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1. Introduction 

The forensic community has developed many techniques to detect and localize image forgeries to 
address the problem of manipulated images, by means of some friendly programs, such as Photoshop 
[1]–[3]. Such developed techniques by forensics are one-sided towards imagery captured from purchaser 
cameras and cell phones that are completely different from sensors in satellites from the perspective of 
job description[4]–[9]. 

Generative adversarial networks (GANs) are presented as an effective technique to detect and localize 
forgeries in satellite images [10][11] that are based on convolutional neural networks (CNNs). For 
instance, in Wei et al. [12], a GAN is presented to relegate unlabeled information with virtual marks for 
advancing a training process; thus, a worldly based self-marking methodology for sheltered and stable 
information labeling is followed. The tested data set in Yarlagadda et al. [10] and Bartusiak et al. [11] 
includes satellite images [13][14] of different forgery sizes: small, medium, and large. In Yarlagadda et 

A RTIC L E  IN F O 

 
ABSTRACT  

 

 

Article history 

Received September 8, 2020 

Revised November 6, 2020 

Accepted November 7, 2020 

Available online November 30, 2020 

 The image forgery process can be simply defined as inserting some objects 
of different sizes to vanish some structures or scenes. Satellite images can 
be forged in many ways, such as copy-paste, copy-move, and splicing 
processes. Recent approaches present a generative adversarial network 
(GAN) as an effective method for identifying the presence of spliced 
forgeries and identifying their locations with a higher detection accuracy of 
large- and medium-sized forgeries. However, such recent approaches clearly 
show limited detection accuracy of small-sized forgeries. Accordingly, the 
localization step of such small-sized forgeries is negatively impacted. In this 
paper, two different approaches for detecting and localizing small-sized 
forgeries in satellite images are proposed. The first approach is inspired by 
a recently presented GAN-based approach and is modified to an enhanced 
version. The experimental results manifest that the detection accuracy of 
the first proposed approach noticeably increased to 86% compared to its 
inspiring one with 79% for the small-sized forgeries. Whereas, the second 
proposed approach uses a different design of a CNN-based discriminator to 
significantly enhance the detection accuracy to 94%, using the same dataset 
obtained from NASA and the US Geological Survey (USGS) for validation 
and testing. Furthermore, the results show a comparable detection accuracy 
in large- and medium-sized forgeries using the two proposed approaches 
compared to the competing ones. This study can be applied in the forensic 
field, with clear discrimination between the forged and pristine images. 
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al. [10] and artusiak et al. [11],  the presented GAN-based approaches have a noticeable detection 
accuracy of 97% for large forgery size, however, with the lower detection accuracy of 79% with small 
forgeries. The satellite images feature high resolution. Hence, the real scenario of forgery is to be of 
small size that has been detected; however, with indeed low detection accuracy using GAN. As an 
approach for the detecting and localizing of satellite image forgery, the GAN depends mainly on the 
discriminator. This discriminator is based on a CNN model of a given structure and features. Therefore, 
it can be shown that the small forgeries are a significant challenge for their CNN-based discriminator 
[10][11]. 

In this paper, two different approaches are presented to improve the efficiency of the CNN-based 
discriminator as well as the whole GAN-based approach for detection and location. The first approach 
modifies the transfer learning technique in the trained discriminator of the GAN-based approach in 
Yarlagadda et al. [10]. That approach enables the detection accuracy detection to reach 86% for small 
forgeries. The second proposed approach includes a newly CNN-based discriminator. The structure and 
associated features of the proposed CNN, implemented in the discriminator of the second approach, 
increase the detection accuracy of small forgeries to 94%. The second proposed approach accomplishes 
14% improvement in real scenarios of satellite images with small forgeries instead of the competing ones 
in Yarlagadda et al. [10] and Bartusiak et al. [11]. Comparative analysis between the two proposed 
approaches and the previously GAN-based presented in Yarlagadda et al. [10] and Bartusiak et al. [11] 
are performed in experiments with a unified dataset. 

The paper is organized as follows. In Section 2, the related work to the satellite image forgery is 
demonstrated. In Section 3, the two proposed approaches are explained in detail. Experimental work 
and comparative analysis, including the dataset description as well as the evaluation metrics applied, are 
illustrated in Section 3. Finally, conclusions are drawn in Section 4. 

2. Related Work 

In this section, the state-of-the-art GAN-based models are thoroughly presented with detailed 
aspects of the discriminator mechanism. 

In Kohli et al. [15], a hybrid technique is presented to detect and localize forged objects in images 
using temporal and spatial CNNs. A watermark-based method is shown to verify whether a satellite 
image is an authenticated one or not [16]. That method mainly depends on the embedded watermark, 
the absence of which makes that method ineffective. While, in Gallego et al. [17], the proposed method 
is based on one machine learning technique to detect forgeries in satellite images based on k-nearest 
neighbor (KNN) and artificial neural networks (ANN) algorithms. Yarlagadda et al. [10] and Bartusiak 
et al. [11] implemented two versions of GANs are presented in order to detect and localize forgeries of 
various sizes: small, medium, and large. The approaches provide higher accuracy of detection (i.e., ~97%) 
for satellite images with large-sized forgeries. However, those approaches provide a noticeable lower 
detection accuracy (i.e., ~79%) in small-sized forgeries, which is the real scenario. 

In Yarlagadda et al.  [10], a typical GAN is implemented to discriminate the pristine image from the 
forged and detect the forged pixels in case of forged image. As shown in Fig. 1, the architecture mainly 
includes two CNN-based models [10]: the generator and the discriminator. The generator is a CNN-
based under complete Autoencoder that consists of two main parts: the encoder Ae and decoder Ad. 
The Autoencoder is trained by iterative procedures using gradient-descent-based minimization method 
with a cost function, such as 

𝐿 =  ℒ(𝑥, 𝐴𝑑(𝐴𝑒(𝑥)))   (1)

The encoder Ae is a convolutional neural network that is symmetric to the deconvolutional neural 
network. The latter is considered as the decoder Ad, as shown in Fig. 2. Both are identical in the number 
of layers, each of five layers (i.e., in the encoder Ae : five convolutional layers from Conv1 through Conv5, 
while in the decoder Ad,  other five deconvolutional layers from Deconv1 through Deconv5). In Fig. 2, 
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each Conv and Deconv layer is characterized by z*(x,y), where z is the count of the filters with the 
targeted layers, while x and y denote the 2D filter size.  

 

Fig. 1.  General architecture of the implemented GAN [10][11]. 

 

Fig. 2.  The general architecture of the CNN-based autoencoder in the implemented GAN [10][11]. 

The output of the encoder is a feature vector, hk, and is less than that of the input image in terms of 
dimensionality. A one-class of support vector machine (SVM) is fed with the vector hk and learns from 
the pristine images (Fig. 3), then outputs a matrix P* of the same input image size.  P* is an estimation 
of the binary matrix P of the pristine image, i.e., all entries of P are all of the value of 1. Otherwise, 
entries with 0 values are pixel positions belonging to forgery in the image. As shown in Fig. 1, the main 
function of the discriminator is to precisely differentiate between real satellite images and those created 
by the generator that yields more real data as input. 

    
(a) b) (c) (d) 

Fig. 3.  A sample of a) pristine image, b) pristine mask, c) forged image, and d) forged mask 

3. Method 

In this section, the two proposed approaches are shown in Sections 3.1 and 3.2, respectively. 

3.1. The first Proposed CNN-based Discriminator 

The first proposed CNN-based discriminator has the same structure as that of the discriminator of 
the GAN-based model [10]. The structure of the discriminator is shown in Fig. 4. The GAN-based 
model in Yarlagadda et al. [10] provides a reasonable high detection accuracy in large and medium 
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forgeries and a significantly lower one with small forgeries, which is the real scenario. Each layer is 
followed by leaky rectified linear units (LReLU) activation function and a batch normalization (BN) 
layer, except the last convolutional layer that is followed by a single fully connected layer succeeded by a 
sigmoid layer for classification purpose [10]. 

 

Fig. 4.  The CNN structure of the implemented discriminator of the first proposed approach. 

Generally speaking, the LReLU activation function is a mapping layer that transforms its input, i.e., 
the feature maps, through a nonlinear function to help the CNN improve the features’ complexity before 
extraction and to map nonlinearly from input to output. The activation function has been differentiable 
to allow the CNN parameters to be optimized by the backpropagation strategy [18]. The mathematical 
form of the FReLU activation function, presented in Zhang et al. [19], is cast as in Eq. (2), and its curve 
is shown in Fig. 5. The LReLU activation function is not differentiable at the origin, thus leading to 
absurdly changing the values during the backpropagation step. Furthermore, the selection of a fixed 
value of the leak parameter prior to the training process would result in a non-optimal value [18]. 

𝑓(𝑥) = {
𝛼 𝑥  ,     𝑥 < 0
𝑥  ,        𝑥 ≥ 0

       

The batch normalization (BN) layer performs normalization to the feature maps input in order to 
avoid the local minima problem. In addition, this layer improves the step of parameters updating and 
increase the invulnerability of initialized parameters. Finally, that layer also helps reach the convergence 
faster to force input data to be within the immersion areas [20]. 

 

Fig. 5.  Functional curve of the LReLu activation function [19]. 

The transfer learning is cast as an optimization problem, in which the learning enhancement of a 
new task can be achieved by knowledge transfer from a previously learned one [21]–[24], as shown in 
Fig. 6. In the first proposed approach, the pre-trained CNN-based discriminator’s learned features in 
Yarlagadda et al. [10] and Bartusiak et al. [11] are transferred to a new CNN-based discriminator of the 
same structure. Then, that CNN is trained again using the dataset of satellite images of small-sized 
forgeries. This structure consists of 6 convolutional layers with different kernels number and kernel sizes, 
as shown in Table 1. Although the first proposed approach would enhance the detection accuracy as 
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opposed to those in Yarlagadda et al. [10] and Bartusiak et al. [11], we believe changing the CNN 
structure itself, in a certain manner, would lead to significant enhancement in the detection accuracy, as 
shown in the next section. 

 

Fig. 6.  Illustrating the transfer learning method [23]. 

Table 1.  The Convolutional Layers of The CNN-Based Discriminator of the First Proposed Approach. 

Layer Count of Kernels Kernel Size 

1st convolution Layer 16 5 X 5 

2nd convolution Layer 16 2 X 2 

3rd convolution Layer 32 4 X 4 

4th convolution Layer 32 2 X 2 

5th convolution Layer 64 3 X 3 

6th convolution Layer 64 2 X 2 

3.2. The Second Proposed CNN-based Discriminator 

In the second proposed approach, a completely different CNN-based discriminator in the GAN-
based detection and localization is proposed, as in Fig. 7. Both 1st and second layers are followed by the 
TanH activation function [25] and batch normalization (BN) layers [20], which are succeeded by the 
average pooling layer (Avg Pooling) [26] in the case of the second convolutional layer. Each layer from 
the third through the fifth convolutional layers is followed by a single BN layer and single FReLU 
activation function [27], then succeeded by a maximum pooling layer (Max Pooling) [28]. The Max 
pooling layer is followed by a single fully connected layer, then by a sigmoid layer as in the first proposed 
approach. 

 

Fig. 7. The CNN structure of the implemented discriminator of the second proposed approach. 
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The second proposed CNN-based discriminator contains different key enhancements in order to 
result in better accuracy detection in case of small size forgeries. The second proposed approach is 
different from the first proposed one on three fronts as follows: 1) implementing both FReLU and Tanh 
activation functions, 2) adding different pooling layers, and 3) implementing a cyclic learning rate (CLR) 
method, instead of the fixed learning rate, during the training step. Such modifications are explained in 
detail as follows. 

3.2.1. Flexible Rectified Linear Units (FReLU) activation function 

The rectified point of Flexible Rectified Linear Units (FReLU) activation function can regulate the 
output using the negative data, and push the activation means closer to zero that speeds up the learning 
process [27]. That flexible rectification can enhance the CNN capacity. It features faster convergence and 
lower computations with higher performance. This function also is highly compatible with the BN layer 
[20]. The mathematical form of FReLU is cast as in Eq. 3, whereas its curve is shown in Fig. 8. The 
structure consists of five convolutional layers. The kernel size and its count are different for each 
convolution layer, as shown in Table 2. 

𝑓(𝑥) = {
𝑏𝑛         ,       𝑥 < 0
𝑥 + 𝑏𝑛  ,      𝑥 ≥ 0

  

Table 2.  The Convolutional Layers of the CNN-Based Discriminator of the Second Proposed Approach. 

Layer Count of Kernels Kernel Size 

1st convolution Layer 8 5 X 5 

2nd convolution Layer 16 5 X 5 

3rd convolution Layer 32 1 X 1 

4th convolution Layer 32 3 X 3 

5th convolution Layer 64 1 X 1 

On the other hand, the Hyperbolic Tangent (Tanh) activation function (Fig. 9), generally named the 
Tanh function, converges faster than both sigmoid and logistic function, and provides better accuracy 
[29]. The Tanh seems to be slower than ReLU for many of the given examples but produces more 
natural fits for the data [30]. This is the main reason for implementing the Tanh function as an activation 
function after the first and second layers. Then, the FReLU activation function comes after the 
remaining layers.   

𝑓(𝑥) =
1−𝑒−𝑥

1+𝑒−𝑥  

  

Fig. 8. Functional curve of FReLu activation 
function [27]. 

Fig. 9. Functional curve of Tanh activation 
function [29]. 

 

3.2.2. Pooling Layer 

Pooling layer is simply used for reducing the feature map spatial dimension. Hence, this layer 
produces compact features that simplify the overall model complexity. This layer aims to obtain large 
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distance correlations of the input image, yielding vigorous matching of features even in case of small 
deformations [31]. The resultant compact representations of the feature maps help avoid overfitting. 
The second proposed approach implements two types of pooling layers: Maximum (Max) Pooling and 
Average (Avg) Pooling [31]. The Max pooling layer calculates the largest value in the batch of the feature 
map and then passes it to its output, as shown as the example in Fig. 10(a). While, with the average 
pooling layer, the average value of the batch is determined instead of choosing the largest number, as in 
Fig. 10(b). The Max pooling layer provides the most dominant features, such as edges, whereas the 
average pooling layer smoothly outputs the features [32]. As well, the Max pooling layer is better in 
coping with extracting the extreme features, whereas the average pooling layer brings all features into 
the count and delivers it to the next layer. This means that all values are actually used for feature mapping 
[28]. That is why the average pooling layer is implemented in the early layers, while the Max pooling 
layer is applied after the last convolutional layer. 

 

Fig. 10. Pooling case studies for (a) MaxPooling [28] , (b) AvgPooling [32]. 

3.2.3. The Cyclic Learning Rate (CLR) 

The Cyclic Learning Rate (CLR) is one of the most considerable tuning hyper-parameters for 
training the deep NN-based models. The state-of-the-art stochastic gradient descent optimizer that is 
used for training purposes updates the weights based on loss function and the learning rate (LR). The 
training is robust for a low LR; however, the optimization consumes time because of the weight updates 
tiny values to reach the minimum loss function. On the other hand, for a higher LR, either the training 
would not converge, or the optimizer would be stuck with the local minima problem due to large values 
of the updates [33]. For each batch, the cyclic LR started from a low value and increased exponentially 
with recording the corresponding training loss [34]. Then, that loss is plotted against the corresponding 
LR within the interval [MinLR MaxLR], where MinLR is the minimum LR and MaxLR is the 
maximum LR. According to the faster decrease, the effective LR range will be selected among others, 
as shown in Fig. 11. Then, the training phase can be performed with a near-optimal learning rate. 

 

Fig. 11. Illustrating LR interval [Min_LR, Max_LR] [33][34]. 

          

(a) (b) 
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4. Results and Discussion 

In this section, the dataset upon, which experiments and comparative analysis are performed is 
described in Section 4.1. Then, the performance evaluation metrics and implementation setup are shown 
in Section 4.2. Finally, the experimental results and approaches’ analysis are presented in Section 4.3. 

4.1. Dataset Description 

For a fair comparison, the dataset shown in Yarlagadda et al. [10] is typically used in all our 
experiments. The dataset used includes colored images with satellite scenes and the corresponding 
ground truth forgery binary images (i.e., masks). Those colored images are basically supported by the 
Landsat Science program [13], and then imposed in conjunction with those shown by NASA [14] and 
the US Geological Survey (USGS) [15]. The obtained dataset includes 344 image pairs of size 650x650 
pixels. Objects, such as occlusions and airplanes (i.e., the masks), are basically spliced and imposed at 
random locations of the original colored images, yielding a dataset of forgery images. 

That dataset includes 123 original image pairs (i.e., without any imposed forgery objects), and 221 
forgery image pair. Those later are divided into three different sized-based forgery object categories, such 
as 158 pairs with small forgery objects, 32 with medium forgery objects, and 31 with large forgery objects. 
The size of the forgery objects is approximately 32x32, 64x64, and 128x128 pixels, respectively. For a fair 
comparison, some image geometric deformations, such as 90°and flipping, have been applied to the 
original and small-forgery image pairs to have the training data set size increased. Finally, the dataset 
includes four classes: S, M, L, and O classes, denoting the Small-, Medium-, Large-forgery image pairs 
and the Original image pairs, respectively, as shown in Fig. 12. Similarly, as shown in Yarlagadda et al.  
[10], the dataset is categorized into three separate partitions for training, validation, and testing. The 
training partition contains 128 S-pairs and 90 O-pairs. The validation partition includes 32 S-pairs and 
18 O-pairs. The testing partition contains 32 M-, 31 L-, and 15 O-pairs. In this paper, we aim to 
enhance the overall detection accuracy and stress to improve the S-pairs, which is a clear challenge in 
the competing approach in Yarlagadda et al. [10]. 

    

(a) (b) (c) (d) 

Fig. 12. Sample image from the implemented datasets [10][11] for a) Pristine sample of O dataset class, b) 
Forged sample of L dataset class, c) Forged sample of M dataset class, and d) Forged sample of S dataset 

class. 

4.2. Performance Evaluation Metrics and Implementation Setup 

In our experiments, we use three commonly used performance evaluation metrics: a) the detection 
accuracy; on the basis of the higher, the better, b) the receiver operator characteristic (ROC) curve, and 
c) the area under the curve (AUC); on the basis of the higher, the better. It worth noting that the ROC 
curve is a well-known evaluation metric for binary classification problems [35]. The ROC shows the 
relation between the true positive rate (TPR) and the false positive rate (FPR) of the ROC curve. The 
TPR denotes the correctly classified positive class subset, while the FPR denotes the incorrectly classified 
negative class with different thresholds [36][37]. The ROC curve is used to graphically show the trade-
off between sensitivity and specificity for every possible cut-off for a test or a combination of tests [38]. 
Finally, the AUC is a metric that determines how well a classifier can differentiate between classes [39], 
[40], which is well suitable for our case.  
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All experiments are performed on a workstation with a CPU Intel Core i7 9th generation and 32 GB 
of RAM. Besides, the workstation is supported with GPU GTX 1650, 896 CUDA cores, a base clock of 
1485 MHz, and a boost of up to 1665 MHz. The two proposed approaches are compared to those in 
Yarlagadda et al. [10] and Bartusiak et al. [11]. 

4.3. Experimental Results 

Experiments are performed, using the dataset, explained in Sec. 4.1, three times with the original 
GAN-based detection and localization model shown in Yarlagadda et al. [10] and Bartusiak et al. [11] as 
well as the two proposed approaches; denoted as “Proposed 1“ and “Proposed 2”. The results are listed 
in Table 3, for the three different sized forgeries: Large, Medium, and Small. 

Table 3.  Detection accuracy of all compepting approches using the same dataset. 

Approach Large Forgeries Medium Forgeries Small Forgeries 

Yarlagadda et al. [10] 0.972 0.920 0.797 

Bartusiak et al. [11] 0.982 0.946 0.803 

Proposed 1 0.974 0.941 0.862 

Proposed 2 0.983 0.960 0.943 

 

Fig. 13 shows the ROC curve and the AUC values associated with the two approaches: Proposed 1 
and Proposed 2 for satellite images with small forgeries only, which is our challenge to tackle in this 
paper. While, in Fig. 14, it can be shown that enhancement ratios of the proposed approaches over the 
GAN-based detection and localization models in Yarlagadda et al. [10] and Bartusiak et al. [11] are as 
follows: 

 In the case of small size forgeries, the second proposed approach enhances the detection accuracy 
with ratios of 14.6 and 14.0 compared to those in Yarlagadda et al. [10] and Bartusiak et al. [11], 
respectively. 

 In the case of medium-size forgeries, the second proposed approach enhances the detection accuracy 
with ratios of 4.0 and 1.2 compared to those in Yarlagadda et al. [10] and Bartusiak et al. [11], 
respectively. 

 In the case of large size forgeries, no detection accuracy enhancement can be noticed by the second 
proposed approach instead of those in Yarlagadda et al. [10] and Bartusiak et al. [11]. 

 

Fig. 13. The ROC curve of the approaches Proposed 1 and Proposed 2 for small forgeries. 
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Fig. 14. Enhancement ratios of the second proposed approach over those approaches in [10] and [11]. 

5. Conclusion 

This paper presents two GAN-based image forgery approaches. The first one uses the same CNN 
model, shown in Yarlagadda et al. [10]; however, with a completely different discriminator. The 
detection accuracy of the first proposed approach improvement reaches up to 6.5% as opposed to those 
in Yarlagadda et al. [10] and Bartusiak et al. [11], which can be further enhanced. In the second proposed 
approach, the CNN structure is entirely modified with a lower number of convolutional layers to have 
higher detection accuracy. Nevertheless, two other activation functions, namely the FReLU and Tanh, 
are used in conjunction with the cyclic learning rate for faster convergence and higher detection accuracy. 
In the case of small forgeries, which is the main of this paper challenge, as well as the approaches in 
Yarlagadda et al. [10] and Bartusiak et al. [11], shows that the second proposed approach outperforms 
the first proposed and those in Yarlagadda et al. [10] and Bartusiak et al. [11] by an average detection 
accuracy increase of 8.1%, 14.0%, and 14.6%, respectively. However, a slight enhancement in the 
detection accuracy is noticed using the second proposed approach compared to the competing approaches 
in large or medium forgeries. 
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