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1. Introduction 

Optimal Control (OC) is an extension of Calculus of Variations (CoV) which comprises of looking 
over among all permissible control factors  u t , the one that takes the dynamical framework from some 

initial state  0y t  at time 0t  to a few terminal states  y T  at some terminal time T , to accomplish a 

maximum or minimum of a certain objective function or performance index [1]–[5]. The definition of 
OC can be explained as in Definition 1. 
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 This paper's focal point is on the nonstandard Optimal Control (OC) 
problem. In this matter, the value of the final state variable, y(T) is said to 
be unknown. Moreover, the Lagrangian integrand in the function is in the 
form of a piecewise constant integrand function of the unknown state value 
y(T). In addition, the Lagrangian integrand depends on the y(T) value. 
Thus, this case is considered as the nonstandard OC problem where the 
problem cannot be resolved by using Pontryagin’s Minimum Principle 
along with the normal boundary conditions at the final time in the classical 
setting. Furthermore, the free final state value, y(T) in the nonstandard OC 
problem yields a necessary boundary condition of final costate value, p(T) 
which is not equal to zero. Therefore, the new necessary condition of final 
state value, y(T) should be equal to a certain continuous integral function 
of y(T)=z since the integrand is a component of y(T). In this study, the 3-
stage piecewise constant integrand system will be approximated by utilizing 
the continuous approximation of the hyperbolic tangent (tanh) procedure. 
This paper presents the solution by using the computer software of C++ 
programming and AMPL program language. The Two-Point Boundary 
Value Problem will be solved by applying the indirect method which will 
involve the shooting method where it is a combination of the Newton and 
the minimization algorithm (Golden Section Search and Brent methods). 
Finally, the results will be compared with the direct methods (Euler, 
Runge-Kutta, Trapezoidal and Hermite-Simpson approximations) as a 
validation process.   
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Definition 1 [3][4]. The OC problem is to locate a permissible control  *u t  which causes the framework 

      , ,y t f t y t u t
  

to follow an admissible optimal trajectory  *y t  that extremizes (minimizes or maximizes) the performance 

index 

       
0

, , ,

T

t

J h T y T g t y t u t dt  
  

 *u t  is known as the optimal control and  *y t  is called the optimal trajectory. 

Besides economics application studied by references [6]–[10], the OC is also applied in other fields. 
For example, the medical field has been studied by references [11]–[13], the financial applications have 
been studied by references [14]–[18], and aerospace studied by Ben-Asher [19] and Trélat [20]. The 
study in performance of rocket system has been studied by Lastomo et al. [21]. Based on the standard 

setting, the free value of final state  y T  produced a necessary boundary condition of  Tp  is equal to 

zero where  p t  is the costate variable. Moreover, the integrand does not rely on the free final state 

value  y T . In this paper, the integral of the objective function relies on the final state value  y T . 

Furthermore, the final costate value  Tp  is not equal to zero. This case can be classified as a 

nonstandard OC problem. Therefore, the problem is unsolvable by applying Pontryagin’s Minimum 
Principle with the final value of the standard boundary conditions. As the integrand is the component 

of final state value  y T , another necessary condition for  y T  should be equivalent to a certain 

continuous integral system which is z . 

This script solved the nonstandard OC problem with the implementation of   3-stage piecewise 

function which will be converted in the continuous approximation of hyperbolic tangent (tanh). For the 
indirect method, the problem will use the C++ programming language with the nonlinear shooting 
method which will combine the Newton and the minimization techniques (Golden Section Search and 
Brent methods). The results will be compared with the direct method which is the nonlinear 
programming (NLP) techniques (Euler, Runge-Kutta, Trapezoidal and Hermite-Simpson 
approximations) as a validation procedure. NLP method will be constructed in the AMPL programming 
language with MINOS solver [22]. The direct method is easier to initiate and the convergence area is 
bigger than indirect method [23]. The program can be initialized with a guess for state variable [24] and 
in fact, the model did not have to reformulate when using direct approach [25]. Despite that, a less 
accurate answer tends to be produced when using direct method [26][27]. Contrastly, indirect method 
has a radius of convergence that is smaller when compared with direct approach [27], but, the method 
yields a highly accurate solution [27][28]. This paper is organized in a few sections. The following section 
will explain the methodology that will be used in solving the problem. Then, a brief explanation 
regarding the nonstandard OC problem will be well-explained at the end of Section 2. After that, this 
paper will show the example of the royalty problem and its solution with a brief discussion. Finally, a 
brief conclusion end the research finding. 

2.  Method 

2.1. Newton in Shooting Method 

Let us assume that the main problem is to find the condition of a scalar function  0 0y yt   such 

that  y T b  where b  is the final value that needs to be determined at the final time, T  and 

 0t V   is the initial guess value. This situation can be categorized as a TPBVP. This problem can 
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be formulated in terms of the single variable by using the provided condition which are  0 0y yt  , 

 y T b ,  0t V   and the formula of the Newton method. Then, the ordinary differential equation 

(ODE) is integrated by using an initial value approach where the Runge-Kutta method is applied in the 
nonlinear shooting method. Thus, the error in the boundary condition is [2]  

   

0

guessc y T b 


  

where the error needs to be sufficiently close to zero. If the error is not adequately close to zero then the 
constraint must be solved by adjusting the initial guessed value, V . Based on [2], the above approach is 

referred to as the shooting method and is one of the simplest techniques in order to solve TPBVP. He 
also expressed that one of the possible candidates as the iterative technique in the shooting calculation 
was the Newton method [2]. Let us consider the basic algorithm for the nonlinear shooting method for 

the problem with 2 2n   (let us say with two scalar functions 1f  and 2f ). The converging process 

through the Newton method, in this case, did not have any problem but there is a possibility that it 
might happen to other cases. The routine in C++ programming language for the Newton method is 
“newt”. 

2.2. Golden Section Search Method 

In general, the state of the function  f y  follows Taylor's Theorem [29] 

      
21

2
f y f b f b y b  

  

The Golden Section Search or Golden Mean is a one-dimensional minimization technique and it is 
related to the aesthetic properties harking back to the ancient Pythagoreans. Through this method, the 

optimal bracketing interval  , ,a b c  has b  as a middle point where it is a fraction distance from the 

one end (let us say a ) and a fraction distance from another end (let us say c ) [29].  

This optimal method of minimization can be summarised as follows. Firstly, given in each phase, a 
triplet of points in the bracket, the next point to be tested is a fractional distance between the greater of 
the two intervals (measuring from the center point of the triplets). Secondly, if the beginning is with a 
bracketing triplet that is not in the golden proportion, the procedure for selecting the successive points 
as the Golden Mean point quickly converges to the proper self-replicating proportions. Thirdly, the 
Golden Mean method ensures that any new evaluation of the function will bracket the minimum at a 
range of only a fraction of the size of the previous interval [29]. The routine in C++ program language 
for the Golden Mean method is “golden”. 

2.3. Brent Method 

The Brent method is a one-dimensional minimization technique. This method keeps track of six 
functions points (not necessarily all distinct), , , , , ,a b u v w x  where a  and b  are the minimum brackets, 

x  is the point with the minimum function value found so far, w  is the point with the second minimum 

function value, v  is the prior value of w  and u  is the point at which the function was recently evaluated 
[29]. There is also a midpoint between a  and b  that can be set up in the method. The C++ routine 

that implements the Brent method is “brent”. 

2.4. Combination of Newton with Golden Section Search or Brent in Shooting Method 

The problem will be solved by using a shooting method where it is a combination of Newton with 
Golden Section Search or Brent. The algorithm for these combinations presented in Fig. 1. 
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Algorithm 1. Combination of Newton with Golden Mean or Brent Algorithm 
Input : 

0t  (initial time), T  (final time),  0p  (initial value), Ty  (guessed value),  0 0y   

(boundary condition), ODE’s 
Output : The approximation to t  time,    0y y t ,    1y p t  and    2y t  

Step 1: Initialization 
(a) Define the number of ODEs and the number of guess(ed) values. 
(b) Set the initial time, final time, boundary condition, initial values, guess(ed) values. 
Step 2: Calculation 

(c) Call Golden or Brent with three range values of Ty : 1 2,a r b r   and 3c r  (Golden or Brent will 

calculate and generate Ty  value within the range  1 2 3, ,r r r  and transmit it to Newton) which is 

maximizing the system. 

(d) Call Newton solver with two scalar functions:  1 Tf y T y   and    2f p T T  . 

(e) Run the ODE solver with initial guess v  say,  0p v . 

(f) At t T , check whether the 1f  and 2f  become small enough. (At the final time T ,  y T  is equal to 

Ty ,  p T  is equal to  T ). 

if yes then 
Go to (g). 
else 

Go to (c) and update 1f  and 2f . 

end if 

(g) Check whether Golden or Brent generates the best value of Ty  that maximizes the system. 

If yes then 
Go to (h). 
Else 

Go to (c) and update 1 2 3, ,r r r  This will update the Ty  value. 

End if 
End and printout solution 

Fig. 1. Combination of newton with golden mean or brent algorithm

In this study, the combination of the Newton method with the Golden Mean or Brent method will 
be used in the nonlinear shooting method in solving the nonstandard OC problem. The constructed 
algorithm uses C++ programming language with Numerical Recipes library routine (NR3) [29] which is 

highly accurate. There are two scalar functions; 1f  and 2f  where both of the final state value,  y T  

needs to be equal to Ty  and the final costate value,  p T  must be equal to  T . Therefore, this study 

has (5) for the scalar function equation and Fig. 2. show its C++ command. 

       
2 22 2

1 2 TF f f y T y p T T     
  

 

VecDoub f(2); 

f1 = y1 - yT;  %%% y1=y(T) and YT=y_T 

f2 = y2 - y3;  %%% p(T)=y2 and y3=eta(T) 
 

Fig. 2.  The command of the two scalar functions in C++ programming language. 

Then, the Golden Mean or Brent method is being called for finding the best Ty  value where the 

possible range of Ty  values will be the input. 
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The command in Fig. 3 and Fig. 4 demonstrated the C++ command for the Golden Mean method 
and Brent method. Then, the Newton method is being called for the root iteration and the command 
is shown in Fig. 5. 

Golden golden(tolg);%% tolg=function tolerance 1.0e^{-11} 

golden.ax=0.2; golden.bx=0.7; golden.cx=0.9; 

xmin=golden.minimize(func); 

Fig. 3. The Golden Mean command in C++ programming language. 

Brent brent(tolg);%% tolg=function tolerance 1.0e^{-11} 
brent.ax=0.2; brent.bx=0.7; brent.cx=0.9; 
xmin=brent.minimize(func); 

Fig. 4. The Brent command in C++ programming language. 

 

newt<VecDoub (VecDoub_I &)> (v,check,sulifunc); 
 

Fig. 5. The Newton command in C++ programming language 

After that, the ODE solver will run the program with an initial guess(es) values. In this case, “Odeint” 
has been applied (Fig. 6). 

 

Odeint<StepperDopr5<void (const Doub, VecDoub_I &, VecDoub_O&) >> ode(ystart, x1, x2, atol, rtol, h1, 

hmin, out, ODE); 
 

Fig. 6. The ODE command in C++ programming language. 

The Golden Mean or Brent technique will produce a few possible results Ty  inside the scope of 

chosen values Ty  that were established in the underlying discussion. In this manner, the Ty  value 

produced will be transmitted to Newton’s emphasis. In this procedure, the Newton utilizes the Ty  

incentive in every iteration to guarantee that the two scalar capacities are close enough to zero and takes 
care of the problem by actualizing an ODE solver. At the final moment T , the program will check if 

the scalar functions are adequately small and will check if the obtained answer has the ideal Ty  value 

that boosts the performance index,  J T , otherwise, the Golden Mean or Brent algorithm will find 

another conceivable Ty  value and the same procedure. It will be repeated until an ideal Ty  value that 

boosts the system is obtained. The ideal performance index   J T  and Ty  results will be acquired once 

the program generates an identical solution four times and can no longer deliver an ideal Ty  value. The 

Golden Mean or Brent method is classified as a one-dimensional minimization technique. According to 

Press et al. [29], the performance index,  J T  of the method must be multiplied by a negative one to 

resolve an optimization problem (maximization). 

2.5. Nonstandard Optimal Control Problem 

This investigation concentrates essentially on the ideal nonstandard control. In this study, the 

fundamental of the objective function depends on the final estimation of the state  y T  which is free 

and unknown. Nevertheless, the final shadow value,  p T  is not equivalent to zero and this ought to 

be identical to another limit condition that contrasts with the standard theory of Malinowska and Torres 
in 2010 [30] and Cruz et al. in 2010 [15] demonstrated a new border condition for CoV over time. 

Theorem 1 [15][30]. Given S  and T  are real numbers with the following condition S T . If  y t  is the 

solution to the following problem 
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J y t g t y t y t z dt

y S y T is free
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then 

         , , , , , ,y z

d
g t y t y t z g t y t y t z

dt


  

for all  ,t S T  Moreover 

         , , , , , ,

T

y z

S

g t y t y t z g t y t y t z dt 
  

From the optimal control perspective, one has 

      , , , .yp T g t y t y t z
  

Therefore, 

        , , ,

T

z

S

p T T g t y t y t z dt  
  

is the new boundary condition with  p t  is the costate variable. In standard OC problem, the value of 

 p T  is equal to zero. However, in nonstandard OC problem, the necessary boundary condition  p T  

is not equal to zero as shown as in Theorem 1. Therefore, condition (10) need to be satisfied. In addition, 

the function     , , ,g t y t y t z  is differentiable with respect to z . Based on the information from the 

above discussion, let us proceed with the numerical problem which was researched by Spence in 1981 
[31], and Zinober and Kaivanto in 2008 [32]. Let us consider the following ODE system 

   y t u t
  

in optimizing (maximizing) the following objective function [31][32] 

             
0 0

1

0 0, ,

T T

y rt

t t

J u t g t y t u t dt a t u m c e u t e dt
 


  

        
 

where   0.025t
a t e , 0.5  ,   , 0 1.0m  , 0 1.0c  , 0.12  , 0.1r  . The function 

    , ,g g t y t u t  depends on state variable,  y t  and royalty function,   where   is a 3-stage 

piecewise constant integrand function with the  y T  expression. The   3-stage piecewise constant 

integrand function will be applied in this paper as proposed by Zinober and Kaivanto [32]. The proposed 

settings are 0 0t   and 10T   while the initial known state is  0 0y   and  y T  is free.  



ISSN 2442-6571 International Journal of Advances in Intelligent Informatics 212 
 Vol. 5, No. 3, November 2019, pp. 206-217 

 

 Ahmad et al. (Nonstandard optimal control problem: case study in an economical application of royalty problem) 

There are a few important conditions that should be fulfilled; the state condition and the costate 

condition alongside the stationary condition. In addition, the underlying state of  0 0y   is given and 

a guessed initial value for  0p  is chosen. The boundary condition of the integral also needs to be 

satisfied at the final time,T .  We additionally need to guarantee that the iterated estimation of z  utilized 

in the state condition will be identical to the value  y T  at the final time, T  with a goal that the if  

function will be near zero. This is satisfied in our algorithm only when the costate equation converges. 
Then, the optimal solution will be attained. The following section will illustrate the problem and the 
results obtained. 

2.6. An Illustrative Example 

The proposed problem will use the following   value which is equal to the 3-stage piecewise 

constant integrand function 

 

0 for 0 0.4

0.2 for 0.4 0.8

0 for 0.8

y z

y z y z

z y z



 

  

 





   

 The  y  can be converted into the hyperbolic tangent (tanh) function [16][33] 

       0.1tanh 0.4 0.1tanh 0.8y k y z k y z    
  

and in this study, the values of 50k   and 250k   are chosen in order to approximate (14). The larger 

the smoothing value k  is, the smoother the   plot will be. The function g  is 

       0.025 0.5 0.12 0.1
0.1tanh 0.4 0.1tanh 0.8 1

t y t
g e u k y z k y z e u e

 
      

 

The Hamiltonian function is H g pu   and the state equation satisfies the system of   p
y t H . 

       0.025 0.5 0.12 0.1
0.1tanh 0.4 0.1tanh 0.8 1

t y t
H e u k y z k y z e u e pu

 
       



y u   

Function g  depends on  y t  and  , thus, the costate satisfies   yp t H   

        2 2 0.12 0.1
0.1 1 tanh 0.2 0.1 1 tanh 0.8 0.12

y t
p k k y z k k y z e ue

 
      

 

The stationarity condition is 0uH   where 

 0.025 0.5 0.12 0.1
0.5 1

t y t

uH e e e pu 
  

    
  

This produced 

 
   

 

2 2
0.025 0.1

2
0.1 0.12 0.1 0.1

0.25
t t

t y t t

e e
u t

e e e e p
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and the integral yields as 

            
10

2 2 0.1

0

0.04 1 tanh 0.4 0.08 1 tanh 0.8
t

Tp T k k y z k k y z ue dt 


       
 

The results for the 3-stage piecewise   with 50k   and 250k   for the shooting method and the 

NLP validations are now presented in two types of k  values.  

3. Results and Discussion 

The results obtained from the discretization and the nonlinear shooting methods are the optimal 
solutions with highly accurate. This study has two cases which consider the changing of k  values: 

3.1. Case I: k = 50 

For the first case, the value of k  is set up equals 50 and the results are shown in Table 1.  

Table 1.  Results of the shooting and discretization methods with k = 50. 

Methods 

Results 

     

Newton & Golden 0.823309 -0.000588 -0.018948 -0.018948 0.969297 

Newton & Brent 0.823292 -0.000600 -0.018959 -0.018959 0.969297 

Euler 0.816779 -0.000716 - - 0.973715 

Runge-Kutta 0.821652 -0.000325 - - 0.973830 

Trapezoidal 0.811947 -0.000592 - - 0.974032 

Hermite-Simpson 0.836514 0.000672 - - 0.974145 
 

Based on Table 1, the values of  y T ,  0p  and  J T  are somewhat different for the shooting 

method when compared with the discretization methods. The Euler, Trapezoidal and Hermite-Simpson 

approximations give the outcome value for  y T  similar only up to one decimal place when compared 

with the nonlinear shooting technique, meanwhile, the Runge-Kutta method produces the answer with 

similar up to two decimal places when compared with the shooting results. At the initial time 0 0t  , 

the costate value gives a similar answer up to four decimal places for the Trapezoidal method when 
compared with the shooting calculations.  

At the same time, the Euler and Runge-Kutta calculations give the optimal solution of the initial 
costate value with similar up to three decimal places but the Hermite-Simpson calculation tends to be 

totally different from the shooting technique as the results produced is in the positive value. The  J T  

values give the solution with similar up to one decimal place for all approaches. Based on the shooting 

results, the performance index  J t  can be transformed into a graphical form. Based on the results 

also, the optimal curve for the state, costate, and control will be illustrated in the following graphical 
form. 

Fig. 7 shows the optimal curve for the performance index,  J t  together with the optimal curves 

plot for the state, costate, and control values which are obtained from the shooting and discretization 
methods. The results produced a similar plot except for the control plot as the Euler approximation is a 
little bit different from the shooting curves at a certain time. Based on the figure, the shooting technique 

 y T  0p  p T  T  J T
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gives a smoother plot when compared to the curves of the discretization methods. This situation shows 
that C++ program language gives an answer with high accuracy compared to the NLP approach. 

 

Fig. 7. The plot for k = 50 generated from the shooting and discretization method. (NG=Newton & Golden; 

NB=Newton & Brent; EU=Euler; RK=Runge-Kutta; TR=Trapezoidal; HS=Hermite-Simpson) 

3.2. Case II: k = 250 

The following second case will change the value of k  that will be equal to 250. The optimal solution 

is being tabled as shown in the following Table 2.  

Table 2.  Results of the shooting and discretization methods with k = 250. 

Methods 

Results 

     

Newton & Golden 0.823283 -0.000571 -0.018957 -0.018957 0.969279 

Newton & Brent 0.823293 -0.000565 -0.018951 -0.018951 0.969279 

Euler 0.805264 0.032219 - - 0.973408 

Runge-Kutta 0.821612 0.005728 - - 0.974418 

Trapezoidal 0.803803 0.025825 - - 0.974085 

Hermite-Simpson 0.822936 0.030866 - - 0.973782 
 

Based on Table 2, the values of  y T ,  0p  and  J T  are slightly different for the shooting 

method when compared with the discretization methods. The Euler and Trapezoidal approximations 
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give the outcome value for  y T  similar only up to one decimal place when compared with the nonlinear 

shooting technique, while the Runge-Kutta and Hermite-Simpson method produce the answer with 
similar up to two decimal places when compared with the shooting results.  

At the starting time 0 0t  , the costate value gives a positive value for the discretization methods 

while the shooting answers are in negative form. Probably, there are some errors in the calculation due 

to the discretization inaccuracy as S  increases and this affects the costate values. The  J T  values give 

the solution with similar up to one decimal place for all methods. Based on the shooting results, the 

performance index  J t  can be transformed into a graphical form. Based on the results also the optimal 

curve for the state, costate, and control values will be figured in the following graphical form. 

Fig. 8 shows the optimal curve for the performance index,  J t  and the optimal curve for the state, 

costate, and control. The plot for the state values is similar to the shooting technique and the 
discretization methods. At the same time, the plots for the costate and control values are slightly 
different for the discretization results when compared with the shooting results where if the k  value is 

higher than 50, then the discretization methods will generate inaccurate values for the costate and 
control. This can be related to the discretization error that occurs during the process [26][27]. In spite 
of that, the curve for the shooting values is smoother compared to the discretized values. Thus, the 
higher the value of k  is, the smoother the plot will be for the shooting calculations because the outcome 

helps the plot to be more precise and accurate. 

 

Fig. 8. The plots for k = 250 generated from the shooting and discretization methods. (NG=Newton & Golden; 

NB=Newton & Brent; EU=Euler; RK=Runge-Kutta; TR=Trapezoidal; HS=Hermite-Simpson) 
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4. Conclusion 

This paper has illustrated a nonstandard OC problem with the solution by applying nonlinear 
shooting techniques. The shooting method contained the combination of the Newton method and the 
one-dimensional minimization techniques which was the Golden Mean method. The combination 
process also involved the Brent method. Then, the results have been compared with the discretization 
approaches which are the Euler, Runge-Kutta, Trapezoidal, and Hermite-Simpson approximations. This 
acted as a validation procedure. This paper also showed the implementation of necessary boundary 
conditions and numerical techniques for solving the nonstandard OC problem in obtaining the optimal 
solution. The shooting technique used the C++ programming language, while the AMPL program 
language will be applied for the discretization procedure. 
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