
International Journal of Advances in Intelligent Informatics ISSN 2442-6571

Vol. 5, No. 3, November 2019, pp. 256-272 256

 http://dx.doi.org/10.26555/ijain.v5i3.427 http://ijain.org ijain@uad.ac.id

Improving stroke diagnosis accuracy using hyperparameter
optimized deep learning

Tessy Badriyah a,1,*, Dimas Bagus Santoso a,2, Iwan Syarif a,3, Daisy Rahmania Syarif b,4

a Politeknik Elektronika Negeri Surabaya (PENS), Indonesia
b University of Cologne, Germany
1 tessy@pens.ac.id; 2 santoso.db@gmail.com; 3 iwanarif@pens.ac.id; 4 dsyarif@smail.uni-koeln.de

* corresponding author

1. Introduction

Cerebrovascular stroke or injury (CVA) is a loss of brain function caused by the sudden cessation of
blood supply to parts of the brain. It is a condition that arises due to circulatory disorders in the brain,
causes a person suffering from paralysis or death [1]. Stroke recognition is difficult because people do
not regularly check up their brain and heart conditions [2]. The general diagnosis procedure uses
Computed Tomography (CT) scans, Magnetic Resonance Imaging (MRI) and Electrocardiogram
(EKG or ECG) [3].

Several studies in the health sector develop preprocessing on CT Scan image data to obtain better
results. As was done by Singh and Gupta [4] to detect cases of classification of lung cancer, previously,
the image was processed and produced texture features (GLCM) and statistical features. It used 7
(seven) different approaches, namely KNN, SVM, Decision Tree, Naïve Bayes, SGD, Random Forest
and MLP (one type of Deep Learning architecture). From the results of the classification of medical
image datasets containing 15,750 images, with the distribution of 6,910 are classed as benign and 8,840
for malignant classes. They obtain the highest accuracy of 88.55% using the MLP approach. Likewise,
Marbun et al. [2] used CT brain scan images to detect strokes with preprocessing consisting of gray
scaling, scaling, cloning, and then segmentation, namely binary image formation using thresholding.
For classification, they used the Convolutional Neural Network method and obtained an accuracy value
of 90%. Hence, the use of a blooming approach such as deep learning, could beneficial for stroke
diagnosis using CT-scan.

ARTICL E INFO

ABSTRACT

Article history

Received July 21, 2019

Revised August 28, 2019

Accepted November 16, 2019

Available online November 17, 2019

 Stroke may cause death for anyone, including youngsters. One of the early
stroke detection techniques is a Computerized Tomography (CT) scan.
This research aimed to optimize hyperparameter in Deep Learning,
Random Search and Bayesian Optimization for determining the right
hyperparameter. The CT scan images were processed by scaling, grayscale,
smoothing, thresholding, and morphological operation. Then, the images
feature was extracted by the Gray Level Co-occurrence Matrix (GLCM).
This research was performed a feature selection to select relevant features
for reducing computing expenses, while deep learning based on
hyperparameter setting was used to the data classification process. The
experiment results showed that the Random Search had the best
accuracy, while Bayesian Optimization excelled in optimization time.

This is an open access article under the CC–BY-SA license.

Keywords

Feature selection

Deep learning

Hyperparameter optimization

Random search

Bayesian optimization

http://dx.doi.org/10.26555/ijain.v5i3.427
http://ijain.org/index.php/IJAIN/index
mailto:ijain@uad.ac.id?subject=[IJAIN]
mailto:tessy@pens.ac.id
mailto:santoso.db@gmail.com
mailto:iwanarif@pens.ac.id
mailto:dsyarif@smail.uni-koeln.de
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://crossmark.crossref.org/dialog/?doi=10.26555/ijain.v5i3.427&domain=pdf

257 International Journal of Advances in Intelligent Informatics ISSN 2442-6571

 Vol. 5, No. 3, November 2019, pp. 256-272

 Badriyah et al. (Improving stroke diagnosis accuracy using deep learning with hyperparameter optimization)

Deep Learning is a variant of machine learning based on Neural Networks. It has many hidden
layers that have the ability to learn data representations or features automatically. As other Neural
Networks, in general, the Deep Learning architecture consists of visible and hidden layers where the
weight of each perceptron unit is optimized using the backpropagation algorithm [5].

The use of Deep Learning in the health sector has gained more attention [6], Deep Learning
produces impressive results in the areas of Speech Recognition [7], Computer Vision [8] and Natural
Languages in recent times. However, Deep Learning has several drawbacks in terms of its framework.
Some researchers use Deep Learning to solve their research problems and obtain satisfactory results.
Hung et al. [3] used an Electronic medical claims (EMCs) database of 800,000 patients to compare
DNN with three other approaches to predict stroke in five years. The results show that DNN and
gradient boosting decision tree (GBDT) have the same accuracy as compared to Logistic Regression
and Support Vector Machine. DNN can be optimized by using patient data that is less than GBDT.
Using a more extended period of EMC data can help improve predictive quality. The use of the Deep
Learning method in the health dataset was also carried out by Assodiky et al. [9], although the results
of an Electrocardiogram (EKG) to detect Arrhythmia are sometimes difficult to observe and often
cause diagnostic errors that may lead to death. However, a powerful Deep Learning approach can lead
to improved diagnosis, with experimental results showing the best accuracy of 76.51%.

The effectiveness of Deep Learning ultimately relies on the implementation of hyperparameter.
Determining the value of each hyperparameter requires one's value judgment. Hence a standardized
approach is needed to set hyperparameter in Deep Learning. Some researchers use other approaches to
optimize hyperparameters in Deep Learning. Research conducted by Qolomany et al. [4] shows the
success of the application of Deep Learning by optimizing parameters using the Particle Swarm
Optimization (PSO) method. PSO is very efficient in adjusting the number of optimal hidden layers
and neurons. The results of the PSO experiment show that the search time for the right parameters
can be 77% -85% faster than the search for the same parameters using manual search methods and
Grid Search. Another way to optimize deep learning is also reported by Kingma and Ba [10] who used
an efficient gradient descent algorithm named “Adam” and have been reported to have great results.
The name Adam itself is implemented as the "Adam" optimizer in the Keras library in Python. On the
other hand, Bergstra and Bengio [11] employed the Bayesian Optimization approach using the
Gaussian Process for hyperparameter searches. The result shows that Bayesian Optimization is better at
finding the right hyperparameters in the CIFAR-10 benchmarking dataset. The successful use of
Bayesian optimization was also reported by Snoek et al. [12] who successfully used Bayesian
Optimization in the Gaussian Process in its modeling. Other papers show the success of implementing
hyperparameter in various fields, including what was done by Cui and Bai [13]; Di Francescomarino et
al. [14]; Le et al. [15]; Martinez-De-Pison et al. [16]; Balaprakash et al. [17]; Neary [18]; Borgli et al.
[19]; Talathi [20]; Vo et al. [21]; Dong et al. [22]; Yao et al. [23]; Yoo [24]; Candelieri et al. [25];
Laanaya et al. [26]; Laref et al. [27]; Strijov and Weber [28]; Tellez et al. [29]; Tsirikoglou et al. [30];
Mantovani et al. [31]; and Lee et al. [32].

Related works previously mentioned are in line with our previous research: using the Deep
Learning method to diagnose Stroke by doing optimization at Hyperparameter. For the process of
diagnosing stroke itself, in the hospital, medical staff must make a careful diagnosis because it can be
classified into two types, namely ischemic stroke and hemorrhagic stroke, with both requiring different
treatments. To speed up CT Scan image analysis, a computational system is needed to help speed up
early detection of stroke. The main contribution of this research is the use of hyperparameter
optimization in the Deep Learning method on CT scan data which could improve the effectiveness of
the stroke detection results.

2. Method

The system design of the research can be seen in Fig. 1. the system has three main phases, namely,
data preparation, data preprocessing, and hyperparameter optimization.

ISSN 2442-6571 International Journal of Advances in Intelligent Informatics 258
 Vol. 5, No. 3, November 2019, pp. 256-272

 Badriyah et al. (Improving stroke diagnosis accuracy using deep learning with hyperparameter optimization)

Fig. 1. System Design

At the phase of data preparation, the data obtained from the open dataset was downloaded from
the link www.radiopaedia.org in the form of a patient's CT brain scan image. Since the number is not
too much, datasets need to be processed in data augmentation to produce new data that comes from
the previous data without eliminating the quality of the original image.

Then image processing is carried out with several steps, namely scaling, grayscale, smoothing,
thresholding and morphological operation. After that, the texture feature was extracted using the Gray
Level Co-occurrence Matrix (GLCM) which produced 6 features. Then the dataset is scaled back, and
feature selection is performed to find relevant features to increase accuracy and shorten computing
time.

259 International Journal of Advances in Intelligent Informatics ISSN 2442-6571

 Vol. 5, No. 3, November 2019, pp. 256-272

 Badriyah et al. (Improving stroke diagnosis accuracy using deep learning with hyperparameter optimization)

The following will discuss each part of the element in the system from the proposed method to
improve stroke diagnosis using Deep Learning with Hyperparameter Optimization.

2.1. Data Preparation

The data preparation process involves collecting data and data augmentation using the same data as
[2]. The data has three classes: Normal, Hemorrhagic Stroke, and Ischemic Stroke; each class has 10
data (Fig. 2). The data augmentation process is intended as a strategy of the limited amount of data
obtained. Data augmentation manipulates data without losing the data essence. The image can be
rotated, flipped, and cropped.

(a)

(b)

(c)

Fig. 2. Image from the data augmentation process. (a) not a stroke (b) hemorrhagic stroke (c) ischemic stroke

At this phase, three sample data are taken from each class (normal, ischemic stroke, hemorrhagic
stroke), then the data augmentation output is collected into a new dataset. Each class contains ten
data, meaning that there are a total of 30 patients used in the data. The data is then augmented,
creating 1,000 rows of data in each class, meaning there are a total of 3,000 rows of data used in the
dataset. This augmented data will be processed in the next phase.

There are 10 (ten) rows for each classification of patient data, which are NOT STROKE (normal
class), ISCHEMIC (ischemic stroke) and HEMORRHAGIC (hemorrhagic stroke). So that in total
there are 30 patient’s data. With the augmentation process, these data become 1,000 rows distributed
in three classes, so that there is a total of 3,000 rows used to classify whether the patient is normal or
has an ischemic stroke or hemorrhagic stroke.

To evaluate performance algorithms, the values in the confusion matrix are needed: True Positive
(TP), True Negative (TN), False Positive (FP), False Negative (FN). For example, in the NOT
STROKE class:

1) True Positive (TP) is all NOT STROKE class data classified as NOT STROKE.

2) True Negative (TN) is all data other than the NOT STROKE class not classified as NOT
STROKE.

3) False Positive (FP) is all data other than the NOT STROKE class that is classified as NOT
STROKE.

ISSN 2442-6571 International Journal of Advances in Intelligent Informatics 260
 Vol. 5, No. 3, November 2019, pp. 256-272

 Badriyah et al. (Improving stroke diagnosis accuracy using deep learning with hyperparameter optimization)

4) False Negative (FN) is all NOT STROKE class data that is not classified as NOT STROKE

Similarly, the other two classes are HEMORRHAGIC STROKE and ISCHEMIC STROKE. The
metrics score used to evaluate the algorithm are accuracy, precision, recall, and f1. In addition, there is
a performance analysis using ROC Curve based on the results of plotting True Positive Rate (TPR)
with False Positive Rate (FPR) in various threshold settings.

2.2. Data Preprocessing

After data preparation, in the next phase preprocessing data is carried out. It consists of image
processing, feature extraction, standardization data and feature selection.

2.2.1. Image Processing

At this phase, the quality of image data is improved. This process consists of scaling (adjusting the
size of pixels used), gray scaling (uniformity of the degree of gray image), smoothing image
(eliminating noise and giving blur), thresholding (changing to binary images) and morphological
operation (processing images based on shapes). In the scaling phase, images that have an original size
of 300x300 are changed to 50x50. The grayscale phase is done to produce an uneven level of grayness
in the image. The next stage is the smoothing image phase. This phase eliminates the image noise
using Gaussian Blur, a very good for CT Scan images [17].

The next stage is thresholding. It is combining the Otsu thresholding function and adaptive
thresholding to produce a better image. The last step is the morphological operation. There are two
types of Morphological Operation, namely, erosion and dilation. Erosion is an operation to remove
the boundaries of foreground objects. On the other hand, the dilation increases thesize of the original
image. Here, a joint operation of erosion, followed by dilation, is performed.

2.2.2. Feature Extraction

At the feature extraction phase, the extracted feature is a texture feature with the Gray Level Co-
occurrence Matrix (GLCM) method. This method is a compelling method in representing the
characteristics of image texture.

GLCM produces six features: contrast, dissimilarity, homogeneity, correlation, angular second
moment (ASM), and energy, which explained as follows.

1) Contrast is the result of calculations related to the amount of diversity in gray intensity in the
image. Contrast amounts to 0 if the neighbor pixels have the same value. Contrast can be
formulated as follows:

𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = ∑ 𝑃𝑖,𝑗(𝑖 − 𝑗)2𝑁−1
𝑖,𝑗=0 (1)

where P is matrix co-occurrence, i and j are an index on the matrix, and N for gray level co-
occurrence matrix.

2) Dissimilarity is the result of measuring the difference in each pixel, dissimilarity will be high if the
texture is random and will be low if the value is uniform. Dissimilarity can be formulated as
follows:

𝐷𝑖𝑠𝑠𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = ∑ 𝑃𝑖,𝑗|𝑖 − 𝑗|𝑁−1
𝑖,𝑗=0 (2)

where P is co-occurrence matrix, i and j are an index on the matrix, and N gray level co-occurrence
matrix

3) Homogeneity is the result of homogeneity measurement. This value is very sensitive to values
around the main diagonal. High value exists when all pixels have the same/uniform value. This
feature is the opposite of contrast, which is great if it has the same pixel value when the energy is
fixed.

261 International Journal of Advances in Intelligent Informatics ISSN 2442-6571

 Vol. 5, No. 3, November 2019, pp. 256-272

 Badriyah et al. (Improving stroke diagnosis accuracy using deep learning with hyperparameter optimization)

𝐻𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦 = ∑
𝑃𝑖,𝑗

1+(𝑖+𝑗)2
𝑁−1
𝑖,𝑗=0 (3)

where P is matrix co-occurrence, i and j are an index on the matrix, and N for gray level co-
occurrence matrix.

4) Correlation is the result of measuring linearity (the joint probability) of a number of pixel pairs.

𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 = ∑ 𝑃𝑖,𝑗 [
(𝑖−𝜇𝑖)(𝑗−𝜇𝑗)

√(𝜎𝑖
2)(𝜎𝑗

2)
]𝑁−1

𝑖,𝑗=0 (4)

where P is matrix co-occurrence, i and j are an index on the matrix, N for gray level co-occurrence
matrix, μ is the mean value of a pixel, and σ is the variance value of a pixel.

5) Angular Second Moment (ASM)is the result of the measurement of uniformity or often called the
angular second moment. The energy has a high value when the pixel values are similar to each
other; otherwise the value will be small, indicating the value of the normalized GLCM to be
heterogeneous. The maximum value of energy is 1, which means the distribution of pixels is in a
constant condition or in the periodic form (not random). ASM can be formulated as follows:

𝐴𝑆𝑀 = ∑ 𝑃𝑖,𝑗
2𝑁−1

𝑖,𝑗=0 (5)

where P is matrix co-occurrence, i and j are an index on the matrix, and N for gray level co-
occurrence matrix.

6) Energy is the result of measuring texture uniformity (repetition of pixel pairs). Energy has a value
of one for images with constant gray values. Energy can be formulated as follows:

𝐸𝑛𝑒𝑟𝑔𝑦 = √𝐴𝑆𝑀 (6)

2.2.3. Standardization data

In this study, we use a standardization process where the attributes of variables are converted into a
standard Gaussian distribution with a mean of 0 and a standard deviation of 1.

𝑛𝑒𝑤 𝑑𝑎𝑡𝑎 =
𝑥−𝜇

𝜎
 (7)

Where μ is the mean value and σ is the standard deviation value of the feature column.

𝜇 =
1

𝑁
∑ (𝑥𝑖)

𝑁
𝑖=1 (8)

𝜎 = √
1

𝑁
∑ (𝑥𝑖 − 𝜇)2𝑁

𝑖=1 (9)

2.2.4. Feature selection

Feature selection is the process of selecting a relevant and important subset of features that
correlates with the class output so that the model produces better accuracy. In this study genetic
algorithms based on the wrapper method are used; namely several combinations of feature subset are
evaluated and compared with each other. Fig. 3 shows a general phase of genetic algorithms, starting
from generating population, evaluating the fitness value of each individual, selecting individuals, and
re-production (cross-over and mutation). This results in a new population are combined with the
previous population and are chosen as the best one.

ISSN 2442-6571 International Journal of Advances in Intelligent Informatics 262
 Vol. 5, No. 3, November 2019, pp. 256-272

 Badriyah et al. (Improving stroke diagnosis accuracy using deep learning with hyperparameter optimization)

Fig. 3. Genetic Algorithms process flow

Each step of the genetic algorithm (Fig. 3) can be explained as follows:
1) Initial Population. In the initial population, a number of individuals are raised randomly. The

chromosome representation of each individual is a representation of a feature, where a value of 1
means that the feature is used, while 0 features are not used or deleted.

2) Fitness Evaluation. After the population generation is evaluated, an Artificial Neural Network is
used to calculate the error. Before calculating the fitness value, ranking is based on the calculation
of the error multiplied by the constant (for example, constant = 1.5). Following is the formula for
calculating fitness values.

∅(i) = k. R(i), i = 1,2,3. . , N (10)

where ∅ is a fitness value of an individual, k is specified constant, and R is a ranking.

The individual which has the lowest error and ranking has the highest fitness value, and the

individual which has the highest error and ranking has the lowest fitness value (Table 1).

Table 1. The Example of Fitness Values Calculation

Individual Error rate Ranking Fitness Value

individual 1 0.5 3 4.5

Individual 2 0.1 4 6

Individual 3 0.9 1 1.5

Individual 4 0.6 2 3

3) Individual Selection. In this phase, the selection of the best parent candidates is passed to the next
generation. The higher the fitness value, the higher the probability that the individual is chosen. At
this phase, a roulette wheel engine is used for the selection phase.

4) Crossover. The process is a process between individuals chosen to produce new individuals. This
process involves exchanging genes from two random individuals.

5) Mutation. This is the process of mutation of a gene or a gene exchanged with its opponent, for
example, 0 to 1. The mutation process is carried out with the specified mutation rate.

6) Elitism. This process is a merger of parent and child then ranking based on the evaluation of fitness
values and then looking for the best ranking.

2.3. Deep Learning Architecture

Deep Learning architecture used in this study is a fully connected multi-layer perceptron. The
following is the process of Deep Learning with the Multilayer Perceptron (MLP) architecture:

1) Initialize the weight randomly, the topology and other hyperparameters.

263 International Journal of Advances in Intelligent Informatics ISSN 2442-6571

 Vol. 5, No. 3, November 2019, pp. 256-272

 Badriyah et al. (Improving stroke diagnosis accuracy using deep learning with hyperparameter optimization)

2) Feedforward process which passes neurons in the hidden layer and calculating the output and
target,

3) If both are not the same, then update the weighting process or the backpropagation process. This
process is done until it finds a weight with an error approaching 0 (zero) or until the iteration is
complete.

In training, there is a dropout process that is removed or ignores neurons or nodes in the hidden
layer; this process can also prevent overfitting. The network uses the efficient ADAM gradient descent
optimization algorithm.

2.4. Deep Learning using Hyperparameter Optimization

Before the hyperparameter optimization process is carried out, the hyperparameter must be defined
by its values. There are many hyperparameters that are owned by Deep Learning. In this study, seven
hyperparameters will be optimized, namely hidden layer, hidden node, epoch, learning rate, activation
function, batch size and dropout rate. This study uses the Random Search method and Bayesian
Optimization to optimize hyperparameter.

The following explains the classification performance used in this study by finding the value of
performance measurement:

Accuracy = (TP + TN)/(TP + TN + FP + FN)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃)

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁)

𝐹1 = 2 ∗ ((𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙))/(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙))

𝑇𝑃𝑅 = 𝐹𝑃/((𝐹𝑃 + 𝑇𝑁))

𝐹𝑃𝑅 = 𝑇𝑃/((𝑇𝑃 + 𝐹𝑁))

3. Results and Discussion

Experiments to be discussed include: testing the use of Feature Selection, data classification
without hyperparameter optimization and data classification using hyperparameter optimization.
Afterward, a summary of the performance analysis between Random Search and Bayesian Optimization
is discussed.

3.1. The use of Feature Selection

The result of the feature selection process is having a relevant subset of features. This process uses
genetic algorithms. From the results of the feature selection process with 10 generations and 50
number of populations, the feature subset with the number of features 2 was chosen to be the best
individual with an accuracy value of 0.99 (Table 2), but the conditions prior to feature selection which
were as many as 6 features had the same accuracy of 0.99. What distinguishes the two is the
computation time. Data conditions with 2 features have faster training time compared to 6 features.
Besides increasing accuracy and finding relevant features, feature selection also reduces training time
itself.

For computation time, the selection feature process takes a very long time. The number of
generations greatly influences computation time. However, with large computing, good results are
obtained and will reduce computation at the data classification phase.

ISSN 2442-6571 International Journal of Advances in Intelligent Informatics 264
 Vol. 5, No. 3, November 2019, pp. 256-272

 Badriyah et al. (Improving stroke diagnosis accuracy using deep learning with hyperparameter optimization)

Table 2. Benchmarking Classification With and Without Feature Selection

 Features
Number of

features

Accuracy

score

Training time

(HH:MM:SS)

Without Feature

Selection

Contrast, dissimilarity, asm,

energy, correlation
6 99%

00:02:44.44

With Feature

Selection
Dissimilarity, energy 2 99% 00:02:39.45

2.5. Data classification without hyperparameter optimization

At this phase, the experiment is carried out without optimizing the hyperparameter. For the
training data validation and testing data models using the K-Fold or cross-validation model, the K-
Fold will form as many as 𝑘 parts initialized. In this experiment, k is initialized as 10. For
Classification without Hyperparameter Optimization, we use the common parameters, as follows:
ReLU activation function, 256 batch size, 0.6 dropout rate, 0.005 learning rate, 50 number of the
epoch, 5 number of hidden layers, and 150 number of hidden nodes. The classification performance
without hyperparameter optimization using 10-Cross Validation is shown in Table 3.

Table 3. Classification Performance Without Hyperparameter Optimization

Fold
Performance Measurement

Accuracy Precision Recall F1

1 0.62 0.65 0.65 0.65

2 0.70 0.74 0.67 0.60

3 0.66 0.66 0.66 0.66

4 0.68 0.66 0.66 0.59

5 0.70 0.50 0.67 0.56

6 0.71 0.69 0.68 0.68

7 0.67 0.69 0.68 0.66

8 0.67 0.68 0.68 0.68

9 0.67 0.77 0.68 0.58

10 0.67 0.70 0.68 0.62

All training process in each iteration will calculate plot loss and accuracy of classification. The
results of the training process will produce loss per epoch and accuracy epoch as shown in Fig 4. The

loss values are still within 0.3 to 0.4 (Fig. 4(a) while the accuracy value is mostly at 0.6 to 0.7 (Fig.
4(b)). Hence, there is no indication of overfitting (a condition where the training accuracy is higher
than validation). However, it can be expected that when testing the values of accuracy, precision, recall,
and f1 it is not good. The scoring results show poor trends, due to the training loss value per epoch
and accuracy per epoch being less than satisfactory because of the data is not good, or the settings for
each hyperparameter are not appropriate.

265 International Journal of Advances in Intelligent Informatics ISSN 2442-6571

 Vol. 5, No. 3, November 2019, pp. 256-272

 Badriyah et al. (Improving stroke diagnosis accuracy using deep learning with hyperparameter optimization)

(a)

(b)

Fig. 4. Plot model loss (a) and accuracy (b) classification without hyperparameter optimization in fold-1;

Fig 5 shows the results of ROC Curve plots, based on the graph resulting in classification results in
Table 3.

Fig. 5. ROC Curve from classification without hyperparameter optimization

In general, the two graphs above are used to evaluate classification results from datasets that are
imbalance (the number of classes is more dominant than the other) but can be used to evaluate the
results of a balanced dataset. Table 3 shows that the results of each fold are not good. Most precision
values are very high though the recall value is very low, causing the results of the class to be re-called
slightly to produce poor results. Whereas in Fig. 5, the value of the ROC Curve is not satisfy low, even
though the graph area is still above the random line (>0.500)

ISSN 2442-6571 International Journal of Advances in Intelligent Informatics 266
 Vol. 5, No. 3, November 2019, pp. 256-272

 Badriyah et al. (Improving stroke diagnosis accuracy using deep learning with hyperparameter optimization)

2.6. Data classification with hyperparameter optimization

The previous experiment results using classification without hyperparameter optimization showed
unsatisfactory results (Tabel 4). Hence improvements must be made, especially since results with high
accuracy are necessary in health-related case studies. As explained earlier, Deep Learning can be
powerful and produce good results when using the right hyperparameter. The following is the
experiment of the hyperparameter optimization process. The first step is defining the range of each
hyperparameter value.

Table 4. Hyperparameter Definition on Deep Learning

Hyperparameter List output

Hidden Layer [5,6,7,8,9]

Hidden Node [100,200]

Number of Epoch [50,60,70,90]

Activation Function [ReLU, Tanh, Sigmoid, Linear, Softmax]

Learning Rate [0.001, 0.002, 0.003, 0.004, 0.005, 0.006, 0.007, 0.008, 0.009]

Batch Size [64, 128]

Dropout Rate [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9]

There are 8100 combinations if we look for all possible combinations from the list of parameters
above. Therefore, in this study, the grid search optimization method was not used because it would
evaluate 8,100 hyperparameter combinations. At this phase, 10 samples will be taken to be evaluated.
The experiment was conducted using hyperparameter optimization with a random search and bayesian
search.

2.7. Hyperparameter Optimization using Random Search

The result of hyperparameter optimization using Random Search produces an accuracy value of 1.0
or 100%. From Table 5, the best results are obtained by using the Tanh activation function, 64 batch
size, 0.5 dropout rate, 0.004 learning rate, 90 number of the epoch, 7 number of hidden layers, and 200
number of hidden nodes; which give perfect accuracy of 1.0 or 100%.

Table 5. Hyperparameter Optimization with Random Search

Fold

Performance

Measurement
Hyperparameter

Accuracy rate
Activation

Function

Batch

size Dropout

rate

Learning

rate

Number

of Epoch

Number of

hidden

layers

Number

of hidden

nodes

1 1.00 Tanh 64 0.5 0.004 90 7 200

2 0.99 Tanh 64 0.2 0.002 50 6 100

3 0.99 Tanh 128 0.5 0.001 50 6 100

4 0.99 Linear 64 0.5 0.002 60 6 100

5 0.66 Tanh 64 0.7 0.009 50 7 200

6 0.62 Relu 128 0.9 0.004 50 6 200

7 0.52 Relu 64 0.3 0.008 70 9 200

8 0.37 Relu 64 0.7 0.005 80 5 100

9 0.12 Sigmoid 64 0.3 0.001 80 10 100

10 0.00 Sigmoid 128 0.1 0.006 60 8 200

267 International Journal of Advances in Intelligent Informatics ISSN 2442-6571

 Vol. 5, No. 3, November 2019, pp. 256-272

 Badriyah et al. (Improving stroke diagnosis accuracy using deep learning with hyperparameter optimization)

The classification of data with the random search optimization process has the results of plot loss
per epoch and the results of the accuracy plot per epoch as in Fig. 6. Fig. 6(a) shows a good trend
where the loss value is still 0.1 and even 0, while the accuracy (Fig. 6(b)) is within 0.96 and 1.0 range,
indicating that this process has a good scoring.

(a)

(b)

Fig. 6. Plot loss per epoch (a) and accuracy per epoch (b) using Random Search hyperparameter optimization in

fold-1

In Table 6, the value in scoring is very high at 1.0 or 100%, as well as shown in the final results of
optimization with Random Search.

Table 6. Scoring results from hyperparameter optimization with Random Search

Fold
Performance Measurement

Accuracy Precision Recall F1

1 1.0 1.0 1.0 1.0

2 1.0 1.0 1.0 1.0

3 0.98 0.99 0.98 0.98

4 1.0 1.0 1.0 1.0

5 1.0 1.0 1.0 1.0

6 1.0 1.0 1.0 1.0

7 1.0 1.0 1.0 1.0

8 1.0 1.0 1.0 1.0

9 1.0 1.0 1.0 1.0

10 1.0 1.0 1.0 1.0

Fig. 7 shows the ROC Curve to evaluate the classification results. These results produce satisfied
performance measurement and directly proportional to the results of plot loss per epoch in Fig. 6(a)
and accuracy per epoch in Fig. 6(b).

ISSN 2442-6571 International Journal of Advances in Intelligent Informatics 268
 Vol. 5, No. 3, November 2019, pp. 256-272

 Badriyah et al. (Improving stroke diagnosis accuracy using deep learning with hyperparameter optimization)

Fig. 7. ROC Curve from hyperparameter optimization with Random Search

2.8. Hyperparameter Optimization using Bayesian Search

Experiments with hyperparameter optimization using Bayesian Optimization produce an accuracy
value of 0.99 or 99%. The best results are obtained by using Linear Activation function, 115 Batch

size, 0.1 Dropout rate, 0.006 Learning rate, 90 Number of the epoch, 6 Number of hidden layers, and
149 Number of hidden nodes; which give accuracy value of 0.99 or 99% (Table 7).

Table 7. Hyperparameter Optimization with Bayesian

Fold

Performance

Measurement
Hyperparameter

Accuracy rate
Activation

Function

Batch

size
Dropout

rate

Learning

rate

Number

of Epoch

Number

of hidden

layers

Number

of hidden

nodes

1 1.00 Sigmoid 128 0.6 0.007 80 6 106

2 0.99 Tanh 118 0.5 0.003 90 9 173

3 0.99 Tanh 80 0.7 0.005 50 5 107

4 0.99 Linear 115 0.1 0.006 90 6 149

5 0.66 Tanh 105 0.5 0.001 60 6 259

6 0.62 Relu 72 0.4 0.006 70 8 171

7 0.52 Relu 108 0.9 0.004 80 8 123

8 0.37 Relu 121 0.5 0.003 90 8 145

9 0.12 Sigmoid 92 0.3 0.008 70 10 123

10 0.00 Softmax 126 0.3 0.008 50 10 191

The classification of data with the bayesian optimization process has the results of plot loss per
epoch in fold-1 and accuracy plot per epoch in fold-1 as in Fig. 8. The results show a consistent trend,
although in the middle of the iteration there is fluctuation at the loss value per epoch and accuracy per
epoch, however, until the end, the results shown continue to be consistent. Scoring results can also be
determined to be good and consistent with the results of the optimization with Bayesian Optimization.

269 International Journal of Advances in Intelligent Informatics ISSN 2442-6571

 Vol. 5, No. 3, November 2019, pp. 256-272

 Badriyah et al. (Improving stroke diagnosis accuracy using deep learning with hyperparameter optimization)

(a)

(b)

Fig. 8. Plot loss per epoch (a) and accuracy per epoch (b) using Bayesian hyperparameter optimization in fold-1

It can be seen that the result has a very high scoring value of 0.99 or 99% (Table 8). The final
results of optimization with Bayesian Optimization differ slightly from those produced by Random
Search. The results of plot loss per epoch (Fig. 8(a)), accuracy per epoch (Fig. 8(b)), and scoring
produce very good things. It means that these results are directly proportional to the results of ROC
Curve plots in Fig. 9, which shows very good classification results.

Table 8. Scoring results from hyperparameter optimization with Bayesian

Fold
Performance Measurement

Accuracy Precision Recall F1

1 1.0 1.0 1.0 1.0

2 1.0 1.0 1.0 1.0

3 0.98 0.99 0.98 0.98

4 1.0 1.0 1.0 1.0

5 1.0 1.0 1.0 1.0

6 1.0 1.0 1.0 1.0

7 1.0 1.0 1.0 1.0

8 1.0 1.0 1.0 1.0

9 1.0 1.0 1.0 1.0

10 0.9 0.93 0.89 0.89

ISSN 2442-6571 International Journal of Advances in Intelligent Informatics 270
 Vol. 5, No. 3, November 2019, pp. 256-272

 Badriyah et al. (Improving stroke diagnosis accuracy using deep learning with hyperparameter optimization)

Fig. 9. ROC Curve from hyperparameter optimization with Bayesian in fold-1

A summary of performance analysis between Random Search and Bayesian Optimization is shown
in Table 9.

Table 9. Hyperparameter Definition on Deep Learning

Metric Comparison Random Search
Bayesian Optimization

Time optimization 04:15:11.72
03:52:37.32

Highest accuracy 1.0
0.99

Time of classification testing 01:06:41.80
00:23:15.02

In the Stroke dataset, Bayesian Optimization is more effective and efficient than Random Search.
Although in terms of accuracy, Random Search produces an accuracy value of 1.0 or 100% but only a
difference of 0.1 or 1% of that produced by Bayesian Optimization (0.99 or 99%). Even so, both of
these methods are better than the common methods, Grid Search, which works to find a combination
of all possible parameters (brute force), hence requiring a longer processing time.

4. Conclusion

This study seeks to improve the accuracy of a stroke diagnosis by using Hyperparameter
Optimization. From the results of the experiment, it was concluded that Deep Learning requires the
correct setting of hyperparameters so that Deep Learning produces good knowledge. The results of the
hyperparameter optimization in the Stroke dataset in this study succeeded in increasing the value of
accuracy, precision, recall and f1-score up to 100%. Random Search and Bayesian Optimization are
better than Grid Search, a common method for hyperparameter optimization. In terms of classification
results, Random Search produces higher accuracy than Bayesian Optimization. Yet, in terms of time
optimization, Bayesian Optimization is better than Random Search. For the next research, we have to
use big data platforms to reduce computational burdens and training times. The parallel system may
run quickly without reducing its accuracy. We will consider the use of other Deep Learning
architectures such as Recurrent Neural Network (RNN), Convolutional Neural Network (CNN), and
Long Short-Term Memory (LSTM). We will consider the implementation of a boosting method to
improve accuracy, may decrease due to the feature selection.

271 International Journal of Advances in Intelligent Informatics ISSN 2442-6571

 Vol. 5, No. 3, November 2019, pp. 256-272

 Badriyah et al. (Improving stroke diagnosis accuracy using deep learning with hyperparameter optimization)

References

[1] L. S. Brunner, Brunner & Suddarth’s textbook of medical-surgical nursing, vol. 1. Lippincott Williams &
Wilkins, 2010., available at: Google Scholar.

[2] J. T. Marbun, Seniman, and U. Andayani, “Classification of stroke disease using convolutional neural
network,” J. Phys. Conf. Ser., vol. 978, p. 012092, Mar. 2018, doi: 10.1088/1742-6596/978/1/012092.

[3] C.-Y. Hung, W.-C. Chen, P.-T. Lai, C.-H. Lin, and C.-C. Lee, “Comparing Deep Neural Network and
Other Machine Learning Algorithms for Stroke Prediction in a Large-Scale Population-Based Electronic
Medical Claims Database,” in 2017 39th Annual International Conference of the IEEE Engineering in
Medicine and Biology Society (EMBC), 2017, pp. 3110–3113, doi: 10.1109/EMBC.2017.8037515.

[4] G. A. P. Singh and P. K. Gupta, “Performance analysis of various machine learning-based approaches for
detection and classification of lung cancer in humans,” Neural Comput. Appl., vol. 31, no. 10, pp. 6863–
6877, 2019, doi: 10.1007/s00521-018-3518-x.

[5] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, pp. 436–444, May
2015, doi: 10.1038/nature14539.

[6] A. Esteva et al., “A guide to deep learning in healthcare,” 2019, doi: 10.1038/s41591-018-0316-z.

[7] L. Deng and J. C. Platt, “Ensemble deep learning for speech recognition,” in Proceedings of the Annual
Conference of the International Speech Communication Association, INTERSPEECH, 2014, available at:
Google Scholar.

[8] S. Gollapudi and S. Gollapudi, “Deep Learning for Computer Vision,” 2019, doi: 10.1007/978-1-4842-
4261-2_3.

[9] H. Assodiky, I. Syarif, and T. Badriyah, “Deep learning algorithm for arrhythmia detection,” in 2017
International Electronics Symposium on Knowledge Creation and Intelligent Computing (IES-KCIC), 2017,
pp. 26–32, doi: 10.1109/KCIC.2017.8228452.

[10] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,” in International Conference on
Learning Representations (ICLR), 2015, vol. 5, available at: Google Scholar.

[11] J. Bergstra and Y. Bengio, “Random search for hyper-parameter optimization,” J. Mach. Learn. Res., vol.
13, no. Feb, pp. 281–305, 2012, available at: Google Scholar.

[12] J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian optimization of machine learning
algorithms,” in Advances in neural information processing systems, 2012, pp. 2951–2959, available at : Google
Scholar.

[13] H. Cui and J. Bai, “A new hyperparameters optimization method for convolutional neural networks,”
Pattern Recognit. Lett., 2019, doi: 10.1016/j.patrec.2019.02.009.

[14] C. Di Francescomarino et al., “Genetic algorithms for hyperparameter optimization in predictive business
process monitoring,” Inf. Syst., vol. 74, pp. 67–83, May 2018, doi: 10.1016/j.is.2018.01.003.

[15] N. Q. K. Le, T.-T. Huynh, E. K. Y. Yapp, and H.-Y. Yeh, “Identification of clathrin proteins by
incorporating hyperparameter optimization in deep learning and PSSM profiles,” Comput. Methods
Programs Biomed., vol. 177, pp. 81–88, Aug. 2019, doi: 10.1016/j.cmpb.2019.05.016.

[16] F. J. Martinez-de-Pison, R. Gonzalez-Sendino, A. Aldama, J. Ferreiro-Cabello, and E. Fraile-Garcia,
“Hybrid methodology based on Bayesian optimization and GA-PARSIMONY to search for parsimony
models by combining hyperparameter optimization and feature selection,” Neurocomputing, vol. 354, pp.
20–26, Aug. 2019, doi: 10.1016/j.neucom.2018.05.136.

[17] P. Balaprakash, M. Salim, T. Uram, V. Vishwanath, and S. Wild, “DeepHyper: Asynchronous
Hyperparameter Search for Deep Neural Networks,” in 2018 IEEE 25th International Conference on High
Performance Computing (HiPC), 2018, pp. 42–51, doi: 10.1109/HiPC.2018.00014.

[18] P. Neary, “Automatic Hyperparameter Tuning in Deep Convolutional Neural Networks Using
Asynchronous Reinforcement Learning,” in 2018 IEEE International Conference on Cognitive Computing
(ICCC), 2018, pp. 73–77, doi: 10.1109/ICCC.2018.00017.

https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Brunner+%26+Suddarth%E2%80%99s+textbook+of+medical-surgical+nursing&btnG=
https://doi.org/10.1088/1742-6596/978/1/012092
https://doi.org/10.1109/EMBC.2017.8037515
https://doi.org/10.1007/s00521-018-3518-x
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/s41591-018-0316-z
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Ensemble+deep+learning+for+speech+recognition&btnG=
https://doi.org/10.1007/978-1-4842-4261-2_3
https://doi.org/10.1007/978-1-4842-4261-2_3
https://doi.org/10.1109/KCIC.2017.8228452
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Adam%3A+A+Method+for+Stochastic+Optimization&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Random+search+for+hyper-parameter+optimization&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Practical+Bayesian+optimization+of+machine+learning+algorithms&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Practical+Bayesian+optimization+of+machine+learning+algorithms&btnG=
https://doi.org/10.1016/j.patrec.2019.02.009
https://doi.org/10.1016/j.is.2018.01.003
https://doi.org/10.1016/j.cmpb.2019.05.016
https://doi.org/10.1016/j.neucom.2018.05.136
https://doi.org/10.1109/HiPC.2018.00014
https://doi.org/10.1109/ICCC.2018.00017

ISSN 2442-6571 International Journal of Advances in Intelligent Informatics 272
 Vol. 5, No. 3, November 2019, pp. 256-272

 Badriyah et al. (Improving stroke diagnosis accuracy using deep learning with hyperparameter optimization)

[19] R. J. Borgli, H. Kvale Stensland, M. A. Riegler, and P. Halvorsen, “Automatic Hyperparameter
Optimization for Transfer Learning on Medical Image Datasets Using Bayesian Optimization,” in 2019
13th International Symposium on Medical Information and Communication Technology (ISMICT), 2019, pp.
1–6, doi: 10.1109/ISMICT.2019.8743779.

[20] S. S. Talathi, “Hyper-parameter optimization of deep convolutional networks for object recognition,” in
2015 IEEE International Conference on Image Processing (ICIP), 2015, pp. 3982–3986, doi:
10.1109/ICIP.2015.7351553.

[21] N. N. Y. Vo, X. He, S. Liu, and G. Xu, “Deep learning for decision making and the optimization of
socially responsible investments and portfolio,” Decis. Support Syst., vol. 124, p. 113097, Sep. 2019, doi:
10.1016/j.dss.2019.113097.

[22] X. Dong, J. Shen, W. Wang, Y. Liu, L. Shao, and F. Porikli, “Hyperparameter Optimization for Tracking
with Continuous Deep Q-Learning,” in 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2018, pp. 518–527, doi: 10.1109/CVPR.2018.00061.

[23] C. Yao, D. Cai, J. Bu, and G. Chen, “Pre-training the deep generative models with adaptive
hyperparameter optimization,” Neurocomputing, vol. 247, pp. 144–155, Jul. 2017, doi:
10.1016/j.neucom.2017.03.058.

[24] Y. Yoo, “Hyperparameter optimization of deep neural network using univariate dynamic encoding
algorithm for searches,” Knowledge-Based Syst., vol. 178, pp. 74–83, Aug. 2019, doi:
10.1016/j.knosys.2019.04.019.

[25] A. Candelieri et al., “Tuning hyperparameters of a SVM-based water demand forecasting system through
parallel global optimization,” Comput. Oper. Res., vol. 106, pp. 202–209, Jun. 2019, doi:
10.1016/j.cor.2018.01.013.

[26] H. Laanaya, F. Abdallah, H. Snoussi, and C. Richard, “Learning general Gaussian kernel hyperparameters
of SVMs using optimization on symmetric positive-definite matrices manifold,” Pattern Recognit. Lett.,
vol. 32, no. 13, pp. 1511–1515, Oct. 2011, doi: 10.1016/j.patrec.2011.05.009.

[27] R. Laref, E. Losson, A. Sava, and M. Siadat, “On the optimization of the support vector machine
regression hyperparameters setting for gas sensors array applications,” Chemom. Intell. Lab. Syst., vol. 184,
pp. 22–27, Jan. 2019, doi: 10.1016/j.chemolab.2018.11.011.

[28] V. Strijov and G. W. Weber, “Nonlinear regression model generation using hyperparameter optimization,”
Comput. Math. with Appl., vol. 60, no. 4, pp. 981–988, Aug. 2010, doi: 10.1016/j.camwa.2010.03.021.

[29] E. S. Tellez, D. Moctezuma, S. Miranda-Jiménez, and M. Graff, “An automated text categorization
framework based on hyperparameter optimization,” Knowledge-Based Syst., vol. 149, pp. 110–123, Jun.
2018, doi: 10.1016/j.knosys.2018.03.003.

[30] P. Tsirikoglou, S. Abraham, F. Contino, C. Lacor, and G. Ghorbaniasl, “A hyperparameters selection
technique for support vector regression models,” Appl. Soft Comput., vol. 61, pp. 139–148, Dec. 2017, doi:
10.1016/j.asoc.2017.07.017.

[31] R. G. Mantovani, A. L. D. Rossi, E. Alcobaça, J. Vanschoren, and A. C. P. L. F. de Carvalho, “A meta-
learning recommender system for hyperparameter tuning: Predicting when tuning improves SVM
classifiers,” Inf. Sci. (Ny)., vol. 501, pp. 193–221, Oct. 2019, doi: 10.1016/j.ins.2019.06.005.

[32] W.-Y. Lee, S.-M. Park, and K.-B. Sim, “Optimal hyperparameter tuning of convolutional neural networks
based on the parameter-setting-free harmony search algorithm,” Optik (Stuttg)., vol. 172, pp. 359–367,
Nov. 2018, doi: 10.1016/j.ijleo.2018.07.044.

https://doi.org/10.1109/ISMICT.2019.8743779
https://doi.org/10.1109/ICIP.2015.7351553
https://doi.org/10.1016/j.dss.2019.113097
https://doi.org/10.1109/CVPR.2018.00061
https://doi.org/10.1016/j.neucom.2017.03.058
https://doi.org/10.1016/j.knosys.2019.04.019
https://doi.org/10.1016/j.cor.2018.01.013
https://doi.org/10.1016/j.patrec.2011.05.009
https://doi.org/10.1016/j.chemolab.2018.11.011
https://doi.org/10.1016/j.camwa.2010.03.021
https://doi.org/10.1016/j.knosys.2018.03.003
https://doi.org/10.1016/j.asoc.2017.07.017
https://doi.org/10.1016/j.ins.2019.06.005
https://doi.org/10.1016/j.ijleo.2018.07.044

