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1. Introduction 

Cancer is one of the many leading causes of human death in the world [1]. A type of cancer that is 
well known is skin cancer. There were 68,130 cases of skin cancer in America, which caused 8,700 deaths 
in 2010 [2]. Two examples of skin cancer types are Melanoma and Actinic Keratosis. World Health 
Organization (WHO) reported 2-3 million cases of non-melanoma skin cancers, and 130 thousand cases 
of melanoma sufferers each year [3]. In order to reduce the number of late diagnoses, cancer detection 
using technology assistance is needed. 

A form of technology that has a rapid development today is a smartphone or mobile phone. The 
development of technology in smartphones in the current era introduces new possibilities for disease 
detection only through smartphones. One part of a smartphone component that has the most significant 
role in cancer detection is a camera [4]. Images captured by smartphone cameras can be processed by 
smartphones to detect objects in the picture. In addition, a smartphone as a detector has wireless 
connectivity, the ability to perform high-resolution photography, and excellent portability. Nowadays, 
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 The latest developments in the smartphone-based skin cancer diagnosis 
application allow simple ways for portable melanoma risk assessment and 
diagnosis for early skin cancer detection. Due to the trade-off problem 
(time complexity and error rate) on using a smartphone to run a machine 
learning algorithm for image analysis, most of the skin cancer diagnosis 
apps execute the image analysis on the server. In this study, we investigate 
the performance of skin cancer images detection and classification on 
Android devices using the MobileNet v2 deep learning model. We compare 
the performance of several aspects; object detection and classification 
method, computer and Android based image analysis, image acquisition 
method, and setting parameter. Skin cancer actinic Keratosis and 
Melanoma are used to test the performance of the proposed method. 
Accuracy, sensitivity, specificity, and running time of the testing methods 
are used for the measurement. Based on the experiment results, the best 
parameter for the MobileNet v2 model on Android using images from the 
smartphone camera produces 95% accuracy for object detection and 70% 
accuracy for classification. The performance of the Android app for object 
detection and classification model was feasible for the skin cancer analysis. 
Android-based image analysis remains within the threshold of computing 
time that denotes convenience for the user and has the same performance 
accuracy with the computer for the high-quality images. These findings 
motivated the development of disease detection processing on Android 
using a smartphone camera, which aims to achieve real-time detection and 
classification with high accuracy.  
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the detection of objects in imagery can be done using one technique from the branch of machine 
learning, namely deep learning [5]. Deep learning is a novel machine learning method that is growing 
rapidly now. Deep learning has a higher level of sensitivity compared to other machine learning methods 
[6]. Deep learning has been used to analyze biomedical data, such as medical images, biological 
sequences, and protein structures [5]. Research related to skin cancer classification was carried out by 
developing a deep neural network with a Google base of inception v3 using a dataset of 2000 images with 
a division of 374 melanoma, 1372 nevus, and 254 seborrheic keratosis [7]. In 2018, Haenssle et al. [8] 
used Google Inception v4 CNN architecture for the classification of Melanoma. 

Skin cancer has an average size of 6 mm [9], which is exceedingly small as compared to the total skin 
area captured by the camera. Research on skin cancer segmentation was carried out in 2017 using Fully 
Convolutional Network to decipher the objects of skin cancer [10]. One of the disadvantages of 
segmentation is only marked the object without object recognition. Therefore, it requires object 
detection and classification to determine the type of skin cancer. 

The latest developments in the smartphone-based skin cancer diagnosis application allow simple ways 
for portable melanoma risk assessment and diagnosis for early skin cancer detection [11]. Several mobile 
apps are ready on the app store, such as SkinVison [12], SpotMole [13], Deep Learning for Melanoma 
[14], and DermIA [15]. These apps provide a simple way of performing a Melanoma risk assessment on 
outer skin by taking a photo of the skin spot with a smartphone camera.  Risk assessment was generated 
by performing a similarity check between the photo taken and photos of skin cancer. However, several 
applications (SpotMole, Deep Learning for Melanoma, DermIA) do not seem to have a comprehensive 
study. Therefore, the accuracy of the applications is unknown.  

Moreover, the application also often fails to recognize Melanoma, which is a very high-risk skin 
problem. Different from other apps, the SkinVision app is more trusted for early detecting skin cancer. 
The SkinVison app uses a comprehensive study to perform detection. Initially, Skin-Vision is using a 
rule-based fractal algorithm [16], then followed by analyzing pigmented and non-pigmented lesions 
[17].  In the image’s analysis process, SkinVision requires an internet connection for sending images to 
the server. The client-server architecture was also offered in the eSkin [18] application to not to burden 
the computation of image analysis on smartphones and the algorithm updates. The main reason for 
running the image analysis on the server is the time complexity and error rate when performing the 
analysis on the smartphone device. However, Melanoma is more common in rural areas where the 
internet connection is limited. Hence performing image analysis on the smartphone device is required 
in this situation [19].    

MobileNet implements a simple architecture using depth-wise separable convolutions to lightweight 
deep neural networks [20] for mobile vision applications. MobileNet v2 is the addition of bottleneck 
layers and shortcut connections [21]. MobileNet is commonly used for object detection. Nevertheless, 
it is also possible to use MobileNet for classification. In this study, we investigate how the performance 
of MobileNet v2 running on the smartphone for image analysis of skin cancer detection and classification. 
Object detection is used to allow the image analysis process with full skin background, while the 
classification is used to classify the objects that have been cropped according to the training size. The 
learning rate and epoch parameters were selected to handle the overfitting problem [22]. The code is 
publicly available through https://github.com/bowoadi/Melanomax/. We compare the performance of 
several aspects; object detection and classification method, computer (Jupyter notebook) and Android-
based images analysis, and images acquisition method. Skin cancer Actinic Keratosis and Melanoma are 
examined to test the proposed method performance. Accuracy, sensitivity, specificity, and running time 
of the testing methods are used for the measurement. 

2. Method 

The flowchart of our proposed method is shown in Fig. 1. First, we collected a data set of skin cancer 
images from isic.org to train MobileNet v2. In this study, we used two types of skin cancer; Actinic 
Keratosis and Melanoma. Actinic Keratosis is a type of skin cancer that is triggered by the continuous 
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exposure of ultraviolet radiation. The characteristics of the skin affected by this cancer are crusty, scaly 
skin with a brownish color, pink, or a combination of these colors [23]. Fig. 2(a) shows Actinic Keratosis 
originating from the dataset used. Melanoma is a type of malignant cancer that attacks humans in ages 
ranging from 25 to 50 years old. The cause of Melanoma is known to come from two things, i.e., 
exposure to UV light and genetic factors [24]. The case of Melanoma is typical in remote areas. The 
characteristics of Melanoma skin cancer are an irregular shape, consisting of more than one color, 
itching, and bleeding and can attack anybody parts [19]. Fig. 2(b) shows an example of Melanoma skin 
cancer. The dataset used in this study was 640 images downloaded from the website https://isic-
archive.com, five images were downloaded from https://cancer.org, and five images from Google Image 
without regard to age or other factors. 

 

Fig. 1.  The flowchart of our proposed method. 

  

(a) (b) 

Fig. 2.  Skin Cancer Images: a) Actinic Keratosis, b) Melanoma. 
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The second step was splitting the dataset. The 640 images downloaded from the website https://isic-
archive.com divided into training data, validation data, and test data. Training data contain 200 
melanoma and 200 Actinic Keratosis images, while validation data contain 100 Melanoma and 100 
Actinic Keratosis images, and Test data contain 20 melanoma and 20 Actinic keratosis images. Training, 
validation, and test data are different images. Melanoma and Actinic keratosis images with the size 
information are printed to the paper for Android testing purposes. The printed images were five images 
downloaded from https://cancer.org and five from Google Image.  

The third step was ROI determination for manual interpretation to train MobileNet v2. The process 
produced an XML file containing the coordinates of the object suspected of being cancer. The 
determination of ROI was done using the LabelImg application that could be downloaded at 
https://github.com/tzutalin/labelImg. Original images with object coordinates were used for object 
detection training and validation. Then the cropped images based on ROI coordinates were used for the 
classification training and validation. 

The fourth step was the training, where the MobileNet v2 is trained for object detection and 
classification. The details of both models discussed in the next subsection. The next step was parameter 
optimization by selecting the learning rate, epoch parameters, activation function, and batch 
normalization to decrease the overfitting problem. After optimizing the parameters, the achieved model 
is tested on both computers by using Jupyter notebook and on Android apps. The next step was the 
MobileNet v2 evaluation. Accuracy, sensitivity, specificity, and running time of the testing data are 
measured for evaluating the object detection and classification model. The last stage was choosing the 
most optimized model for Android skin cancer detection and classification. 

2.1. MobileNet 

MobileNet is a deep learning model that is developed for efficiency and can be implemented on 
embedded devices or mobile devices such as smartphones without compromising with resources [25]. 
Fig. 3 defined the MobileNet Architecture for detection and classification.  MobileNet is built using the 
depthwise separable convolution architecture to create a lightweight model [20]. MobileNet v2 was 
released in two versions, MobileNet v1 and MobileNet v2. The updates on MobileNet v2 are the addition 
of bottleneck layers and shortcut connections [21]. The bottleneck layers are shown in Fig. 4. 

 

Fig. 3.  MobileNet v2 Architecture for object detection and classification. 

 

Fig. 4.  Bottleneck Layer MobileNet v2. 

MobileNet v2 process started with feature extraction using Conv2D with a 3x3 kernel for input 
images. Then the results from Conv2D entered to 19 bottleneck layers. Bottleneck layers consist of three 
convolution operations. There are 1x1 convolution, 3x3 depthwise convolution, and 1x1 pointwise 
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convolution. The 1x1 convolution increases the number of channels to enrich the features. Depthwise 
separable convolution has two types of convolution layers; depthwise convolution and pointwise 
convolution, which aim to reduce computing costs. The reduction is executed by separating the feature 
filtering process at 3x3 depthwise convolution and then the combining feature process at pointwise 
convolution [20]. Operations on 3x3 depthwise convolution perform by separating all channels on the 
input, and each channel is convoluted with filters at the 3x3 depthwise convolution layer in the order. 
Fig. 5(a) shows the example that the red channel in the input is convoluted with the first channel of the 
depthwise convolution layer first filter. Then, the 1x1 pointwise convolution process is the convolution 
of all channels on the input that has passed through the 3x3 depthwise convolution layer with all filters 
at the pointwise convolution layer one by one and in sequence. Fig. 5(b) shows the operation at 1x1 
pointwise convolution. 

 

 

(a) (b) 

Fig. 5.  Depthwise separable convolution and pointwise convolution. a) 3x3 Depthwise Convolution, b) 1x1 

Pointwise Convolution. 

 All layers are followed by batch normalization and activation function. Batch normalization can 
reduce the gradient dependence on parameter scales. Batch normalization is a normalization process by 
reducing the average value and dividing it by the standard deviation [26]. In the activation layer, ReLU 
is default activation on MobileNet v2. ReLU is an activation function that was first introduced by H 
Sebastian Seung in 2000. The activation function serves to activate and deactivate neurons [27].  
Specifically, ReLU6 is used on every layer except in the last convolution layer. The equation for the 
activation function ReLU6 is shown in (1).  

 f(x) = min(max(0,x) , 6)        (1) 

where f(x) is a ReLU6 activation result, and x is the value applied to be changed in the range of (0, 6). 

 ReLU6 has a range between 0 to 6. ReLU6 is used in the MobileNet v2 model because it is stronger 
than the ReLU activation function [28]. Moreover, ReLU6 has an advantage that is able to retain 
information from images in low-precision computation [21]. Activation layer unused on the last 
convolution layer to avoid the elimination of important features. Then the last feature extraction on 
MobileNet v2 is conv2D 1x1. 

 The difference between the MobileNet v2 model for detection and classification is in the last layer. 
The last layer MobileNet v2 for detection contains SSDLite. SSDLite is a modification from regular 
SSD, which replaced all regular convolution with depthwise separable convolution. The purpose of 
SSDLite is to make MobileNet v2 more efficient. SSDLite can reduce parameter and cost [21]. The last 
layer MobileNet v2 for classification contains avgpool, conv2d 1x1, and softmax for image classifier. We 
used a 300x300x3 image input size, or we used the RGB image for detection and 224x224x3 image input 
size for classification. 
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3. Results and Discussion 

3.1. The experiment results 

The experiments were conducted out using the TensorFlow library and MobileNet v2. There were 
five scenarios in this study. The first scenario aimed to achieve the best learning rate value using 30,000 
epochs; the second scenario aimed to obtain the best learning rate value using 15,000 epochs. The results 
of these two scenarios were then compared to get the best learning rate value and the most optimum 
number of the epoch. The third scenario was comparison MobileNet v2 with different activation 
functions and batch normalization. The fourth scenario was produced to validate the MobileNet v2 
model in detecting and classifying skin cancer objects located in the printed real size of skin cancer. In 
the last scenario, MobileNet v2 was tested with static image input. Images of skin cancer are loaded from 
the camera gallery into the app. 

3.1.1. Device settings in testing scenario 

Testing is done by using 40 test data, which are divided into 20 images for Melanoma and 20 images 
for Actinic Keratosis. Testing was performed on an Android smartphone (Samsung J530G Pro) and 
Jupyter notebook application (running on NVIDIA GTX 1070Ti) for each model. The distance between 
the smartphone camera and image to be captured is 10 cm. In Scenario 1 and scenario 2, Android 
smartphone captures live photos on the screen or the LCD monitor. This scenario is designed to 
simulate the condition of analyzing skin cancer with a digital dermatoscope, where the dermoscopic 
image of the lesion is displayed on the screen or the LCD monitor. Scenario 3 was aimed to have 
performance comparison MobileNet v2 with different activation functions and batch normalization. 
Jupyter notebook application is used for the testing. In scenario 4, Android smartphone captures live 
photos on printed images of actual size skin cancer. In scenario 5, Images of skin cancer are loaded from 
the camera gallery into the Android app. Sketch of parameter testing using the Android smartphone is 
shown in Fig. 6. 

  
(a) (b) 

Fig. 6.  (a) Sketch of parameter testing using Android smartphone and laptop and (b) sketch of parameter 

testing using Android smartphone on the printed images of actual size skin cancer. 

3.1.2. Scenario 1 

In this experiment, the MobileNet v2 model was used to detect and classify between Melanoma and 
Actinic keratosis skin cancer objects by using 30,000 epochs and four different learning rate values. Each 
experiment was done in an Android smartphone and a computer using Jupyter Notebook. The results 
of this scenario are presented in Table 1 and Table 2, where J means experiments in the Jupyter Notebook 
and S for experiments in the smartphone. Table 1 shows the results of Scenario 1 in skin cancer 
detection, and Table 2 shows the result of Scenario 1 in skin cancer classification. Fig. 7(a) and (b) are 
shown the display of the Jupyter Notebook and Android app for skin cancer detection. Fig. 7(c) and (d) 
are shown the display of the Jupyter Notebook and Android app for skin cancer classification. 

Table 1.  Skin cancer detection results of the Scenario 1 on Jupyter Notebook (J) and Smartphone (S). 

Learning Rate 
Accuracy (%) Sensitivity (%) Specificity (%) 

J S J S J S 

0.005 75 75 50 90 100 60 

0.001 92.5 85 90 100 95 70 

0.0005 95 87.5 90 100 100 75 

0.0001 97.5 90 95 100 100 80 
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Based on Table 1, the best performance for skin cancer detection for both Jupyter Notebook and the 
Android app, were produced when using a 0.0001 learning rate. The best accuracy was 97.5% in Jupyter 
Notebook and 90% in the Android app. The best performance for skin cancer classification by using 
Jupyter Notebook and the Android app based MobileNet v2 was achieved using a learning rate of 0.005 
(Table 2). The average of computing times was less than 2 seconds for object detection and less than 1 
second for the classification. 

Table 2.  Skin cancer classification results of the Scenario 1 on Jupyter notebook (J) and smartphone (S) 

Learning Rate 
Accuracy (%) Sensitivity (%) Specificity (%) 

J S J S J S 

0.005 90 67.5 90 95 90 40 

0.001 87.5 50 90 100 85 0 

0.0005 87.5 55 90 100 85 5 

0.0001 87.5 57.5 95 100 80 15 
 

 

   
 

(a) (b) (c) (d) 

Fig. 7.  The display of the Jupyter Notebook and Android app for skin cancer images analysis. Skin cancer 

detection: a) Jupyter Notebook, b) Android app; classification: c) Jupyter Notebook, d) Android app. 

3.1.3. Scenario 2 

In this experiment, the MobileNet v2 model was used to detect and classify Melanoma and Actinic 
keratosis skin cancer objects by using 15,000 epochs and four different learning values. Table 3 shows 
the results of Scenario 2 in skin cancer detection, and Table 4 shows the result of Scenario 2 in skin 
cancer classification. 

Table 3.  Skin cancer detection results of the Scenario 2 on Jupyter Notebook (J) and Smartphone (S). 

Learning Rate 
Accuracy (%) Sensitivity (%) Specificity (%) 

J S J S J S 

0.005 85 77.5 90 100 80 55 

0.001 100 87.5 100 100 100 75 

0.0005 100 92.5 100 100 100 85 

0.0001 97.5 95 95 100 100 90 

Table 4.  Skin cancer classification results of the Scenario 2 on Jupyter notebook (J) and smartphone (S).  

Learning Rate 
Accuracy (%) Sensitivity (%) Specificity (%) 

J S J S J S 

0.005 87.5 57.5 90 95 85 20 

0.001 87.5 70 90 95 85 45 

0.0005 90 67.5 95 100 85 35 

0.0001 87.5 65 95 95 80 35 
 

Based on Table 3, the best performance of skin cancer detection in Jupyter Notebook was 100%, and 
the Android app was 95%. As we mainly focus on the Android app, the best learning rate for the Android 
app is 0.0001. Table 4 shows the best performance of skin cancer classification using Jupyter Notebook 
was 90%, and using the Android app was 70%. In this case, we chose a 0.0005 learning rate due to high 
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sensitivity. It could be seen that, in this scenario, the running time was the same as the previous scenario, 
less than 2 seconds for object detection, and less than 1 second for classification. 

3.1.4. Scenario 3  

Scenario 3 aimed to have performance comparison MobileNet v2 with different activation functions 
and batch normalization. The parameters used were based on the results of the previous scenarios, 0.0001 
learning rate, and 15,000 epochs for skin cancer detection and 0.0005 learning rate with 15,000 epochs 
for skin cancer classification. Scenario 3 used a Jupyter notebook only for the testing.  The results of 
scenario 3 can be seen in Table 5 and Table 6. Based on the result shows that ReLU6 with batch 
normalization outperformed other setting experiments. 

Table 5.  Skin cancer detection (D) and classification (C) results of the Scenario 3 based on the activation 

functions 

Activation 

Function 

Accuracy (%) Sensitivity (%) Specificity (%) 

D C D C D C 

ReLU6 97.5 90 95 95 100 85 

ReLU 82.5 87.5 95 95 70 80 

ELU 90 82.5 100 90 80 75 

Sigmoid 62.5 80 95 90 30 70 

Tanh 87.5 82.5 95 90 80 75 

Table 6.  Skin cancer detection (D) and classification (C) Results of the Scenario 3 based on batch normalization  

Batch 

Normalization  

Accuracy (%) Sensitivity (%) Specificity (%) 

D C D C D C 

Yes  97.5 90 95 95 100 85 

No 87.5 87.5 95 95 80 80 

3.1.5. Scenario 4 

Scenario 4 is aimed to test the MobileNet v2 model in detecting and classifying actual skin cancer 
images. The parameters used were based on the results of the previous scenarios, 0.0001 learning rate, 
and 15,000 epochs for skin cancer detection and 0.0005 learning rate with 15,000 epochs for skin cancer 
classification. Scenario 4 used a smartphone camera that had a zoom feature. The images of skin cancer 
were printed according to cancer size. Several zoom settings used in this scenario; 1x zoom, 2x zoom, 3x 
zoom, and 4x zoom.  The results of scenario 4 can be seen in Table 7 and Table 8. 

Table 7.  Skin cancer detection results of the Scenario 4 

Zoom Accuracy (%) Sensitivity (%) Specificity (%) 
1x 0 0 0 
2x 0 0 0 

3x 0 0 0 

4x 60 80 40 

Table 8.  Skin cancer classification results of the Scenario 4 

Zoom Accuracy (%) Sensitivity (%) Specificity (%) 

1x 50 100 0 

2x 50 100 0 

3x 50 100 0 

4x 60 100 20 
 

Ten images of skin cancer printed on actual size were used to test the MobileNet v2 model. For the 
object detection, the MobileNet v2 model could not detect all skin cancer objects correctly at 1x zoom, 
2x zoom, and 3x zoom. The accuracy of object detection on the 4x zoomed obtained 60% with 80% 
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sensitivity and 4% specificity. Fig. 8 shows the Android application interface when detecting actual skin 
cancer images. On the other hand, for skin cancer classification, the MobileNet v2 model produces 50% 
accuracy at 1x zoom, 2x zoom, and 3x zoom with 100% sensitivity but with a 0% specificity value. 
MobileNet v2 gets the highest accuracy of 60% for direct skin classification on printed paper when 
zooming 4x. Fig. 9 shows the Android application interface for the classification of skin cancer printed 
in actual size. The running time of detection and classification was the same as the previous scenario, 
less than 2 seconds for object detection and less than 1 second for classification. 

   

Fig. 8.  The result detection using smartphone in actual skin with 4x zoom in Scenario 4. 

   

Fig. 9.  The result of classification using smartphone in actual skin with 4x zoom in Scenario 4. 

3.1.6. Scenario 5 

In scenario 5, the classification of skin cancer with MobileNet v2 is tested with static image input. 
Images of skin cancer are loaded from the camera gallery into the app. The images loaded are of two 
types, 40 test images, as shown in Fig. 10(a) and 10 photographs of 4x zoom actual skin cancer images 
printed on paper, as shown in Fig. 10(b). The skin cancer classification model was chosen in this scenario 
because the accuracy and sensitivity produced were higher than object detection. The best setting with 
the learning rate is 0.0005, and epoch value 15000 is used, which has resulted in 60% accuracy with a 
sensitivity of 100%.  

    
(a) Test images (b) printed images 

Fig. 10. Classification of the Scenario 5. 
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Based on Table 9, the accuracy value produced by the Jupyter notebook is the same as the value of 
accuracy produced by the Android app for 40 test images. The running time of computation for image 
analysis in this scenario higher compare to the previous app. The previous scenario used a live camera to 
detect and classify skin cancer, but in this scenario, images are loaded to the system the same as the 
Jupyter notebook system. Using Samsung J530G pro, it was required average in 20 seconds to analyze 
the skin cancer, and when using Samsung Note 9, it was required only average in 2 seconds to analyze 
the skin cancer. 

Table 9.  Classification results of the Scenario 5. 

Images types Accuracy (%) Sensitivity (%) Specificity (%) 
40 Test images 90 95 85 

10 capture printed images 50 40 60 

3.2. Discussion 

The use of higher epochs generally resulted in higher accuracy, but based on scenario 1 and scenario 
2, 30,000 epoch parameters produced lower accuracy values than 15,000 epochs for detection. The loss 
graph from the training process with 30,000 epochs with learning rate 0.0001 can be seen in Fig. 11(a), 
and loss graph from the training process with 15,000 epochs with learning rate 0.0001 for detection in 
Fig. 11(b). 

  
(a) 30,000 epochs (b) 15,000 epochs 

Fig. 11. Loss graphs of skin cancer detection with learning rate 0.0001 

Based on Fig. 11(a), when the epoch is more than 15,000, overfitting occurred, and the loss could 
not decrease any less than 2%. Fig. 11(b) showed a stable loss decrease under 4% and did not indicate 
an overfitting problem. The accuracy value of the testing process using Jupyter Notebook outperformed 
the accuracy value because when using a smartphone camera, there were some influencing factors. These 
influencing factors included the camera's ability to capture images, the amount of light, and noise level  
[29]. Nevertheless, the best accuracy from scenario 1 and 2 using the Android app was 95% for object 
detection and 70% for classification. The results show the feasibility of supporting the analysis from the 
monitor on a digital dermascope. 

In scenario 3, the batch normalization and ReLU6 outperformed the accuracy value of the 
experiment. The batch normalization increases the stability of the method by normalizing the input layer 
[26]. Moreover, ReLU6 requires less computation process compare to other activation then make faster 
training and convergence [30]. In scenario 4, the Android smartphone could not recognize skin cancer 
objects at zoom 0x, 2x zoom, and 3x zoom in object detection.  Undetected skin cancer due to the size 
of the objects was inadequate for target detection. Moreover, the low camera's capability factor on 
Android devices makes insufficient light and adding noise into images that affected the detection process 
of skin cancer. Android smartphones could detect skin cancer at 4x zoom and produced 60% accuracy, 
80% sensitivity, and 40% specificity for object detection and 60% accuracy, 100% sensitivity, and 20% 
specificity for classification. 
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In scenario 4, the accuracy rate produced by the Jupyter notebook (the computer) is equal with 
Android-based images analysis. The performance value of 40 validation images was 90% accuracy, 95% 
sensitivity, and 85% specificity. MobileNet v2 models continuously produced high sensitivity rates, 
which means it can classify Melanoma better than Actinic Keratosis. To find out how the model 
discriminates the two classes, we visualize the convolution results of the multiple layer process on the 
model using the Matplotlib library, as illustrated in Fig. 12. In Fig. 12, we display only a few images 
features on a particular layer, to reveal how the feature extraction process. First, after passing the 
convolution layer, the convolution images input will be processed in the first bottleneck layer. The first 
bottleneck layer results show that that the featured image of the Melanoma is more visible as compared 
to Actinic Keratosis. Unclear convolution images on Actinic Keratosis were happened due to its color 
characteristic. The Melanoma image is completely contrasting on skin color, while the Actinic color 
image is more predominantly red and less clear between background and cancer. In the middle bottleneck 
layer, the Melanoma features were also more visible as compared to the Actinic. However, in the last 
bottleneck layer produces significant features to contrast between the Melanoma and Actinic Keratosis 
images. These features are reliable to improve classification and object detection performance. The 
conv2D 1x1 layer becomes the last layer before entering SSDlite for object detection or Avgpool-
Conv2d-Softmax for classification. One thousand one features are obtained in this layer and can be more 
significant if the input image is not resized 224x224 (classification). This process shows that the 
bottleneck layer produces a small number of features for contrasting the two-class images. Moreover, a 
small number of features is essential for low computing so that it can run on smartphone devices. 
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Fig. 12. Visualization of Intermediate Layer in MobileNet v2 Model (a) Melanoma images input, (b) Actinic 

keratosis images input. 

Moderate accuracy was obtained while using photos obtained from an Android camera on printed 
images, as well as monitor screens. Most problems occur in Actinic images. As an illustration in Fig. 13, 
image (a) is an Actinic image of validation images, image (b) was obtained from an Android camera on 
the first shot, and image (c) was obtained from an Android camera on the second shot. The result of 
the classification, images (a) and (b) were classified as Actinic, while image (c) was classified as Melanoma. 
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Based on the results of the Conv2D 1x1, it can be observed that the features of images a, b and c still 
seem similar, although there are variations in some features. The miss classification can occur due to the 
classification layers are not yet optimal in extracting the best feature. 

   
Input Layer 

   
Conv2D 1x1 Layer 

(a) (b) (c) 

Fig. 13. Visualization of Conv2D 1x1 Last Layer in MobileNet v2 Model (a) Images from Validation, (b) 

Images from Android camera 1 on printed paper (c) Images from Android camera 2 on printed paper. 

4. Conclusion 

This study was conducted to determine the performance of skin cancer image detection and 
classification on Android devices using MobileNet v2 deep learning model. Based on the experiment 
results, the best parameter for learning rate and epoch were obtained with learning rate 0.0001 and 
15,000 epochs for object detection and 0.0005 learning rate with 15,000 epochs for the classification. 
The Bottleneck layer was improving the feature extraction for input on object detection using SSDlite 
and Classification using SoftMax. The 95% accuracy for object detection and 70% for classification for 
smartphone camera as input show the feasibility for supporting the analysis from the monitor on a digital 
dermascope. The equal high accuracy between computer and Android images analysis was obtained when 
using a high-quality image of skin cancer that was loaded in the system with 90% accuracy, 95 sensitivity, 
and 85% specificity. Android-based image analysis is still within the threshold of computing time that 
is convenient for the user and has the same performance accuracy with the computer for the same quality 
images, with less than 2 seconds for live camera mode and 20 seconds for loaded image mode. Testing 
detection scenario and classification using a smartphone on images printed with the actual size of skin 
cancer resulted in the best accuracy at 4x zoom. However, image acquisition requires improvement in 
normalization input and getting high-quality images and visibility. Several further potential 
developments are possible to be performed to enhance the results. In the classification model, it is 
possible to add a dropout layer to reduce the event of overfitting [31]. Adam's optimization [32] is also 
possible to set the learning rate more adaptive so that the model can identify more high-grade features. 
Integrating skin lesions segmentation as the picture preprocessing step also is potentially improved the 
accuracy of skin cancer classification. Moreover, standardization of images acquisition can be used to 
capture high-quality images and excellent visibility. The use of compact microscopes for smartphones 
that can function as dermascope can be implemented by connecting the compact microscope with the 
Android camera. 
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