not fit to the true line then the performance of the SSA-based model will become worse. 

In this work, we highlight the oscillatory components of the SSA decomposition results and discuss 
the best fit models for those components. There were many studies in the oscillatory or sinusoidal 
models, especially in analysis and modeling speech signal and audio [20]-[22]. Chen [23] discussed the 
estimation of parameters of the stationary sinusoidal model by deriving the nonlinear equation as a 
function of frequency and solving it using Newton method. At the same time, Pantazis et al. [21] 
discussed a time-varying quasi-harmonic model (QHM) by presenting the sinusoidal signal as a sum of 
products of polynomials and exponentials and estimating the parameters by iterative procedure with 
considering the frequency mismatch. This algorithm outperformed the FFT-based approach. In the 
following year, Liu et al. [24] also discussed the sinusoidal signal with time-varying amplitude and 
estimated the parameters using algebraic parametric techniques and modulating functions method, 
where the estimates are determined by integrals. Later, Valin et al. [25] presented the sinusoidal model 
in the linearization form and estimated the parameters by an iterative method based on the linearization 
of the model. 

This research focuses on estimating the parameters of the oscillatory with time-varying amplitude as 
a result of SSA decomposition. Based on Golyandina & Zhigljavsky [14], a complex pattern series can 
be represented as the sum of trend or smoothing and oscillatory components. The oscillatory series may 
show a stationary or nonstationary sinusoid. In this case, the nonstationary sinusoid may either be the 
product of a polynomial and stationary sinusoid or product of exponential and stationary sinusoid. 
Sulandari et al. [26] show that the three stages of nonlinear least square based on Levenberg Marquardt 
(NLM) method produces consistent estimators for the parameters of linear amplitude modulated 
sinusoids, quadratic amplitude modulated sinusoids and exponential amplitude modulated sinusoids. In 
this work, we present an iterative OLS method and compare it to the NLM method in modeling the 
time-varying amplitude oscillatory components. The iterative OLS algorithm has been discussed and 
been implemented in estimating the stationary sinusoid component of SSA decomposition for the 
monthly atmospheric concentration of CO2 [27].  

The iterative OLS discussed in Sulandari et al. [27] cannot be implemented to the time-varying 
amplitude sinusoid model directly. In this work, we estimate the model by employing the iterative OLS 
to the three steps in Sulandari et al. [26]. We represent the time-varying amplitude sinusoid model in a 
different way from the references mentioned earlier. We express the model in the trigonometric function 
of the sum of sine and cosine with time-varying amplitude. Meanwhile, Pantazis et al. [21] considered 
QHM in the form of the exponential function with linear time-varying amplitude and Valin et al. [25] 
presented the model in the form of the cosine function with frequency correction over a finite window. 
The aim of this study is to present the simple iterative OLS method for estimating parameters of time-
varying amplitude sinusoid model, i.e. oscillation with linear amplitude. As stated in Gujarati [28], the 
OLS method is known simpler than others. Hence, the method presented in this paper is also simple. 
However, its simplicity does not diminish its ability in estimating parameters of the time-varying 
sinusoid model. In order to check the estimation performance of the proposed method, we consider 
nonlinear least square based on Levenberg Marquardt (NLM) method. We compare the results obtained 
by iterative OLS method with those obtained by NLM. 

This paper is organized as follows. In section 2, we describe the methods for determining the 
oscillatory with time-varying amplitude model. The comparison between the oscillatory model obtained 
by the iterative OLS and NLM method is discussed in Section 3.  A Simulation study that was conducted 
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to the linear amplitude modulated sinusoidal model is presented in this section in order to investigate 
the performance of both iterative OLS and NLM in estimating the parameters of the model. We also 
discuss the implementation of the algorithms to the real data series in Section 3 and finally, Section 4 
delivers the conclusions. 

2. Method 

SSA is a powerful method in decomposing time series with a complex pattern. We do not discuss 
SSA further in this section, but the reader can find this matter in [4], [7], [29], [30]. Consider that the 
SSA method decomposes the series into two main separable components, signal and noise component 
so that the model can be represented as (1). 

𝑌𝑡 = 𝑆𝑡 + 𝑁𝑡  (1) 

where 𝑌𝑡 is the observation value at time t, 𝑆𝑡 is the signal value at time 𝑡, and 𝑁𝑡 is the noise value at 
time 𝑡. Inspiring by Soares & Medeiros [31], the idea of this work is to approximate the signal 
component series of (1) by the deterministic function of time and to finish the rest with a stochastic 
model. The signal {𝑆𝑡, 𝑡 = 1, 2, … 𝑁} itself can be decomposed into several components, i.e. trend, 
smoothing, and oscillatory components and therefore the deterministic function of time can be 
represented as (2). 

𝑆𝑡 = ∑ 𝑓𝑖(𝑡)𝑔𝑖(𝑡)𝑛𝑠
𝑖=1 + 𝜀𝑡  (2) 

where 𝑛𝑠 is the number of separable components obtained from the signal, 𝑓𝑖(𝑡) is defined as a 
polynomial (3). 

𝑓𝑖(𝑡) = ∑ 𝑎𝑖𝑗
𝑛𝑝𝑖

𝑗=0
𝑡𝑗      (3) 

or may other possible functions, i.e. exponential function. Select which one is the most appropriate 
function for the envelope of the oscillatory series, but generally, the polynomial function is the best one. 
𝑛𝑝𝑖 denotes the order of the 𝑖th polynomial function and 𝑎𝑖𝑗 is the 𝑗-th parameter of 𝑖-th component 

of the signal. The function 𝑔𝑖(𝑡) represents the estimate function for the 𝑖-th stationary sinusoidal 
series. 

𝑔𝑖(𝑡) = 𝛼𝑖 + 𝛽𝑖 cos(𝜔𝑖𝑡) + 𝛾𝑖 sin(𝜔𝑖𝑡)  (4) 

where 𝛼𝑖 , 𝛽𝑖, 𝛾𝑖  and 𝜔𝑖 are the parameters of sinusoids. The notation 𝜔𝑖 denotes the frequency of the 
model where 𝜔𝑖 = 2𝜋/𝑇𝑖 and 𝑇𝑖 is the period of the 𝑖th component series. 

In this case, SSA decomposition results make the identification and determination of the proper 
deterministic function for each component in (2) easier. When the 𝑖th component series shows the 
trend or smoothing pattern, (4) is equal to one (unit) and when it shows stationary sinusoid, (3) is the 
unit. 

Based on Equation (1), it can be seen that 𝜔 is the only nonlinear parameter in the model. This 
parameter can be estimated simultaneously or separately in the model estimation. This research presents 
an iterative OLS method for modeling nonstationary periodicity series. The nonstationary periodicity 
series that discussed in this study is oscillatory with a linear time-varying amplitude. The sinusoidal 
model obtained by iterative OLS method is then compared with the model determined by NLM 
method.  

In the simulation study, we investigate the performance of the model based on the mean square error 
of estimators (MSE), root mean square error (RMSE), and mean absolute percentage error (MAPE) of 
the forecasting values. Meanwhile, in the empirical study, the performance of each oscillatory component 
of the signal is evaluated based on the RMSE and the R2 of the training data. For further evaluation, 
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the deterministic model that consists of trend and one or more oscillatory components is then combined 
with other stochastic model to obtain more accurate forecasting values. We use RMSE and MAPE to 
measure the accuracy performance of the forecasting model. 

All evaluation criteria which are employed to evaluate the performance of the model [32]–[34] are 
defined as follows 

MSE= ∑ ∑ (𝜃̂𝑝 − 𝜃𝑝)2𝑛𝑝

𝑝=1
𝑅
𝑟=1 /𝑅,  (5) 

R2 = ∑ (𝑌̂𝑡 − 𝑌̅)2𝑚
𝑡=1 / ∑ (𝑌𝑡 − 𝑌̅)2𝑚

𝑡=1 ,  

RMSE = √
1

𝑚
∑ (𝑌𝑡 − 𝑌̂𝑡)2ℎ+𝑚−1

𝑡=ℎ , 
 

 MAPE =
1

𝑚
∑ |(𝑌𝑡 − 𝑌̂𝑡)/𝑌𝑡| × 100%,ℎ+𝑚−1

𝑡=ℎ    (8) 

where MSE presented in (5) is MSE of estimators, calculated from R data sets, i.e. the number of 
replication used in simulation study). Notation 𝑛𝑝 denotes the number of parameters considered in the 

model, 𝜃̂𝑝and 𝜃𝑝 present the p-th estimated parameter and the p-th parameter value, respectively. R2 

expressed in (6) measures the relationship between the actual values and the forecast values.  𝑌𝑡 is the 

actual value at time t and ˆ
tY is the forecast value at time t. Notation ℎ in (7) and (8) shows the time index 

when the calculation starts and m denotes the number of the observations used in calculation.  

2.1. Stationary periodicity series 

Consider the stationary sinusoidal model as in (9). 

𝑆𝑡 = 𝛼 + 𝛽 cos(𝜔𝑡) +  𝛾 sin(𝜔𝑡) + 𝜀𝑡 .  (9)

The parameters of the model (9) are obtained by iterative OLS method and NLM method as presented 
as follows: 

a. Iterative OLS method 

Step 1: Define j where 𝜔𝑗 = 2𝜋𝑗/𝑁 is the maximizer of periodogram and N is the sample size. 

  The maximizer of periodogram, 𝜔𝑗, can be defined by first considering a Fourier 

representation of the series [35] expressed by (10). 

 𝑆𝑡 = ∑ 𝜃𝑘 cos(𝜔𝑘𝑡) + 𝜗𝑘 sin(𝜔𝑘𝑡)
[𝑁/2]
𝑘=0 . (10) 

𝜔𝑘 = 2𝜋𝑘/𝑁, 𝑘 = 0,1, 2, … , [𝑁/2] are the Fourier frequencies, [𝑁/2] is 𝑁/2 if N is even, 
and [𝑁/2] = (𝑁 − 1)/2 if N is odd. The Fourier coefficients 𝜃𝑘 and 𝜗𝑘 are defined by (11)-
(12). 

𝜃𝑘 = {

1

𝑁
∑ 𝑆𝑡 cos(𝜔𝑘𝑡),𝑁

𝑡=1 𝑘 = 0 and 𝑘 = 𝑁/2 if 𝑁 is even,

2

𝑁
∑ 𝑆𝑡 cos(𝜔𝑘𝑡)𝑁

𝑡=1 , 𝑘 = 1,2, … , [(𝑁 − 1)/2],
 (11) 

and 

𝜗𝑘 =
2

𝑁
∑ 𝑆𝑡 sin(𝜔𝑘𝑡)𝑁

𝑡=1 ,         𝑘 = 1,2, … , [(𝑁 − 1)/2].  

The periodogram 𝐼(𝜔𝑘) is then defined by (13). 

𝐼(𝜔𝑘) = {

𝑁𝜃0
2, 𝑘 = 0

𝑁

2
(𝜃𝑘

2 + 𝜗𝑘
2), 𝑘 = 1, 2, … , [(𝑁 − 1)/2],

𝑁𝜃𝑁/2
2 , 𝑘 = 𝑁/2 if 𝑁 is even.

               (13) 
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Based on (13), we can obtain a certain j where 𝐼(𝜔𝑗) is the maximum value of the 

periodogram, 𝐼(𝜔𝑗) = max{𝐼(𝜔𝑘), 𝑘 = 0,1, 2, … , [𝑁/2]}. In this case, 𝜔𝑗 is called the 

maximizer of the periodogram. 

Step 2: Set 𝛿, a value between 0 and 1 and assume that the true frequency 𝜔 is the value between 
2𝜋(𝑗 − 𝛿)/𝑁 and 2𝜋(𝑗 + 𝛿)/𝑁 

Step 3: Assign the length of step, , where ∆< 𝛿. 

Step 4: Define 𝜔𝑙 = 2𝜋(𝑗 − 𝛿)/𝑁  and 𝜔𝑢 = 2𝜋(𝑗 + 𝛿)/𝑁. 

Step 5: Estimate (𝛼𝑙 , 𝛽𝑙 , 𝛾𝑙)  and (𝛼𝑢, 𝛽𝑢, 𝛾𝑢)  using OLS method for the given 𝜔𝑙 and 𝜔𝑢, 
respectively. 

Step 6: Calculate 𝑅𝑀𝑆𝐸 for the estimated parameters (𝜔𝑙 , 𝛼𝑙 , 𝛽𝑙 , 𝛾𝑙), say 𝑅𝑀𝑆𝐸𝑙 and for the 

estimated parameters (𝜔𝑢, 𝛼𝑢, 𝛽𝑢, 𝛾𝑢), say 𝑅𝑀𝑆𝐸𝑢 .  

Step 7: Compare between RMSEl and RMSEu. 

i. If  RMSEl < RMSEu then 𝜔𝑙
𝑛𝑒𝑤 = 𝜔𝑙

𝑜𝑙𝑑 and adjust 𝜔𝑢
𝑛𝑒𝑤 = 𝜔𝑢

𝑜𝑙𝑑 − 2𝜋∆/𝑁, where 
𝜔𝑢

𝑛𝑒𝑤 must be greater than 𝜔𝑙
𝑛𝑒𝑤. If 𝜔𝑢

𝑛𝑒𝑤 < 𝜔𝑙
𝑛𝑒𝑤 then 𝜔̂ = 𝜔𝑙

𝑜𝑙𝑑, and continue to Step 
8, else back to Step 6. 

ii. If RMSEl > RMSEu  then 𝜔𝑢
𝑛𝑒𝑤 = 𝜔𝑢

𝑜𝑙𝑑 and adjust 𝜔𝑙
𝑛𝑒𝑤 = 𝜔𝑙

𝑜𝑙𝑑 + 2𝜋∆/𝑁, where 
𝜔𝑙

𝑛𝑒𝑤 must be less than 𝜔𝑙
𝑛𝑒𝑤. If 𝜔𝑙

𝑛𝑒𝑤 > 𝜔𝑢
𝑛𝑒𝑤 then  𝜔̂ = 𝜔𝑢

𝑜𝑙𝑑 and continue to the 
Step 8, else back to Step 6 

iii. If RMSEl = RMSEu or 𝜔𝑙
𝑛𝑒𝑤 = 𝜔𝑢

𝑛𝑒𝑤 then 𝜔̂ = 𝜔𝑙
𝑛𝑒𝑤 = 𝜔𝑢

𝑛𝑒𝑤 and continue to Step 8. 

Step 8: Find (𝛼̂, 𝛽̂, 𝛾) using OLS method for the value 𝜔̂  obtained from Step 7. 

b. NLM method 

The NLM algorithm was discussed in many literature, such as [36]–[38] and [36]. In this study, we 
use periodogram to find the initial value of frequency [39], i.e. the maximizer of the periodogram as 
described in the first step of iterative OLS method while the initial values of other parameters are set to 
be zeros.  

2.2. Oscillatory series with time-varying amplitude 

The amplitude modulated sinusoidal modeling using NLM method was discussed detail in the 
previous research [26]. There are three stages in estimating the sinusoidal function with time-varying 
amplitude, both for the iterative OLS method and the NLM method. The algorithm is presented below. 

Stage 1: establish the envelope series and define the best fit function (3) for the series 

Stage 2: obtain the stationary sinusoidal series and determine the fit function (4) by 

a. Iterative OLS method as presented in Section 2.1.a.   

b. NLM method as presented in Section 2.1.b. 

Stage 3: estimating the sinusoidal model with time-varying as a product of 𝑓(𝑡) obtained from Stage 1 
and 𝑔(𝑡) determined from Stage 2. 

3. Results and Discussion 

This section discusses the simulation study of linear amplitude modulated sinusoidal model and its 
application. The simulation study is conducted to investigate the properties of estimators that are 
obtained by the iterative OLS and the NLM method. The comparison results between the two methods 
are presented. 
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3.1. Simulation 

The data used in simulation study were generated based on (14). 

𝑆𝑡 = (𝑎 + 𝑏𝑡)(𝛼 + 𝛽 cos(𝜔𝑡) + 𝛾 sin(𝜔𝑡)) + 𝜀𝑡 ,  (14) 

that may also be written as (15). 

𝑆𝑡 = 𝐴 + 𝐵𝑡 + 𝐶 cos(𝜔𝑡) + 𝐷 sin(𝜔𝑡) + 𝐸𝑡 cos(𝜔𝑡) + 𝐹𝑡 sin(𝜔𝑡) + 𝜀𝑡 , 

where 𝜀𝑡~Ν(0, 𝜎2). The parameters of the model (15) are 𝐴 = 𝑎𝛼, 𝐵 = 𝑏𝛼, 𝐶 = 𝑎𝛽,  𝐷 = 𝑎𝛾, 𝐸 =
𝑏𝛽, 𝐹 = 𝑏𝛾 and 𝜔 = 2𝜋/𝑇.  

We have considered several data generated processes (DGPs) to investigate the stability of the iterative 
OLS method. Since the results were almost similar one another so we just present two DGPs with the 
four levels sample of size (N = 500, 1000, 1500, and 2000) and 50 independent series each. We used   

a. 𝑆𝑡 = 200 + 0.02𝑡 − 50 cos (
2𝜋

48
𝑡) + 75 sin (

2𝜋

48
𝑡) − 0.005𝑡 cos (

2𝜋

48
𝑡) + 0.0075𝑡 sin (

2𝜋

48
𝑡) +  𝜀𝑡  

b. 𝑆𝑡 = 125 + 0.0375𝑡 − 37.5 cos (
2𝜋

48
𝑡) − 25 sin (

2𝜋

48
𝑡) + 0.0113𝑡 cos (

2𝜋

48
𝑡) − 0.0075𝑡 sin (

2𝜋

48
𝑡) +  𝜀𝑡 

where the frequency was 𝜔 = 2𝜋/48 = 0.1309 and 𝜎2 = 0.25. Each series was divided into two parts, 
the training and the testing dataset. For all series, the last forty eight data were considered as the testing 
data. The results of the simulation study were summarized in Table 1 and Table 2.    

Table 1.  Estimated parameters of the 1st DGP and the forecast accuracy of the model obtained by iterative OLS 

and NLM method 

Estimated parameters by 

Method Iterative OLS NLM 

Size (N) 500 1000 1500 2000 500 1000 1500 2000 

Parameter A = 200 199.9791 200.0632 200.0203 200.0132 199.9793 200.0636 200.0203 200.0140 

 B = 0.02 0.0201 0.0199 0.0200 0.0200 0.0201 0.0199 0.0200 0.0200 

 C = -50 -50.0132 -49.9966 -50.0083 -49.9772 -49.9888 -50.0204 -50.0124 -50.0006 

 D = 75 74.9832 75.0359 75.0098 75.0212 74.9995 75.0199 75.0071 75.0060 

 E = -0.005 -0.0050 -0.0050 -0.0050 -0.0050 -0.0050 -0.0050 -0.0050 -0.0050 

 F = 0.0075 0.0075 0.0074 0.0075 0.0075 0.0075 0.0074 0.0075 0.0075 

  = 0.1309 0.1309 0.1309 0.1309 0.1309 0.1309 0.1309 0.1309 0.1309 

 2 = 0.25 0.2932 0.2707 0.2630 0.2606 0.2908 0.2706 0.2628 0.2604 

MSE of estimators 0.0477 0.0241 0.0121 0.0125 0.0344 0.0236 0.0132 0.0115 

RMSE Train 0.5076 0.5046 0.5030 0.5031 0.5059 0.0545 0.5027 0.5030 

 Test 0.5366 0.5226 0.5116 0.5091 0.5310 0.5236 0.5123 0.5078 

MAPE(%) Train 0.2187 0.2178 0.2176 0.2191 0.2181 0.2177 0.2175 0.2190 

 Test 0.2279 0.2111 0.2011 0.1924 0.2261 0.2114 0.2016 0.1920 
 

Table 1 and Table 2 show that the MSE of estimators for both the iterative OLS and the NLM tend 
to become smaller as the sample sizes increase. In addition, values of RMSEs and MAPEs for the two 
methods are almost similar. It means that the two methods have nearly the same performance, in term 
of forecasting values. 

Based on the experimental results, it is noted that we need to pay attention in selecting 𝛿 and ∆ in 
using the iterative OLS method. In case of the results obtained by the iterative OLS, the values 𝛿 = 0.5 
and ∆ = 0.001 produce the best estimators for the sample size N = 500 and N = 1500 while 𝛿 = 0.1 and 
∆ = 0.00005 is better for the sample size N =1000 and N = 2000.  

Comparing to the NLM, the iterative OLS is simpler in the calculation since it does not need to find 
the differentiation of the objective function as in the NLM. However, it might be time consuming when 
we determine  𝛿 and ∆ incorrectly. Though it can also occur in the NLM when we do not set the right 
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initial values. Moreover, we can say that the complex method does not always produce better results 
than the simpler one as stated in Makridakis & Hibon [40]. 

Table 2.  Estimated parameters of the 2nd DGP and the forecast accuracy of the model obtained by iterative 

OLS and NLM method 

Estimated parameters by 

Method Iterative OLS NLM 

Size (N) 500 1000 1500 2000 500 1000 1500 2000 

parameter A = 125 124.9914 125.0027 125.0573 125.0249 124.9913 125.0025 125.0573 125.0249 

 B = 0.0375 0.0375 0.0375 0.0374 0.0375 0.0375 0.0375 0.0374 0.0375 

 C = 37.5 37.5056 37.4899 37.5132 37.5022 37.4997 37.4976 37.5108 37.5101 

 D = -25 -24.9832 -25.0157 -25.0126 -25.0140 -24.9923 -25.0041 -25.0163 -25.0023 

 E = 0.0113 0.0113 0.0112 0.0112 0.0112 0.0113 0.0112 0.0112 0.0112 

 F = - 0.0075 -0.0075 -0.0075 -0.0075 -0.0075 -0.0075 -0.0075 -0.0075 -0.0075 

  = 0.1309 0.1309 0.1309 0.1309 0.1309 0.1309 0.1309 0.1309 0.1309 

 2 = 0.25 0.2950 0.2702 0.2633 0.2597 0.2946 0.2701 0.2631 0.2597 

MSE of estimators 0.0460 0.0195 0.0123 0.0095 0.0436 0.0191 0.0127 0.0094 

RMSE Train 0.5084 0.5042 0.5032 0.5023 0.5091 0.5042 0.5030 0.5023 

 Test 0.5424 0.5223 0.5132 0.5079 0.5419 0.5212 0.5130 0.5081 

MAPE(%)  Train 0.3279 0.3249 0.3240 0.3271 0.3277 0.3249 0.3239 0.3270 

 Test 0.3236 0.2761 0.2418 0.2179 0.3235 0.2756 0.2418 0.2181 

3.2. Application 

A half hourly Java-Bali electricity load data for period 3 January to 13 February 2010 was considered 
for the experiment due to its complex pattern. The data were collected from PT. PLN P2B Jawa Bali, 
Gandul, Cinere, West Java, Indonesia. In this empirical study, the series that consists of 2016 
observations splits into two parts. We carry the first 1968 observations as the fitting sample (training 
data) and the rest are to be the post-sample (testing data).  

Since the load series is influenced by the economic and demographic factor, it exhibits trend and 
multiple seasonal patterns (see Fig. 1). Fig. 2(a) shows a w-correlation matrix of SSA decomposition 
with L=976 which is enlarged to clarify which eigentriple groups are not correlated. Based on Fig. 2(a), 
we can define five separable components, denoted by the colors. The first four components (blue, red, 
green, and purple) reconstructed by the first eleven eigentriples are then considered as the deterministic 
component while the 973 eigentriples left are considered as a part of the stochastic component. The blue 
line in Fig.2(b) is the trend component obtained by the first eigentriple. The red (see Fig. 2(c)) and the 
green (see Fig. 2(d)) charts show the oscillatory with time-varying amplitude while the purple chart (see 
Fig. 2(e)) displays the stationary oscillatory component. The last component is the irregular component 
(see Fig. 2(f)). 

 

Fig. 1.  The series of half-hourly Jawa-Bali electricity load for period 3 January to 13 February 2010. 
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Though we focus on modeling the oscillatory components, we need to find the best approximation 
function for the trend for further evaluation of the SSA-based forecasting model. There were three 
possible functions that can be applied to fit the trend line, namely the linear, quadratic and exponential 
functions. In this point, the exponential function which can be written as 

𝑓1(𝑡) = 13902 exp(0.00001𝑡)  +  0.1080 exp(0.0038𝑡)  

yields the lowest RMSE and the greatest R2 compared to the two alternative functions.  

 
 

(a) (b) 

  
(c) (d) 

  
(e) (f) 

Fig. 2. The half-hourly Jawa-Bali electricity load data for period 3 January to 12 February 2010 and its 

decomposition 
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Later, the best fit function for each oscillatory component is presented in Table 3. The first and the 
second oscillatory series have a linear time-varying amplitude as seen in Fig. 2(c) and Fig. 2(d), 
respectively. Meanwhile, the third oscillatory is reconstructed from several eigentriples and it seems to 
produce a stationary periodicity function. Thus, the sum of stationary sinusoids based on Fourier series 
with order 7 is the most appropriate function for this series.  

Table 3.  Comparisons of RMSEs and R2s of accuracy performances of oscillatory models obtained by OLS and 

NLM method. 

Oscillatory Function  
RMSE R2 

Iterative 

OLS 
NLM 

Iterative 

OLS 

NLM 

1 Linear time-varying amplitude 10.9054 10.9049 99.99% 99.99% 

2 Linear time-varying amplitude 27.8919 27.8919 99.79% 99.79% 

3 Stationarya  224.6702 224.6460 86.88% 86.88% 

a. Sinusoid model based on Fourier series with order 7.  

 

The performances of the deterministic model as the sum of the trend, two linear time-varying 
amplitude, and the stationary periodicity functions are described in Table 4. The table shows the 
comparisons between the deterministic functions where their oscillatory functions are obtained by OLS 
and NLM method. Table 4 also presents the further evaluation for the hybrid model. In this case, neural 
network (NN) is chosen to model the stochastic component due to its capability in dealing the 
uncertainty in the noise. What is meant by the noise here is the sum of all residuals of each component 
models and the irregular component or can also be considered as the residuals of the deterministic model. 
This noise is not necessarily white noise and by chance, the noise type in the illustrated example is not 
a Gaussian white noise. In addition, NN is a general and flexible modeling tool that does not need any 
specific assumptions regarding the relationships in the data [41]. This has even succeeded in eliminating 
the spiky event for the case discussed in Sulandari et al. [19]. Therefore, we consider that NN can handle 
the noise well.  

Table 4.  Comparisons of RMSEs and MAPEs of accuracy performances of SSA-based models obtained by 

iterative OLS and NLM method 

No Model 

Training Testing 

RMSE MAPE(%) RMSE MAPE(%) 

Iterative 

OLS 
NLM 

Iterative 

OLS 
NLM 

Iterative 

OLS 
NLM 

Iterative 

OLS 

NLM 

1 Deterministic SSA-

based model: 

813.5209 813.5211 4.6011 4.6011 790.2083 790.2232 4.6925 4.6924 

Exponential-

oscillatory model 

2 Hybrid SSA-based 

model:  

105.5063 113.8603 0.5818 0.6184 122.7776 143.6725 0.6871 0.8425 

Exponential-
oscillatory-NN 

model 

 

Based on the experimental results presented in Table 4, the performance of deterministic SSA-based 
model where the oscillatory functions are obtained by iterative OLS method is not much different from 
the results of that obtained by NLM method. Indeed, for the deterministic SSA-based model, NLM 
method produces smaller MAPE and RMSE than the results obtained by iterative OLS method. 
However, we get the opposite results when we combine the deterministic SSA-based model with NN 
(see Fig. 3). Fig. 3 shows that there is a strong decline in MAPE when the deterministic model is 
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combined with NN. In this case, NN model is a viable choice to improve the accuracy performance for 
further evaluation of SSA-based model.   

 

Fig. 3. MAPEs  for the post-sample (in Frebruary, 13th 2010) 

The actual and post-sample results that are 48-steps-ahead forecast values of electricity load using 
hybrid SSA-based models are shown in Fig. 4. We can see that the results of both models follow the 
actual values well. With the MAPEs of accuracy performance less than 1%, this hybrid model is 
acceptable in dealing the trend and multiple seasonal in the data. 

 

Fig. 4. Actual and forecast values of electricity load for the post-sample (in Frebruary, 13th 2010) 

Finally, based on the simulation and application results, we can see that the simple iterative OLS 
method provides nearly the same accuracy performance as the NLM method. As mentioned before, the 
iterative OLS is simpler than the NLM method. Perhaps, iterative OLS method is time consuming 
regarding to the determination of step length, lower and upper bound. However, in using NLM method, 
the problem may arise when we do not establish a good initial estimate for the parameters of the model.  

In further evaluation of electricity load forecasting model, we combine the deterministic model with 
NN, called by the hybrid SSA-based model.  The conclusion we get is that the better performance of 
the deterministic SSA-based model does not necessarily generate a better performance of hybrid SSA-
based model.  



ISSN 2442-6571 International Journal of Advances in Intelligent Informatics 21 
 Vol. 5, No. 1, March 2019, pp. 11-23 

 

 Sulandari et.al (Estimating the function of oscillatory components in SSA-based forecasting model) 

4. Conclusion 

This study compares the iterative OLS method with the NLM method in estimating the oscillatory 
with time-varying amplitude as a result of SSA decomposition. Indicated by nearly the same values of 
MAPEs and RMSEs between the two methods both for the training and testing data, it can be concluded 
that the complex NLM method does not necessarily produce superior results than the simple iterative 
OLS method.  

A further evaluation for the hybrid SSA-based model where the oscillatory components were 
estimated by iterative OLS and NLM method was conducted on electricity load data. The results show 
that the better performance of the deterministic SSA-based model does not necessarily generate a better 
performance of the hybrid SSA-based model, either for the oscillatory model obtained by iterative OLS 
or NLM method. It is noted that results from one case may differ for other case. Therefore, further 
study on other types of time-varying amplitude model need to be conducted due to the possibility we 
encounter a more complex time-varying amplitude sinusoid in SSA decomposition results. 
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