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1. Introduction 

Cerebrovascular stroke or injury (CVA) is a loss of brain function caused by the sudden cessation of 
blood supply to parts of the brain. It is a condition that arises due to circulatory disorders in the brain, 
causes a person suffering from paralysis or death [1]. Stroke recognition is difficult because people do 
not regularly check up their brain and heart conditions [2]. The general diagnosis procedure uses 
Computed Tomography (CT) scans, Magnetic Resonance Imaging (MRI) and Electrocardiogram 
(EKG or ECG) [3].   

Several studies in the health sector develop preprocessing on CT Scan image data to obtain better 
results. As was done by Singh and Gupta [4] to detect cases of classification of lung cancer, previously, 
the image was processed and produced texture features (GLCM) and statistical features. It used 7 
(seven) different approaches, namely KNN, SVM, Decision Tree, Naïve Bayes, SGD, Random Forest 
and MLP (one type of Deep Learning architecture). From the results of the classification of medical 
image datasets containing 15,750 images, with the distribution of 6,910 are classed as benign and 8,840 
for malignant classes. They obtain the highest accuracy of 88.55% using the MLP approach. Likewise, 
Marbun et al. [2] used CT brain scan images to detect strokes with preprocessing consisting of gray 
scaling, scaling, cloning, and then segmentation, namely binary image formation using thresholding. 
For classification, they used the Convolutional Neural Network method and obtained an accuracy value 
of 90%. Hence, the use of a blooming approach such as deep learning, could beneficial for stroke 
diagnosis using CT-scan. 
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 Stroke may cause death for anyone, including youngsters. One of the early 
stroke detection techniques is a Computerized Tomography (CT) scan.  
This research aimed to optimize hyperparameter in Deep Learning, 
Random Search and Bayesian Optimization for determining the right 
hyperparameter. The CT scan images were processed by scaling, grayscale, 
smoothing, thresholding, and morphological operation. Then, the images 
feature was extracted by the  Gray Level Co-occurrence Matrix (GLCM). 
This research was performed a feature selection to select relevant features 
for reducing computing expenses, while deep learning based on 
hyperparameter setting was used to the data classification process. The 
experiment results showed that the Random Search had the best 
accuracy, while Bayesian Optimization excelled in optimization time.  
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Deep Learning is a variant of machine learning based on Neural Networks. It has many hidden 
layers that have the ability to learn data representations or features automatically. As other Neural 
Networks, in general, the Deep Learning architecture consists of visible and hidden layers where the 
weight of each perceptron unit is optimized using the backpropagation algorithm [5].  

The use of Deep Learning in the health sector has gained more attention [6], Deep Learning 
produces impressive results in the areas of Speech Recognition [7], Computer Vision [8] and Natural 
Languages in recent times. However, Deep Learning has several drawbacks in terms of its framework. 
Some researchers use Deep Learning to solve their research problems and obtain satisfactory results. 
Hung et al. [3] used an Electronic medical claims (EMCs) database of 800,000 patients to compare 
DNN with three other approaches to predict stroke in five years. The results show that DNN and 
gradient boosting decision tree (GBDT) have the same accuracy as compared to Logistic Regression 
and Support Vector Machine. DNN can be optimized by using patient data that is less than GBDT. 
Using a more extended period of EMC data can help improve predictive quality. The use of the Deep 
Learning method in the health dataset was also carried out by Assodiky et al. [9], although the results 
of an Electrocardiogram (EKG) to detect Arrhythmia are sometimes difficult to observe and often 
cause diagnostic errors that may lead to death. However, a powerful Deep Learning approach can lead 
to improved diagnosis, with experimental results showing the best accuracy of 76.51%. 

The effectiveness of Deep Learning ultimately relies on the implementation of hyperparameter. 
Determining the value of each hyperparameter requires one's value judgment. Hence a standardized 
approach is needed to set hyperparameter in Deep Learning. Some researchers use other approaches to 
optimize hyperparameters in Deep Learning. Research conducted by Qolomany et al. [4] shows the 
success of the application of Deep Learning by optimizing parameters using the Particle Swarm 
Optimization (PSO) method. PSO is very efficient in adjusting the number of optimal hidden layers 
and neurons. The results of the PSO experiment show that the search time for the right parameters 
can be 77% -85% faster than the search for the same parameters using manual search methods and 
Grid Search. Another way to optimize deep learning is also reported by Kingma and Ba [10] who used 
an efficient gradient descent algorithm named “Adam” and have been reported to have great results. 
The name Adam itself is implemented as the "Adam" optimizer in the Keras library in Python. On the 
other hand, Bergstra and Bengio [11] employed the Bayesian Optimization approach using the 
Gaussian Process for hyperparameter searches. The result shows that Bayesian Optimization is better at 
finding the right hyperparameters in the CIFAR-10 benchmarking dataset. The successful use of 
Bayesian optimization was also reported by Snoek et al. [12] who successfully used Bayesian 
Optimization in the Gaussian Process in its modeling. Other papers show the success of implementing 
hyperparameter in various fields, including what was done by Cui and Bai [13]; Di Francescomarino et 
al. [14]; Le et al. [15]; Martinez-De-Pison et al. [16]; Balaprakash et al. [17]; Neary [18]; Borgli et al. 
[19]; Talathi [20]; Vo et al. [21]; Dong et al. [22]; Yao et al. [23]; Yoo [24]; Candelieri et al. [25]; 
Laanaya et al. [26]; Laref et al. [27]; Strijov and Weber [28]; Tellez et al. [29]; Tsirikoglou et al. [30]; 
Mantovani et al. [31]; and Lee et al. [32]. 

Related works previously mentioned are in line with our previous research: using the Deep 
Learning method to diagnose Stroke by doing optimization at Hyperparameter. For the process of 
diagnosing stroke itself, in the hospital, medical staff must make a careful diagnosis because it can be 
classified into two types, namely ischemic stroke and hemorrhagic stroke, with both requiring different 
treatments. To speed up CT Scan image analysis, a computational system is needed to help speed up 
early detection of stroke. The main contribution of this research is the use of hyperparameter 
optimization in the Deep Learning method on CT scan data which could improve the effectiveness of 
the stroke detection results.   

2. Method 

The system design of the research can be seen in Fig. 1. the system has three main phases, namely, 
data preparation, data preprocessing, and hyperparameter optimization. 
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Fig. 1. System Design 

At the phase of data preparation, the data obtained from the open dataset was downloaded from 
the link www.radiopaedia.org in the form of a patient's CT brain scan image. Since the number is not 
too much, datasets need to be processed in data augmentation to produce new data that comes from 
the previous data without eliminating the quality of the original image. 

Then image processing is carried out with several steps, namely scaling, grayscale, smoothing, 
thresholding and morphological operation. After that, the texture feature was extracted using the Gray 
Level Co-occurrence Matrix (GLCM) which produced 6 features. Then the dataset is scaled back, and 
feature selection is performed to find relevant features to increase accuracy and shorten computing 
time.   
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The following will discuss each part of the element in the system from the proposed method to 
improve stroke diagnosis using Deep Learning with Hyperparameter Optimization. 

2.1. Data Preparation 

The data preparation process involves collecting data and data augmentation using the same data as  
[2]. The data has three classes: Normal, Hemorrhagic Stroke, and Ischemic Stroke; each class has 10 
data (Fig. 2). The data augmentation process is intended as a strategy of the limited amount of data 
obtained. Data augmentation manipulates data without losing the data essence. The image can be 
rotated, flipped, and cropped. 

 

(a) 

 

 

(b) 

 

 

(c) 

 

Fig. 2. Image from the data augmentation process. (a) not a stroke (b) hemorrhagic stroke (c) ischemic stroke  

At this phase, three sample data are taken from each class (normal, ischemic stroke, hemorrhagic 
stroke), then the data augmentation output is collected into a new dataset.  Each class contains ten 
data, meaning that there are a total of 30 patients used in the data. The data is then augmented, 
creating 1,000 rows of data in each class, meaning there are a total of 3,000 rows of data used in the 
dataset. This augmented data will be processed in the next phase. 

There are 10 (ten) rows for each classification of patient data, which are NOT STROKE (normal 
class), ISCHEMIC (ischemic stroke) and HEMORRHAGIC (hemorrhagic stroke). So that in total 
there are 30 patient’s data. With the augmentation process, these data become 1,000 rows distributed 
in three classes, so that there is a total of 3,000 rows used to classify whether the patient is normal or 
has an ischemic stroke or hemorrhagic stroke. 

To evaluate performance algorithms, the values in the confusion matrix are needed: True Positive 
(TP), True Negative (TN), False Positive (FP), False Negative (FN). For example, in the NOT 
STROKE class: 

1) True Positive (TP) is all NOT STROKE class data classified as NOT STROKE. 

2) True Negative (TN) is all data other than the NOT STROKE class not classified as NOT 
STROKE. 

3) False Positive (FP) is all data other than the NOT STROKE class that is classified as NOT 
STROKE. 
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4) False Negative (FN) is all NOT STROKE class data that is not classified as NOT STROKE 

Similarly, the other two classes are HEMORRHAGIC STROKE and ISCHEMIC STROKE. The 
metrics score used to evaluate the algorithm are accuracy, precision, recall, and f1. In addition, there is 
a performance analysis using ROC Curve based on the results of plotting True Positive Rate (TPR) 
with False Positive Rate (FPR) in various threshold settings. 

2.2. Data Preprocessing 

After data preparation, in the next phase preprocessing data is carried out. It consists of image 
processing, feature extraction, standardization data and feature selection. 

2.2.1. Image Processing  

At this phase, the quality of image data is improved. This process consists of scaling (adjusting the 
size of pixels used), gray scaling (uniformity of the degree of gray image), smoothing image 
(eliminating noise and giving blur), thresholding (changing to binary images) and morphological 
operation (processing images based on shapes). In the scaling phase, images that have an original size 
of 300x300 are changed to 50x50. The grayscale phase is done to produce an uneven level of grayness 
in the image. The next stage is the smoothing image phase. This phase eliminates the image noise 
using Gaussian Blur, a very good for CT Scan images [17].  

The next stage is thresholding. It is combining the Otsu thresholding function and adaptive 
thresholding to produce a better image. The last step is the morphological operation. There are two 
types of  Morphological Operation, namely, erosion and dilation. Erosion is an operation to remove 
the boundaries of foreground objects. On the other hand, the dilation increases thesize of the original  
image. Here, a joint operation of erosion, followed by dilation, is performed. 

2.2.2. Feature Extraction  

At the feature extraction phase, the extracted feature is a texture feature with the Gray Level Co-
occurrence Matrix (GLCM) method.  This method is a compelling method in representing the 
characteristics of image texture. 

GLCM produces six features: contrast, dissimilarity, homogeneity, correlation, angular second 
moment (ASM), and energy, which explained as follows.  

1)  Contrast is the result of calculations related to the amount of diversity in gray intensity in the 
image. Contrast amounts to 0 if the neighbor pixels have the same value. Contrast can be 
formulated as follows: 

𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 =  ∑ 𝑃𝑖,𝑗(𝑖 − 𝑗)2𝑁−1
𝑖,𝑗=0   (1) 

where P is matrix co-occurrence, i and j are an index on the matrix, and N for gray level co-
occurrence matrix. 

2)  Dissimilarity is the result of measuring the difference in each pixel, dissimilarity will be high if the 
texture is random and will be low if the value is uniform. Dissimilarity can be formulated as 
follows: 

𝐷𝑖𝑠𝑠𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = ∑ 𝑃𝑖,𝑗|𝑖 − 𝑗|𝑁−1
𝑖,𝑗=0   (2) 

where P is co-occurrence matrix, i and j are an index on the matrix, and N gray level co-occurrence 
matrix 

3)  Homogeneity is the result of homogeneity measurement. This value is very sensitive to values 
around the main diagonal. High value exists when all pixels have the same/uniform value. This 
feature is the opposite of contrast, which is great if it has the same pixel value when the energy is 
fixed. 
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𝐻𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦 =  ∑
𝑃𝑖,𝑗

1+(𝑖+𝑗)2
𝑁−1
𝑖,𝑗=0   (3) 

where P is matrix co-occurrence, i and j are an index on the matrix, and N for gray level co-
occurrence matrix. 

4)  Correlation is the result of measuring linearity (the joint probability) of a number of pixel pairs. 

𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 =  ∑ 𝑃𝑖,𝑗 [
(𝑖−𝜇𝑖)(𝑗−𝜇𝑗)

√(𝜎𝑖
2)(𝜎𝑗

2)
]𝑁−1

𝑖,𝑗=0   (4) 

where P is matrix co-occurrence, i and j are an index on the matrix, N for gray level co-occurrence 
matrix, μ is the mean value of a pixel, and σ is the variance value of a pixel. 

5) Angular Second Moment (ASM)is the result of the measurement of uniformity or often called the 
angular second moment. The energy has a high value when the pixel values are similar to each 
other; otherwise the value will be small, indicating the value of the normalized GLCM to be 
heterogeneous. The maximum value of energy is 1, which means the distribution of pixels is in a 
constant condition or in the periodic form (not random). ASM can be formulated as follows: 

𝐴𝑆𝑀 =  ∑ 𝑃𝑖,𝑗
2𝑁−1

𝑖,𝑗=0   (5) 

where P is matrix co-occurrence, i and j are an index on the matrix, and N for gray level co-
occurrence matrix. 

6)  Energy is the result of measuring texture uniformity (repetition of pixel pairs). Energy has a value 
of one for images with constant gray values. Energy can be formulated as follows: 

𝐸𝑛𝑒𝑟𝑔𝑦 = √𝐴𝑆𝑀  (6) 

2.2.3. Standardization data  

In this study, we use a standardization process where the attributes of variables are converted into a 
standard Gaussian distribution with a mean of 0 and a standard deviation of 1. 

𝑛𝑒𝑤 𝑑𝑎𝑡𝑎 =  
𝑥−𝜇

𝜎
  (7) 

Where μ is the mean value and σ is the standard deviation value of the feature column. 

𝜇 =
1

𝑁
∑ (𝑥𝑖)

𝑁
𝑖=1   (8) 

𝜎 =  √
1

𝑁
∑ (𝑥𝑖 − 𝜇)2𝑁

𝑖=1   (9) 

2.2.4. Feature selection  

Feature selection is the process of selecting a relevant and important subset of features that 
correlates with the class output so that the model produces better accuracy. In this study genetic 
algorithms based on the wrapper method are used; namely several combinations of feature subset are 
evaluated and compared with each other. Fig. 3 shows a general phase of genetic algorithms, starting 
from generating population, evaluating the fitness value of each individual, selecting individuals, and 
re-production (cross-over and mutation). This results in a new population are combined with the 
previous population and are chosen as the best one. 
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Fig. 3. Genetic Algorithms process flow  

Each step of the genetic algorithm (Fig. 3) can be explained as follows: 
1) Initial Population. In the initial population, a number of individuals are raised randomly. The 

chromosome representation of each individual is a representation of a feature, where a value of 1 
means that the feature is used, while 0 features are not used or deleted. 

2) Fitness Evaluation. After the population generation is evaluated, an Artificial Neural Network is 
used to calculate the error. Before calculating the fitness value, ranking is based on the calculation 
of the error multiplied by the constant (for example, constant = 1.5). Following is the formula for 
calculating fitness values. 

∅(i) = k. R(i), i = 1,2,3. . , N   (10) 

where ∅ is a fitness value of an individual, k is specified constant, and R is a ranking. 

The individual which has the lowest error and ranking has the highest fitness value, and the 

individual which has the highest error and ranking has the lowest fitness value (Table 1). 

Table 1.  The Example of Fitness Values Calculation 

Individual Error rate Ranking Fitness Value 

individual 1 0.5 3 4.5 

Individual 2 0.1 4 6 

Individual 3 0.9 1 1.5 

Individual 4 0.6 2 3 

 

3) Individual Selection. In this phase, the selection of the best parent candidates is passed to the next 
generation. The higher the fitness value, the higher the probability that the individual is chosen. At 
this phase, a roulette wheel engine is used for the selection phase. 

4) Crossover. The process is a process between individuals chosen to produce new individuals. This 
process involves exchanging genes from two random individuals. 

5) Mutation. This is the process of mutation of a gene or a gene exchanged with its opponent, for 
example, 0 to 1. The mutation process is carried out with the specified mutation rate. 

6) Elitism. This process is a merger of parent and child then ranking based on the evaluation of fitness 
values and then looking for the best ranking.  

2.3. Deep Learning Architecture  

Deep Learning architecture used in this study is a fully connected multi-layer perceptron.  The 
following is the process of Deep Learning with the Multilayer Perceptron (MLP) architecture:  

1) Initialize the weight randomly, the topology and other hyperparameters. 
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2) Feedforward process which passes neurons in the hidden layer and calculating the output and 
target, 

3) If both are not the same, then update the weighting process or the backpropagation process. This 
process is done until it finds a weight with an error approaching 0 (zero) or until the iteration is 
complete. 

In training, there is a dropout process that is removed or ignores neurons or nodes in the hidden 
layer; this process can also prevent overfitting. The network uses the efficient ADAM gradient descent 
optimization algorithm. 

2.4. Deep Learning using Hyperparameter Optimization 

Before the hyperparameter optimization process is carried out, the hyperparameter must be defined 
by its values. There are many hyperparameters that are owned by Deep Learning. In this study, seven 
hyperparameters will be optimized, namely hidden layer, hidden node, epoch, learning rate, activation 
function, batch size and dropout rate. This study uses the Random Search method and Bayesian 
Optimization to optimize hyperparameter. 

The following explains the classification performance used in this study by finding the value of 
performance measurement: 

Accuracy =   (TP + TN)/(TP + TN + FP + FN)  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =   𝑇𝑃/(𝑇𝑃 + 𝐹𝑃)  

𝑅𝑒𝑐𝑎𝑙𝑙 =   𝑇𝑃/(𝑇𝑃 + 𝐹𝑁)  

𝐹1 = 2 ∗ ((𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙))/(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙))  

𝑇𝑃𝑅 =   𝐹𝑃/((𝐹𝑃 + 𝑇𝑁) )  

𝐹𝑃𝑅 =   𝑇𝑃/((𝑇𝑃 + 𝐹𝑁))  

3. Results and Discussion 

Experiments to be discussed include: testing the use of Feature Selection, data classification 
without hyperparameter optimization and data classification using hyperparameter optimization. 
Afterward, a summary of the performance analysis between Random Search and Bayesian Optimization 
is discussed. 

 

3.1. The use of Feature Selection 

The result of the feature selection process is having a relevant subset of features. This process uses 
genetic algorithms. From the results of the feature selection process with 10 generations and 50 
number of populations, the feature subset with the number of features 2 was chosen to be the best 
individual with an accuracy value of 0.99 (Table 2), but the conditions prior to feature selection which 
were as many as 6 features had the same accuracy of 0.99. What distinguishes the two is the 
computation time. Data conditions with 2 features have faster training time compared to 6 features. 
Besides increasing accuracy and finding relevant features, feature selection also reduces training time 
itself.  

For computation time, the selection feature process takes a very long time. The number of 
generations greatly influences computation time. However, with large computing, good results are 
obtained and will reduce computation at the data classification phase. 
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Table 2.  Benchmarking Classification With and Without Feature Selection 

 Features 
Number of 

features  

Accuracy 

score  

Training time 

(HH:MM:SS) 

Without Feature 

Selection 

Contrast, dissimilarity, asm, 

energy, correlation 
6 99% 

 

00:02:44.44 

With Feature 

Selection 
Dissimilarity, energy 2 99% 00:02:39.45 

2.5. Data classification without hyperparameter optimization 

At this phase, the experiment is carried out without optimizing the hyperparameter. For the 
training data validation and testing data models using the K-Fold or cross-validation model, the K-
Fold will form as many as 𝑘 parts initialized. In this experiment, k is initialized as 10. For 
Classification without Hyperparameter Optimization, we use the common parameters, as follows: 
ReLU activation function, 256 batch size, 0.6 dropout rate, 0.005 learning rate, 50 number of the 
epoch, 5 number of hidden layers, and 150 number of hidden nodes. The classification performance 
without hyperparameter optimization using 10-Cross Validation is shown in Table 3. 

Table 3.  Classification Performance Without Hyperparameter Optimization  

Fold 
Performance Measurement 

Accuracy Precision Recall F1 

1 0.62 0.65 0.65 0.65 

2 0.70 0.74 0.67 0.60 

3 0.66 0.66 0.66 0.66 

4 0.68 0.66 0.66 0.59 

5 0.70 0.50 0.67 0.56 

6 0.71 0.69 0.68 0.68 

7 0.67 0.69 0.68 0.66 

8 0.67 0.68 0.68 0.68 

9 0.67 0.77 0.68 0.58 

10 0.67 0.70 0.68 0.62 
 

All training process in each iteration will calculate plot loss and accuracy of classification.  The 
results of the training process will produce loss per epoch and accuracy epoch as shown in Fig 4. The 

loss values are still within 0.3 to 0.4 (Fig. 4(a) while the accuracy value is mostly at 0.6 to 0.7 (Fig. 
4(b)). Hence, there is no indication of overfitting (a condition where the training accuracy is higher 
than validation). However, it can be expected that when testing the values of accuracy, precision, recall, 
and f1 it is not good. The scoring results show poor trends, due to the training loss value per epoch 
and accuracy per epoch being less than satisfactory because of the data is not good, or the settings for 
each hyperparameter are not appropriate. 
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(a) 

 

(b) 

Fig. 4. Plot model loss (a) and accuracy (b) classification without hyperparameter optimization in fold-1;  

Fig 5 shows the results of ROC Curve plots, based on the graph resulting in classification results in 
Table 3. 

 

Fig. 5. ROC Curve from classification without hyperparameter optimization  

In general, the two graphs above are used to evaluate classification results from datasets that are 
imbalance (the number of classes is more dominant than the other) but can be used to evaluate the 
results of a balanced dataset. Table 3 shows that the results of each fold are not good. Most precision 
values are very high though the recall value is very low, causing the results of the class to be re-called 
slightly to produce poor results. Whereas in Fig. 5, the value of the ROC Curve is not satisfy low, even 
though the graph area is still above the random line (>0.500) 
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2.6. Data classification with hyperparameter optimization  

The previous experiment results using classification without hyperparameter optimization showed 
unsatisfactory results (Tabel 4). Hence improvements must be made, especially since results with high 
accuracy are necessary in health-related case studies. As explained earlier, Deep Learning can be 
powerful and produce good results when using the right hyperparameter. The following is the 
experiment of the hyperparameter optimization process. The first step is defining the range of each 
hyperparameter value. 

Table 4.  Hyperparameter Definition on Deep Learning 

Hyperparameter List output  

Hidden Layer [5,6,7,8,9] 

Hidden Node [100,200] 

Number of Epoch [50,60,70,90] 

Activation Function [ReLU, Tanh, Sigmoid, Linear, Softmax] 

Learning Rate [0.001, 0.002, 0.003, 0.004, 0.005, 0.006, 0.007, 0.008, 0.009] 

Batch Size [64, 128] 

Dropout Rate [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9] 

 

There are 8100 combinations if we look for all possible combinations from the list of parameters 
above. Therefore, in this study, the grid search optimization method was not used because it would 
evaluate 8,100 hyperparameter combinations. At this phase, 10 samples will be taken to be evaluated. 
The experiment was conducted using hyperparameter optimization with a random search and bayesian 
search. 

2.7. Hyperparameter Optimization using Random Search 

The result of hyperparameter optimization using Random Search produces an accuracy value of 1.0 
or 100%. From Table 5, the best results are obtained by using the Tanh activation function, 64 batch 
size, 0.5 dropout rate, 0.004 learning rate, 90 number of the epoch, 7 number of hidden layers, and 200 
number of hidden nodes; which give perfect accuracy of 1.0 or 100%.   

Table 5.  Hyperparameter Optimization with Random Search  

Fold 

Performance 

Measurement 
Hyperparameter 

Accuracy rate 
Activation 

Function 

Batch 

size Dropout 

rate 

Learning 

rate 

Number 

of Epoch 

Number of 

hidden 

layers 

Number 

of hidden 

nodes 

1 1.00 Tanh 64 0.5 0.004 90 7 200 

2 0.99 Tanh  64 0.2 0.002 50 6 100 

3 0.99 Tanh  128 0.5 0.001 50 6 100 

4 0.99 Linear 64 0.5 0.002 60 6 100 

5 0.66 Tanh  64 0.7 0.009 50 7 200 

6 0.62 Relu 128 0.9 0.004 50 6 200 

7 0.52 Relu  64 0.3 0.008 70 9 200 

8 0.37 Relu  64 0.7 0.005 80 5 100 

9 0.12 Sigmoid 64 0.3 0.001 80 10 100 

10 0.00 Sigmoid 128 0.1 0.006 60 8 200 
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The classification of data with the random search optimization process has the results of plot loss 
per epoch and the results of the accuracy plot per epoch as in Fig. 6. Fig. 6(a) shows a good trend 
where the loss value is still 0.1 and even 0, while the accuracy (Fig. 6(b)) is within 0.96 and 1.0 range, 
indicating that this process has a good scoring. 

 

(a) 

 

(b) 

Fig. 6.  Plot loss per epoch (a) and accuracy per epoch (b) using Random Search hyperparameter optimization in 

fold-1  

In Table 6, the value in scoring is very high at 1.0 or 100%, as well as shown in the final results of 
optimization with Random Search. 

Table 6.  Scoring results from hyperparameter optimization with Random Search  

Fold 
Performance Measurement 

Accuracy Precision Recall F1 

1 1.0 1.0 1.0 1.0 

2 1.0 1.0 1.0 1.0 

3 0.98 0.99 0.98 0.98 

4 1.0 1.0 1.0 1.0 

5 1.0 1.0 1.0 1.0 

6 1.0 1.0 1.0 1.0 

7 1.0 1.0 1.0 1.0 

8 1.0 1.0 1.0 1.0 

9 1.0 1.0 1.0 1.0 

10 1.0 1.0 1.0 1.0 

 

Fig. 7 shows the ROC Curve to evaluate the classification results. These results produce satisfied 
performance measurement and directly proportional to the results of plot loss per epoch in Fig. 6(a) 
and accuracy per epoch in Fig. 6(b). 
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Fig. 7. ROC Curve from hyperparameter optimization with Random Search  

2.8. Hyperparameter Optimization using Bayesian Search 

Experiments with hyperparameter optimization using Bayesian Optimization produce an accuracy 
value of 0.99 or 99%.  The best results are obtained by using Linear Activation function, 115 Batch 

size, 0.1 Dropout rate, 0.006 Learning rate, 90 Number of the epoch, 6 Number of hidden layers, and 
149 Number of hidden nodes;  which give accuracy value of 0.99 or 99% (Table 7). 

Table 7.  Hyperparameter Optimization with Bayesian  

Fold 

Performance 

Measurement 
Hyperparameter 

Accuracy rate 
Activation 

Function 

Batch 

size 
Dropout 

rate 

Learning 

rate 

Number 

of Epoch 

Number 

of hidden 

layers 

Number 

of hidden 

nodes 

1 1.00 Sigmoid 128 0.6 0.007 80 6 106 

2 0.99 Tanh  118 0.5 0.003 90 9 173 

3 0.99 Tanh  80 0.7 0.005 50 5 107 

4 0.99 Linear 115 0.1 0.006 90 6 149 

5 0.66 Tanh  105 0.5 0.001 60 6 259 

6 0.62 Relu 72 0.4 0.006 70 8 171 

7 0.52 Relu  108 0.9 0.004 80 8 123 

8 0.37 Relu  121 0.5 0.003 90 8 145 

9 0.12 Sigmoid 92 0.3 0.008 70 10 123 

10 0.00 Softmax 126 0.3 0.008 50 10 191 

 

The classification of data with the bayesian optimization process has the results of plot loss per 
epoch in fold-1 and accuracy plot per epoch in fold-1 as in Fig. 8. The results show a consistent trend, 
although in the middle of the iteration there is fluctuation at the loss value per epoch and accuracy per 
epoch, however, until the end, the results shown continue to be consistent. Scoring results can also be 
determined to be good and consistent with the results of the optimization with Bayesian Optimization. 
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(a) 

 

(b) 

Fig. 8. Plot loss per epoch (a) and accuracy per epoch (b) using Bayesian hyperparameter optimization in fold-1  

It can be seen that the result has a very high scoring value of 0.99 or 99% (Table 8). The final 
results of optimization with Bayesian Optimization differ slightly from those produced by Random 
Search.  The results of plot loss per epoch (Fig. 8(a)), accuracy per epoch (Fig. 8(b)), and scoring 
produce very good things. It means that these results are directly proportional to the results of ROC 
Curve plots in Fig. 9, which shows very good classification results. 

Table 8.  Scoring results from hyperparameter optimization with Bayesian  

Fold 
Performance Measurement 

Accuracy Precision Recall F1 

1 1.0 1.0 1.0 1.0 

2 1.0 1.0 1.0 1.0 

3 0.98 0.99 0.98 0.98 

4 1.0 1.0 1.0 1.0 

5 1.0 1.0 1.0 1.0 

6 1.0 1.0 1.0 1.0 

7 1.0 1.0 1.0 1.0 

8 1.0 1.0 1.0 1.0 

9 1.0 1.0 1.0 1.0 

10 0.9 0.93 0.89 0.89 
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Fig. 9. ROC Curve from hyperparameter optimization with Bayesian in fold-1 

A summary of performance analysis between Random Search and Bayesian Optimization is shown 
in Table 9. 

Table 9.  Hyperparameter Definition on Deep Learning 

Metric Comparison Random Search  
Bayesian Optimization 

Time optimization 04:15:11.72 
03:52:37.32 

Highest accuracy 1.0 
0.99  

Time of classification testing 01:06:41.80  
00:23:15.02  

 

In the Stroke dataset, Bayesian Optimization is more effective and efficient than Random Search. 
Although in terms of accuracy, Random Search produces an accuracy value of 1.0 or 100% but only a 
difference of 0.1 or 1% of that produced by Bayesian Optimization (0.99 or 99%). Even so, both of 
these methods are better than the common methods, Grid Search, which works to find a combination 
of all possible parameters (brute force), hence requiring a longer processing time. 

4. Conclusion 

This study seeks to improve the accuracy of a stroke diagnosis by using Hyperparameter 
Optimization. From the results of the experiment, it was concluded that Deep Learning requires the 
correct setting of hyperparameters so that Deep Learning produces good knowledge. The results of the 
hyperparameter optimization in the Stroke dataset in this study succeeded in increasing the value of 
accuracy, precision, recall and f1-score up to 100%. Random Search and Bayesian Optimization are 
better than Grid Search, a common method for hyperparameter optimization. In terms of classification 
results, Random Search produces higher accuracy than Bayesian Optimization. Yet, in terms of time 
optimization, Bayesian Optimization is better than Random Search. For the next research, we have to 
use big data platforms to reduce computational burdens and training times. The parallel system may 
run quickly without reducing its accuracy. We will consider the use of other Deep Learning 
architectures such as Recurrent Neural Network (RNN), Convolutional Neural Network (CNN), and 
Long Short-Term Memory (LSTM). We will consider the implementation of a boosting method to 
improve accuracy, may decrease due to the feature selection. 
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