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1. Introduction 
Acute Kidney Injury (AKI) is a sudden episode of abrupt loss of kidney failure within a few hours 

and or a few days. A well-described definition by Kidney Disease Improving Global Outcomes (KDIGO) 

on AKI is a syndrome of diverse etiology that is characterized by a rapid decline in the glomerular 

filtration rate (GFR) [1], [2]. AKI is a common disease in hospitalized patients and has a high mortality 

due to the severity of injury associated with poor outcomes [3]. Besides, AKI has been recognized as a 

global public health problem, with roughly over 50 percent of AKI mortality occurred in intensive care 

unit (ICU) settings [4]. Despite being adequately associated with higher mortality, a high incidence of 

AKI may also be attributed to sepsis, about 60 percent of patients reported in Malaysia. However, the 

burden of AKI in hospitalized patients is vastly underestimated, especially in developing countries. Even 

though data generation was detailed and reliable, the underestimation was obvious, let alone the 

diagnosis rate by disease code. 

Sunday Star (2017) reported that between two and three million Malaysians currently suffer from 

chronic kidney disease (CKD) and are expected to rise. Besides, the health ministry also adds that almost 

20,000 patients with kidney failure are on a waiting list for treatment and dialysis. According to a study 
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 Clinicians could intervene during what may be a crucial stage for preventing 

permanent kidney injury if patients with incipient  Acute Kidney Injury 

(AKI) and those at high risk of developing AKI could be identified. This 

paper proposes an improved mechanism to machine learning imputation 

algorithms by introducing the Particle Swarm Levy Flight algorithm. We 

improve the algorithms by modifying the Particle Swarm Optimization 

Algorithm (PSO), by enhancing the algorithm with levy flight (PSOLF). 

The creatinine dataset that we collected, including AKI diagnosis and 

staging, mortality at hospital discharge, and renal recovery, are tested and 

compared with other machine learning algorithms such as Genetic 

Algorithm and traditional PSO. The proposed algorithms' performances 

are validated with a statistical significance test. The results show that 

SVMPSOLF has better performance than the other method.  This research 

could be useful as an important tool of prognostic capabilities for 

determining which patients are likely to suffer from AKI, potentially 

allowing clinicians to intervene before kidney damage manifests.   
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entitled "Forecasting the Incidence and Prevalence of Patients with End-Stage Renal Disease in Malaysia 

up to the year 2040", Malaysia is ranked as the top seventh-highest dialysis treatment rate globally. 

Acute kidney failure usually happens when kidneys lose the ability to eliminate excess salts, fluids, 

and waste materials from the blood. This eliminations process is the core of the kidney's primary 

function. AKI is a kidney disease that can lead to stroke, heart attacks, and other serious diseases. This 

kidney disorder is defined by an abrupt decrease in kidney function at Kidney Disease: Improving Global 

Outcomes (KDIGO) AKI Guideline [1]. This disorder is a sudden event of kidney failure that may 

happen within a few hours or even a few days. Patients with AKI need special attention and care, 

especially with their records such as creatinine and urine values. Accordingly, AKI stages are defined by 

the maximum serum creatinine or urine output [5]. Missing those (creatinine and urine values) is a 

common obstacle to access AKI [6]. This common obstacle imposes surrogate estimates, leads to poor 

estimation of kidney function, misclassifies AKI, and adversely affects the study of associated outcomes 

[7]. 

Machine learning algorithms and optimization algorithms are successful approaches employed in the 

recent decade to treat missing baseline creatinine [8]. These approaches allow estimating of missing data 

for statistical analysis. Therefore, this research proposed improved machine learning with particle swarm 

optimization techniques enhanced with a Levi flight.  

2. Method 
Creatinine and urine values are frequently missing in AKI studies. Therefore, this paper aimed to 

identify the best machine-learning algorithm to impute for missing creatinine and urine values. 

For the methodology, the first step concerns exposing new issues and challenges, and it is instructive 

to have a variety of problems when considering supervised learning methods (Fig. 1). This phase also 

identifies different techniques for developing the rules and classification to concentrate on the 

information needed, such as creatinine and urine values. The estimation process of the dataset is applied 

to real data stored in the International Islamic University of Malaysia Hospital (HUIAM). 

 

Fig. 1. Methodology for Diagnosis Missing Creatinine 
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The second step helps to identify the data that need to be analyzed. The Bayesian approach relies on 

data collection then calculates the probability that data is significantly related to the extracted 

information. The dataset should be extracted and identified during this phase and turn the information 

and structure into a result. The second and third steps cover the role of implementing processes and 

decision-making that generate ultimate results. The next phase covers the identification of relevant 

values and information, substituting missing values with valid estimations. Besides, this phase should 

define the appropriate approach of imputing missing values for the AKI dataset. The performance of 

each approach is compared, and results are presented. 

The last phase involves resolving the information into a more understandable model, qualifiable 

values to choose the best methodology. The data extracted in earlier stages will be compiled into the 

final result. 

2.1. Data Collection 
 We collected data on demographic characteristics, past medical history, laboratory results, the severity 

of illness, and care processes from IIUM Medical Centre (IIUMMC). The data is collected according to 

the code of ethics ref. number NMRR-13-1631-18970 from Kementerian Kesihatan Malaysia. We also 

retrieved SCr levels for each patient for up to one year before hospital admission from the dataset. 

Outcomes included AKI diagnosis and staging, mortality at hospital discharge, and renal recovery at least 

three months after hospital discharge. 

2.2. Study Designs and Participants 
We performed a retrospective study of critically ill adult patients admitted to our tertiary care 

academic center between January 1 and December 31, 2012. In this study, we assessed the performance 

of four surrogate methods: 1) first SCr level at hospital admission; 2) minimal SCr level within two 

weeks after intensive care unit (ICU) admission; 3) SCr computed from the MDRD formula for an 

eGFR of 75 ml/min per 1.73 m2 and 4) SCr computed from the Chronic Kidney Disease Epidemiology 

Collaboration (CKD-EPI) formula for an eGFR of 75 ml/min per 1.73 m2. We performed a multilinear 

regression model to identify patients' characteristics that best predict preadmission SCr. We then 

performed imputation strategies using calculated SCr values from the multilinear regression models to 

assess AKI diagnosis. 

We included randomly selected critically ill patients aged 18 or more and excluded readmissions, 

patients on chronic dialysis, those having a kidney transplant, or those who stayed in the ICU less than 

24 h. We followed the STrengthening the Reporting of OBservational studies in Epidemiology 

(STROBE) guidelines for observational studies. 

2.3. Evaluation Methods 
The nature of imputation is evaluated by comparing the imputed values against original values. The 

evaluation of the optimized KNN algorithm with GOA and other optimization algorithms involves two 

performance metrics such as error accuracy, running time, and statistical significance test. 

The most powerful parameters to evaluate the performance and measures the error differences 

between values are by employing Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean 

Squared Error (RMSE), and Mean Absolute Percentage Error (MAPE). These parameters are negatively 

oriented, which implies the better of lower values. The three criteria significantly a meaningful 

representation that computes an error between two numeric vectors. MAE measures the average squared 

difference in a set of predictions, where absolute differences between prediction and actual observation 

are calculated. All the individual differences are weighted equally in the average as in (1). 

MAE = 1/n Σ ⁿj=1 | yj − ŷi |  (1) 

MSE is an estimator that measures the average squared difference of its error between the predicted 

values and actual values as shown in (2). 

MSE = 1/n Σ ⁿj=1 ( yj − ŷi )  (2) 
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RMSE is a quadratic scoring rule that measures the average magnitude of error, a square root of the 

average squared differences between actual and prediction observation. The following is an equation of 

RMSE: 

RMSE = √ 1/n Σ ⁿj=1 ( yj − ŷi )²  (3) 

Apart from assessing the algorithm efficiency through accuracy and performance, an algorithm is also 

measured by calculating the running time. Running time is a measure of the amount of time for an 

algorithm to execute. A statistical significance test is interested in assessing the performance of 

optimizing the KNN imputation algorithm with GOA against other optimization algorithms. The 

purpose of statistical significance testing is to help gather evidence of the extent to which the results 

returned by an evaluation metric represent the general behavior of the proposed algorithm. Vargha-

Delaney A Test is another non-parametric test used to evaluate the performance of the optimized KNN 

imputation algorithm with GOA [9]. The comparison of the algorithm's actual value and the predicted 

value is taken and compared whether there is a significant difference between the two results. 

2.4. Machine Learning Imputation Algorithm 
Imputation is a common way to deal with missing values where the missing value's substitutes are 

discovered through statistical or machine learning approaches. Even though the statistical approach has 

been adopted for decades, machine learning-based data imputation techniques are becoming popular in 

handling missing values, especially in large data sets [10]. 

Many machine learning-based imputation methods have been introduced to resolve the missing data 

problem [11]. These methods work by using machine learning techniques to find rules from the input 

data to estimate the possible value of the missing data. These methods have several advantages [12]. 

The machine learning approach has revolutionized the world with various algorithms to aid data 

analysis. Recent studies on imputation indicate that four popular machine learning classifiers are K-

nearest neighbors (KNN), Decision Tree, Naïve Bayes, and Support Vector Machine (SVM), as shown 

in Fig. 2. Hence, the focus of this thesis is the machine learning that has been proposed in data 

imputation. 

 

Fig. 2.  Frequency of algorithms from literature studies 

2.5. Particle Swarm Optimization (PSO) 
Particle swarm optimization is a simple method introduced by Kennedy and Eberhart in 1995 based 

on the swarm of bird communication inspiration. PSO consider one of the most efficient optimization 

algorithm used to solve optimization problems [13]–[15]. Because the simplicity and robust 

performance, PSO attract researcher and engineer [16]. PSO  has been widely applied for solving real-

world optimization problems, including feature selection [17], Control System in an Internet of Things 

(IoT) Environment [18], tracking  3D objects in RGB-D image [19], Path Planning For Mobile Robot 

[20], Face recognition [21], trained recurrent neural network [22], Network Security [23], Gene 
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selection [24], digital image watermarking [25], design digital A proportional–integral–derivative 

controller (PID), and in various science and engineering problems [16]. 

PSO depends on the movement and intelligence of the swarm [26], [27]. The swarm consists of the 

number of particles tending to move toward a better solution [28]. The particles in the search space 

present the solutions. PSO relies on two formulas belonging to every single particle: position and. The 

new velocity particle is updated using equation (4) [29]. 

Vi (t+1) = w * Vi (t) + c1 * r1 * (Pbest – Xi (t)) + c2 * r2 * (Gbest – Xi (t)) (4) 

where i is the particle index; t is the number of iteration; 𝑉𝑉𝑖𝑖(𝑡𝑡) is the current velocity of the particle; 

w is inertia Weight; 𝑉𝑉𝑖𝑖(𝑡𝑡) is the current position of the particle; 𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 represents the best previous 

position of particle i; 𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 represents the best position among all particles;  𝑟𝑟1, 𝑟𝑟2 random numbers 

with values between (0,1); 𝑐𝑐1, and 𝑐𝑐2 are positive numbers called acceleration coefficients guide the 

particle toward the particle best and swarm best positions. PSO use equation (4) to update the position 

of the particles [29]. 

Xi (t + 1) = Xi (t) + Vi (t +1)  (5) 

where Xi(t) is the previous position of the particle; Vi (t+1) is the particle's current velocity. The 

number of studies has been improved PSO. One of these studies is levy PSO [30]; the algorithm shows 

high performance compared to PSO. Algorithm 1 presents the Pseudocode of PSO (Fig. 3). 

Algorithm 1: Particle Swarm Optimization (PSO) 
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Initialization of the parameter NP, w, C
1
, and C

2
, maximum iteration 

Initialize particle velocity and position 

Evaluate the fitness value 

If (the current fitness value <  the particle best value) 

Assign the current value to Pbest 

End if 

Set particle with the best fitness value to Gbest 

Iteration = 1 

While stopping criteria  is not reached Do 

For i =1 to NP 

   Update particle velocity according to equation 4 

   Update particle position according to equation 5 

End for 

End while 

Output the best solution 

Fig. 3.  The Pseudocode of PSO 

2.6. Particle Swarm Optimization Levy Flight (PSO-LF) 
The Particle Swarm Optimization (PSO) is classified as one of the meta-heuristics, which mimics 

the behavior of swarm intelligence of schools of fish and flock of birds. There are two important control 

parameters of PSO: inertia and acceleration [31]. The inertia coefficient, in particular, govern the 

convergence property. Various control methods for the inertia coefficient are proposed to improve the 

performance of the solution searchability.  

The inertia coefficient determines the speed of convergence. As the inertia parameter increases, the 

convergence speed slows. Furthermore, if these parameters exceed certain thresholds, the system does 

not converge. The inertia coefficient controls the phase transition. As a result, the inertia coefficient is 

critical to the PSO's dynamics. A large inertia coefficient is highly associated with slow convergence, 

keeping the system searching for the optimum solution. Although this approach helps to improve the 

search performance, however, if the inertia coefficient is less than 1, the system cannot escape the local 

minimum. Nevertheless, if the inertia coefficient is larger than 1, this can lead to divergence. The 

divergence property results in the ability to escape from the local minimum. If the divergence property 
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is tamed, the ability to find the solutions can improve. Therefore, we propose a novel PSO with Levy 

flight to the inertia coefficient to control the divergence property.  

A Levy flight is a random walk in which the step size is according to a heavy-tailed distribution that 

is drawn from Levy distribution [31], [32]. Fig. 4 depicts two-dimensional Levy flight and random walk 

examples. As shown in Figure 1, Levy flight has a broad step size on occasion.   

 

Fig. 4. Example of two-dimensional motion 

The proposed algorithm Levy flight method solves premature convergence and enables PSO to 

produce more efficient results (Fig. 5). This approach ensures that PSO, which cannot perform global 

search well, can perform global search more efficiently and avoid being stuck in local minima [33], [34].  

Algorithm 2: The proposed PSO-LF algorithm 
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Initialization the parameter NP, D, C1, and C2, max_iter, Vmin, Vmax 

Initialize particle velocity and position 

Trial (keeps the limit value for each particle) = 0; 

Evaluate the fitness value 

Set X to be Pbest 

Set the particle with best fitness to be Gbest 

While iter > max_iter do 

       For i = 1: NP 

                If trial(i) < limit (if current particle is not exceeded limit value) 

                       Update the velocity Vi of particle using equation 4 

                       Update the position of particle using equation 5 

                Else (if current particle is exceeded limit value) 

                       Trial (i) = 0 

                       Update the particle positions using Levy flight method 

                       Positions value exceeding the boundaries in the search space (Xmin, Xmax) 

                End if 

                Evaluate fitness value for new particle Xi 

                If Xi is better than Pbest 

                       Trial(i) = 0; 

                       Set Xi to be Pbest; 

                Else 

                       Trial(i) = trial(i) +1 

                End if  

                If Xi is better than Gbest 

                       Set Xi to be Pbest 

                End if  

       End for 

Iter = iter + 1 

End while 

Fig. 5.  The proposed PSO-LF algorithm 
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 The Levy flight method is studied to seek updated velocity to increase the PSO algorithm's 

performance. Similar to the state-of-art PSO, particles are first distributed randomly in the search space, 

fitness values of all particles are assessed, and particles Pbest and swarm Gbest are obtained. The velocity 

and position of each particle are then updated based on the random probability. The particles' velocity 

and position are updated with probability greater than or equal to 0.5, just like in the traditional PSO 

by equations (4) and (5). If the random value is less than 0.5, the particle velocity is updated, and the 

particle's velocity becomes its position. Using the levy flight technique to update the particle's velocity, 

the particle takes a lengthy hop towards its Pbest and Gbest, increasing the diversity of the swarm and 

allowing the algorithm to do global exploration over the search space.  

Occasionally, the PSO-LF inertia coefficient, ω, reaches a high value. As a result, the particle of PSO-

LF can escape the local minimum and continue to seek the best solution in the global domain [33]. 

PSO-LF, in particular, combines the capacity to search locally and globally. However, there is a chance 

that the obtained moving distance will be excessively long. Based on Algorithm 2, NP is the number of 

particles, D is the dimension of benchmark function, C1 and C2 are the acceleration coefficients, 

max_iter refers to the maximum number of iterations, Vmin, and Vmax represent the maximum and 

minimum limit of the velocity increase to be made. 

In the proposed PSO-LF method  (Fig. 5), two changes are made compared to the traditional PSO 

method. First, the limit value is assigned for each particle, where the limit value is increased by 1 in case 

the particles are unable to enhance their self-solutions for each subsequent iteration. Second, particles 

that surpass the limit value are redistributed using the Levy flight method in the search space.  The loss 

of diversity is prevented by employing the random phenomena of levy flight while updating the velocity. 

As the efficiency of the PSO algorithm is improved by introducing the benefits of random walk into the 

PSO, particle's positions in each iteration due to increased exploration and exploitation of the search 

space.  

In the levy flight technique, ß parameters have a significant impact on distribution. The random 

distribution is altered by changing the value by using a different value for ß [30]. The distribution is 

frequently expressed as equation (6), where ß parameter is an index in the range (0,2] [35].  

L (s) ~ |s|-1-ß  (6) 

For random walk, the step length S is derived by Mantegna's algorithm as: 

S = u / |v|1/ß  (7) 

Where ß is referred to as Levy index, and where u and v are drawn from normal distribution as 

follows: 

u ~ N (0, σu
2), v ~ N (0, σv

2)  (8) 

σu = {Γ (1+ß) sin (πß/2) / Γ [1+ß/2] ß 2(ß-1)/2} 1/ß, σv = 1  (9) 

where Γ  is standard Gamma function. Then, step size is calculated by:  

Stepsize = scale x S  (10) 

Here, the step size represents the step size in the search space, and the dimension of the desired 

problem determines the factor S. Otherwise, Levy flight may exhibit very aggressive behavior, resulting 

in the generation of new solutions outside the design space [36]. 

A nontrivial approach for producing step size S samples is explained in-depth, and it can be 

summarized as below [32]. 

S = random (size (D)) ⊕ Levy (ß) ~ 0.01 (u / |v|1/ß) (Xj
t − Gbest

t)  (11) 
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The S value with D dimension derived from equation (11) is added to update the position Xi particles 

determines the position values of the new particle. Then, the fitness value for this new particle is assessed, 

if the particle achieves a better result than its Pbest, the Pbest value is updated, and the trial value of this 

particle is set to zero; otherwise, the trial value is increased by one. The algorithm is then repeated until 

the stopping criterion is met. 

3. Results and Discussion 
The evaluation of the proposed algorithm is investigated concerning the error accuracy and running 

time applied to the creatinine dataset. This performance metric compares three optimization algorithms 

(Genetic Algorithm, Particle Swarm Optimization, and Particle Swarm Optimization Levy Flight) with 

four well-established machine learning imputation algorithms (K-nearest neighbors, Decision Tree, 

Naïve Bayes, and Support Vector Machine). 

Generally, the result also highlights that the most promising finding is an optimization of machine 

learning imputation algorithm with Particle Swarm Optimization Levy Flight (PSOLV). Table 1 

describes four machine learning optimized with PSOLV consistently demonstrating impressive 

performance for all three relative error parameters, which provides a low error accuracy against the 

traditional GA and PSO algorithm. Among four optimized machine learning imputation algorithms, 

SVMPSOLF shows the lowest error accuracy for all three error accuracy parameters. 

Table 1.  Error Accuracy. 

Machine Learning Meta Algorithm MAE MSE RMSE 

K-nearest neighbors 

(KNN) 

GA 7.9e+02 4.2e+06 2.1e+03 

PSO 7.6e+02 4.2e+06 2.1e+03 

PSOLF 1.087 5.4e+01 0.0435 

Naïve bayes (NB) 
GA 8.1e+03 9.5e+07 9.8e+03 

PSO 1.146 2.023 1.422 

PSOLF 0.62+01 4.56+02 9.938 

Decision Tree (DT) 
GA 8.1e+03 9.5e+07 9.7e+03 

PSO 1.1737 2.138 1.4625 

PSOLF 0.97+01 6.49+04 1.76+01 

Support Vector Machine 

(SVM) 

GA 8.1e+03 9.5e+07 9.7e+03 

PSO 1.1602 2.0693 1.4385 

PSOLF 0.53+01 1.43+02 1.94+01 
 

Another investigation that governs the efficiency of an algorithm is by measuring the running time. 

Table 2 shows that all optimized machine learning with PSOLF executes as the fastest running time. 

Table 2 also illustrates that the fastest imputation algorithm for imputing missing baseline creatinine 

uses SVMPSOLF among four machine learning imputation algorithms. 

Table 2.  Running Time. 

Machine Learning GA PSO PSOLF 
K-nearest neighbors (KNN) 0.78 1.91 0.59 

Naïve Bayes (NB) 2.08 1.09 0.92 
Decision Tree (DT) 1.95 1.35 1.05 

Support Vector Machine (SVM) 2.15 1.58 0.43 
 

The result demonstrates that error accuracy and running time are insufficient to evaluate the 

difference in performances between all algorithms fully. Precisely, the result needs to be verified whether 

the differences in performances are statistically significant and not merely coincidental. To intensely 

analyze the performance of each optimization algorithm, a statistical significance test is compared 
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between actual values and imputed values. In the majority of statistical analyses, an alpha of 0.05 is used 

as the cutoff for significance. Vargha and Delaney suggested a threshold for interpreting the effect size 

where 0.5 means no difference at all; up to 0.56 indicates a small difference; up to 0.64 indicates medium, 

and anything over 0.71 is large. 

The result in Table 3 illustrates an optimized machine learning imputation with PSOLF constantly 

displayed the closest difference between actual and imputed values. This result displays a statistical 

significance which implies that the differences can be negligible. Among the statistical significance test, 

SVMPSOLF is the most accepted, with the closest significance to 0.5. In order to assess the consistency 

performance of each optimized machine learning imputation method, a hypothesis is formulated for the 

comparison of performance and efficiency. For a missing dataset that achieves the lowest error accuracy 

and fastest time, the hypothesis is that the differences between the actual value and imputed value must 

be zero.  

The hypothesis is H10: There is no statistical difference between actual and imputed values for optimized 
machine learning with the PSOLF algorithm. 

Table 3.  Statistical Significance Test 

Machine Learning Meta Algorithm Vargha Delaney Test Significant 
K-nearest neighbors 

(KNN) 
 GA 0.465102 Small different 

PSO 0.474693 No different 

PSOLF 0.499975 No different 

Naïve bayes (NB) GA 1 Large different 

PSO 0.499591 No different 

PSOLF 0.499872 No different 

Decision Tree (DT) GA 1 Large different 

PSO 0.499795 No different 

PSOLF 0.5021 No different 

Support Vector Machine 

(SVM) 
GA 1 Large different 

PSO 0.499183 No different 

PSOLF 0.50071 No different 

 

From Table 4, PSOLF has a perfect p-value closest to 0.5, consistent with their error accuracy and 

running time. Therefore, H10 is accepted. All optimized machine learning algorithms with PSOLF have 

almost the same p-value, with the lowest error accuracy and fastest running time compared to traditional 

GA and PSO optimization. Hence, all PSOLF based on four machine learning imputation algorithms is 

accepted. A final analysis can be deduced from all results that PSOLF performs well for optimizing all 

machine learning imputation algorithms. 

Table 4.  Statistical differences for all datasets by error accuracy and running time  

Algorithm Error Accuracy Running Time P-Value Annotation 
KNNPSOLF 1.087 0.59 0.4999 Accept 

NBPSOLF 0.62E+1 0.92 0.4998 Accept 

DTPSOLF 8.1E+3 1.05 0.5021 Accept 

SVMPSOLF 0.53E+1 0.43 0.5007 Accept 

4. Conclusion 
Missing baseline creatinine value can be a root cause of a poor estimation of kidney function and 

misclassify AKI biased estimations. In this regard, four popular machine learning imputation methods 

(K-nearest neighbors, Decision tree, Naïve Bayes, and Support Vector Machine) are employed to analyze 

the optimization of each machine learning with an optimization approach. This paper demonstrates the 

application of the PSO algorithm based on machine learning to treat missing baseline creatinine values. 

The results show that the PSOLF imputation algorithm is reliable as the performance of PSOLF 



234 International Journal of Advances in Intelligent Informatics   ISSN 2442-6571 

 Vol. 7, No. 2, July 2021, pp. 225-236 

 

 Ismail et al. (A particle swarm optimization levy flight algorithm for imputation of missing creatinine dataset) 

constantly outperformed regarding error accuracy and running time, which verified with statistical 

significance test. The results also show that SVMPSOLF is superior to other proposed algorithms as the 

lowest error accuracy and fastest running time. The proposed algorithm, SVMPSOLF, is recommended 

to be executed in other medical applications to determine if the SVMPSOLF imputation algorithm can 

treat missing values. Further comparison of SVMPSOLF with other optimization algorithms is also 

recommended to judge the performance of SVMPSOLF. 
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