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1. Introduction 

Data is an essential asset for any discipline of work to efficiently analyze in making better decisions. 
Data is accessible at every edge of life, which provides different insights. The first step in data mining, 
concerning collecting data, is that a researcher must confront common problems that any data are prone 
to. Practically, data collected that inclined to noise, incomplete, inconsistence, and redundant are the 
major source of poor data quality. Besides, more than 40% of datasets embedded in the UCI Machine 
Learning Repository were missing, extensively used to make an empirical analysis [1]. Missing data can 
significantly influence the efficacy of the result, which could lead to biased estimates of parameters, loss 
of information, decreased statistical power, increased standard errors, and weakened generalizability of 
findings [2]. Missing data is commonly described as a significant issue in most scientific research domains 
that may originate from mishandling samples, low signal-to-noise ratio, measurement error, non-
response, or deleted aberrant value [3]. There are many possible reasons the dataset tolerates missing 
data, especially when the respondents do not respond due to stress, fatigue, or inadequacy of knowledge. 
Some of the questions are sensitive and lack option answers [4].  

Treatment of missing data has become increasingly significant. Improper handling of missing data 
could reduce the validity of the conclusion drawn [5]. Therefore, it is crucial to develop a sophisticated 
algorithm to replace the missing values. Several theories have proposed many solutions to deal with 
missing data, which can be classified into three categories: (1) case deletion, (2) parameter estimation, 
and (3) imputation [6][7]. Case deletion is the easiest and commonly known default option in most 
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 K-nearest neighbors (KNN) has been extensively used as imputation 
algorithm to substitute missing data with plausible values. One of the 
successes of KNN imputation is the ability to measure the missing data 
simulated from its nearest neighbors robustly. However, despite the 
favorable points, KNN still imposes undesirable circumstances. KNN 
suffers from high time complexity, choosing the right k, and different 
functions. Thus, this paper proposes a novel method for imputation of 
missing data, named KNNGOA, which optimized the KNN imputation 
technique based on the grasshopper optimization algorithm. Our GOA is 
designed to find the best value of k and optimize the imputed value from 
KNN that maximizes the imputation accuracy. Experimental evaluation for 
different types of datasets collected from UCI, with various rates of missing 
values ranging from 10%, 30%, and 50%. Our proposed algorithm has 
achieved promising results from the experiment conducted, which 
outperformed other methods, especially in terms of accuracy.  
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statistical analyses. At the same time, parameter estimation implies maximum likelihood techniques to 
estimate a parameter's value that is most likely to have resulted in the observed data. This method does 
not impute any data, rather uses each case available to compute maximum likelihood estimates [8]. 
Although the parameter estimation approach is generally superior to case deletion, these two methods 
still suffer from high degree complexity, high sensitivity to outliers, and massive lost information. The 
third category, imputation, replaces the missing values with plausible estimates nearly to the actual values 
to make the data complete [9]. The objective is to employ known relationships that can be identified in 
the valid values of the data set to assist in estimating the missing values. Imputation preserves all cases 
by replacing the missing value with an estimated value based on other available information. Imputation 
theory is constantly developing, which has caught the attention of statistical and machine learning 
techniques. A well-known attempt to tackle missing value using statistical techniques is mean 
imputation. Mean imputation (sometimes called by substitution) replaces missing values by calculating 
a mean for the variable based on all cases that have data for that variable [10][11]. This technique can 
lead to bias and underestimates of standard errors. Despite this, machine learning techniques proposed 
many algorithms to investigate the efficacy of algorithms when dealing with missing data. Machine 
learning has gained increasing attention to universally solve missing data imputation issues. 

The typical imputation strategy regarding K-nearest neighbors (KNN) has been extensively applied 
to solve the ubiquitous issues in incomplete data. The fundamental idea of KNN can be expressed as a 
straightforward, robustness, highly efficient, and powerful algorithm that is useful in matching a point 
with its closest neighbors for all data types, such as continuous, discrete, ordinal, and categorical. KNN 
imputation has always been known as the lazy and instance-based estimation method [12][13]. The main 
benefits of KNN imputation are the ability to predict both qualitative and quantitative attributes, easily 
treat instances with multiple missing values, and consider the correlation structure of the data [6]. 
Moreover, the success of the KNN imputation algorithm relies on the excellent option of value k. The 
k in KNN represents the number of nearest neighbors. However, one of the well-known drawbacks of 
this approach is its inability to deal with high-dimensional and sparse data, which leads to the objective 
of this paper [14][15]. To overcome the limitation, we proposed to develop an optimization of KNN 
imputation based on one of the optimization algorithms, the Grasshopper Optimization Algorithm 
(GOA). A grasshopper optimization algorithm is recent population-based metaheuristics which have 
shown improved results and efficiencies in tackling issues with missing data [16]. The performances of 
the proposed algorithm will be compared with other optimization algorithms (Particle Swarm 
Optimization, Genetic Algorithm, Dragonfly Optimization) in terms of imputation accuracy.  

The accuracy obtained from the state-of-art KNN imputation algorithm is not necessarily sufficient 
until it's proven to handle more versatile KNN with better accuracy. Therefore, this paper proposes a 
KNN based approach, with an additional optimization algorithm developed to improve the overall 
performance. 

2. Method 

2.1. K-nearest neighbors (KNN) Algorithm 

K-nearest neighbors (KNN) are universally recognized as one of the most powerful learning 
algorithms and used for a wide range of real-world applications. The efficacy of the KNN algorithm and 
its performances mainly depends on the distances or similarity measures and appropriate value for the 
parameter k [17]–[19].  

KNN is the most straightforward algorithm in imputing missing values [20]. This algorithm has 
been used to solve many predictive problems. In order to impute a value of a variable, KNN defines a set 
of nearest neighbors for a sample and substitutes the missing data by calculating the average of non-
missing values to its neighbors [21]–[23]. There are many merits and demerits of KNN for imputation. 
However, despite the good points, KNN still imposes undesirable circumstances. KNN suffers from high 
time complexity, choosing the right k, and different functions.  
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Many articles, [1][24]–[26], have presented a novel method based on KNN to impute missing data. 
Most of the experimental work found that KNN efficiently and consecutively shows an accurate 
imputation on datasets better than any state-of-art algorithms. Besides, an extensive combination of the 
KNN approach with other ensemble approaches produced the highest robustness and accuracy [27]. 
Batista and Monard [8] analyzed one preferred standpoint of KNN that is independent of missing data 
treatment, which makes the algorithm the most suitable imputation for any circumstances. 

2.2. Grasshopper Optimization Algorithm (GOA) 

Grasshopper Optimization Algorithm (GOA) is a recent swarm intelligence developed by Mirjalili et 
al. [28] and Luo et al. [29] that mimics the behavior of grasshopper swarms in nature. The grasshopper 
is an insect that can be considered a pest due to its nature damaging crop production and agriculture. 
These creatures are commonly found to be seen individually. However, they often join the swarm as one 
of the largest swarms of all creatures [30][31]. The swarm of grasshoppers is a nightmare for the farmers 
as the size can be of continental-scale [32][33]. The grasshopper's life cycle passes through three main 
stages: egg, nymph, and adult (Fig. 1). Another unique quality of the grasshopper swarm is the swarming 
behavior found in both nymph and adulthood [34]. The nymph grasshopper does not have wings; thus, 
they slowly eat all vegetation on their path [35]. However, after a period of time, the grasshopper will 
become an adult with wings to form a swarm in the air and move fast to a large-scale region [30]. 

 

Fig. 1. The life cycle of a grasshopper 

The inspiration of GOA comes from the attacking strategy of a grasshopper on corps in the form of 
swarms. Although they are herbivores, they feed on grasses, leaves, and stems of plants, but when a 
swarm of grasshoppers infests farms or garden areas, they can cause extensive plant damage and loss. 
They manage to survive according to the gravitational and wind force so that these factors become helpful 
for them to attack crops of their target [36] [37]. A grasshopper can easily be at a 'gregarious' state when 
an increase in the chemical serotonin in certain parts of the nervous system (which boosts mood in 
humans) initiates the swarming behavior. Besides, as claimed by Melina [38], a solitary grasshopper could 
be made gregarious within 2 hours simply by tickling their hind legs to simulate the jostling they 
experience in the wild. Grasshopper optimization algorithm could be visualized as seen in Fig. 2. 

According to the US Department of Agriculture (USDA), a swarm of grasshoppers is punctual 
despite their structured formation. They strictly swarm to migrate in search of food between 10 am and 
6 pm. There are clear skies, and the temperature has risen to at least 75 degrees Fahrenheit (24 degrees 
Celsius). Moreover, a grasshopper is reported as a very structured swarm as a way it joins the formation 
and flies in an organized way as a member of the swarm when approached by a dense group of flying 
grasshoppers, although a single grasshopper merely flying follows its random path [39]. 

For this study, GOA favors KNN imputation methods by surviving to avoid local optima and finding 
the global space in the given space. Nevertheless, GOA beneficially balances exploration and exploitation 
to drive grasshoppers towards the global optimum. A fundamental assumption of GOA that may improve 
the processes of KNN imputation can be found in the way GOA finds its optimum solution. KNN 
estimates a value from its nearest neighbors while GOA has a high avoidance to find a solution between 
a set of neighborhoods and provides a solution among all possible solutions. Besides, one of the 
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limitations of KNN imputation is that the algorithm searches through all datasets for estimating most 
similar instances, which takes a great deal of time. GOA favors KNN imputation in the sense of time 
complexity, where one of the main characteristics of grasshopper in the adulthood phase is long-range 
and abrupt movement.  

 

Fig. 2. Grasshopper Optimization Algorithm 

Three forces influence the position of each swarm grasshopper. The three forces are social interaction 
between an individual grasshopper and another grasshopper, Si; the gravity force on grasshopper, Gi; and 
Ai's wind advection. The mathematical model of the three forces and simulated grasshopper behaviors 
are presented as follows: 

Xi = Si + Gi + Ai   () 

Note that to provide random behavior the equation can be written in Xi = r1Si + r2Gi + r3Ai where r1, 
r2, and r3 are random number in [0,1]. 

𝑆𝑖 = ∑ 𝑆(𝑑𝑖𝑗)�̂�𝑖𝑗
𝑁
𝑗=1   () 

Where dij is the distance between the i-th and the j-th grasshopper, calculated as dij=|xj - xi|, s is a 
function to define the strength of social forces in equation 3, and (dij) ̂ =(xj - xi) / dij  is a unit vector from 
the i-th grasshopper to the j-th grasshopper.  

The s function, which defines the strength between two social forces, attraction and repulsion 
between grasshoppers are calculated as follows: 

𝑠(𝑟) = 𝑓𝑒
−𝑟

𝑙 − 𝑒−𝑟  () 

Where f, l are the intensity of the attraction and the attractive length scale. Social behavior is affected 
by changing the parameters f, l. 

The second affected force on the position of grasshopper is the gravity force which is calculated as 
follows: 

𝐺𝑖 = −𝑔𝑒�̂�              () 

Where g is the gravitational constant and (eg) ̂ is a unity vector towards the center of the Earth. The 
A component in equation 1 is calculated as follows: 

𝐴𝑖 = 𝑢𝑒�̂�          () 

Where u is constant drift and (ew) ̂ is a wind direction unity vector. The nymph grasshopper 
movements is highly correlated with wind direction because they have no wings.  The main process 
is to impute the dataset with KNN by calculating its nearest neighbors' distance between each missing 
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data. Then, the imputed value will be optimized with GOA according to the information of the missing 
dataset. 

2.3. Experiments Design 

In this section, the nine datasets used for this research are described. Data were acquired from public 
access websites such as data.world, UC Irvine Machine Learning Repository, Kaggle.com and Public 
Library of Science (PLOS One). The description of selected datasets is shown in the table below, 
including the domain, sources, number of instances, number of attributes, data types, and percentage of 
missing values. 

Table 1.  Experimental Data 

Dataset Domain Sources 
Num of 

instances 

Num of 

attributes 

% of 

missing 
Chronic Kidney Disease 

(KD1) 
Medical UCI ML Repository 35 6 7.23 

US. Chronic Disease 
Indicators (KD2) 

Medical Data world – data.gov 400 26 10.26 

HCC Survival Medical UCI ML Repository 165 49 10.22 

AKI Medical PLOS|One 84 24 17.857 

EHP Medical Data.world 2663 70 38.73 

ECG Medical Kaggle 132 13 7.69 

Blood test analysis Medical Kaggle 576 5 20 

Automobile Transportation UCI ML Repository 204 26 20.59 

Air Quality Engineering UCI ML Repository 9357 14 27.9 

 

The data used in this paper are from the medical, engineering, and transformation domain. These 
three domains are claimed to be classified among the most beneficiaries in missing data subject. The 
nature of imputation was evaluated by comparing the imputed values against original values. The 
experiments will be computed regarding the accuracy, time complexity, and sensitivity of each 
imputation method. The parameters to evaluate the performance and measure the error differences 
between values are by employing Mean Absolute Error (MAE), Mean Squared Error (MSE), and Root 
Mean Squared Error (RMSE). These parameters are negatively oriented, which implies lower values are 
better. The three criteria significantly a meaningful representation that computes an error between two 
numeric vectors. An alternative for the corresponding significance tests is supported with Vargha – 
Delaney A test. The A test helps to assess the difference between two populations concerning a variable. 
Upon testing, each swarm optimization algorithm shall be compared to determine which results are 
greater or smaller from the KNN-imputed values [40]. 

3. Results and Discussion 

The following table shows the analysis done to examine the performance of four machine learning 
algorithms performance: Decision Tree, K-Nearest Neighbors (KNN), Support Vector Machine (SVM), 
and Bayesian Network. Imputation with machine learning algorithm performs better than any statistical 
tools considering that machine learning is more flexible with better predictive accuracy. Nonetheless, a 
standard range of machine learning imputation algorithms will still introduce vague analysis results [41]. 

3.1. Statistical Correlation 

In performing the visualization of all datasets between actual and predicted, a scatterplot is chosen to 
help illustrate a relationship between two variables. In a scatterplot, the points can discern a clear trend 
in the data. All the scatterplot figures in this subsection will visualize the differences between the actual 
and the imputed values for all seven medical datasets explained in the previous section.  

A good scatterplot is best defined as the closer the data points forming a straight line from the origin 
out to high y-values. Besides, the best fit for this description is a strong, linear, and positive association 
between the two variables. Fig. 3 to Fig. 11 illustrates of seven scatterplot correlations for all nine 
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datasets, which are KD1 (Fig. 3), KD2 (Fig. 4), HCC survival (Fig. 5), AKI (Fig. 6), EHP phthalates 
(Fig. 7), ECG (Fig. 8), Blood test (Fig. 9), Automobile (Fig. 10), and Air Quality (Fig. 11). 

The results in Fig. 3 demonstrate two things. First, there is a positive linear association between two 
variables for all subfigures. Second, for Fig. 3(b) and (d), the association looks weaker compared to Fig. 
3(a) and (c). This result concludes that only the GOA algorithm presents a higher correlation for actual 
and imputed values after being optimized by a conventional KNN imputation algorithm. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 3.  Scatterplot for KD1 Datasets; (a) scatterplot for KNN, (b) scatterplot for KNNGA, (c) scatterplot for 

KNNPSO, (d) scatterplot for KNNGOA 

The result in Fig. 4 shows that the pattern is significantly identical between the actual value and 
imputed values for all metaheuristics algorithms. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 4. Scatterplot for KD2 Datasets; (a) scatterplot for KNN, (b) scatterplot for PSO, (c) scatterplot for GOA, 

(d) scatterplot for DA 
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Fig. 5 highlights the trend of positive linear association but weak strength correlation between two 
variables. Among all subfigures in Fig. 5, only GOA shows a positive, linear, and strong relationship 
between actual and imputed values. It signifies that both variables move in the same direction and are 
correlated for GOA. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 5.  Scatterplot for HCC Datasets; (a) scatterplot for KNN, (b) scatterplot for KNNGA, (c) scatterplot for 

KNNPSO, (d) scatterplot for KNNGOA. 

The result in Fig. 6 demonstrates a moderate, positive, and linear relationship between actual and 
imputed values for the GOA algorithm. Unlike GOA, the scatterplot for all other metaheuristics 
algorithms displays a diverse form of correlations which can be statistically considered as no relationship 
measured. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 6.  Scatterplot for AKI Datasets; (a) scatterplot for KNN, (b) scatterplot for PSO, (c) scatterplot for GOA, 

(d) scatterplot for DA. 
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Fig. 7 shows one similar pattern for all eight metaheuristics algorithms where specifically, the data 
has a general look of a line going uphill. The finding best describes that it shows a positive linear 
association between two variables, actual and imputed values. Besides, to assess the relationship between 
the variables, Fig. 7(b), (c), and (d), shows a stronger relationship, compared to Fig. 7(a), which means 
higher correlation. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 7. Scatterplot for EHP Datasets; (a) scatterplot for KNN, (b) scatterplot for KNNGA, (c) scatterplot for 

KNNPSO, (d) scatterplot for KNNGOA 

Fig. 8 illustrates various relationships between the two variables for all metaheuristics algorithms. All 
points in the scatterplot Fig. 8 are far remotely to a straight line. However, Fig. 8(b), and (c) display a 
weak positive correlation which indicates that they tend to go up in response to one another for both 
variables, but the relationship is not very strong. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 8.  Scatterplot for ECG Datasets; (a) scatterplot for KNN, (b) scatterplot for KNNGA, (c) scatterplot for 

KNNPSO, (d) scatterplot for KNNGOA. 
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Among all the subfigures in Fig. 9, GOA has demonstrated the perfect positive, linear, and strong 
relationship for both variables. However, Fig. 9(b) and (c) illustrate a positive and moderate correlations. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 9.  Scatterplot for Blood test Datasets; (a) scatterplot for KNN, (b) scatterplot for KNNGA, (c) scatterplot 

for KNNPSO, (d) scatterplot for KNNGOA. 

Fig. 10 clearly illustrates that only Fig. 10(b) demonstrated a different trend, which is weakly 
correlated. As shown in Fig. 10(a), (c), and (d), the graph describes a strong correlated positive linear 
relationship between the two variables. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 10. Scatterplot for Automobile Datasets; (a) scatterplot for KNN, (b) scatterplot for KNNGA, (c) 

scatterplot for KNNPSO, (d) scatterplot for KNNGOA. 

Fig. 11 shows a close trend for all eight algorithms. Fig. 11 (c) and (d) points out an identical strongly 
correlated, positive, and linear relationship. The evidence is by the much cleaner line formed by the data 
points. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 11. Scatterplot for Air Quality Datasets; (a) scatterplot for KNN, (b) scatterplot for KNNGA, (c) 

scatterplot for KNNPSO, (d) scatterplot for KNNGOA 

To conclude, relying the interpretation on scatterplot only is individually biased. Therefore, extensive 
experiments are carried out to support the discussion made in the following section. 

3.2. Error Accuracy 

In general, the results highlighted for error accuracy is that the most promising finding was an 
optimization of KNN with Grasshopper Optimization Algorithm (GOA). KNNGOA showed the lowest 
error accuracy for all nine datasets regarding the size of datasets and missing value rates, except for the 
ECG heartbeat dataset.  

Table 4 describes all four relative error parameters. KNNGOA consistently demonstrated impressive 
performance, providing a low error accuracy from the KNN imputation algorithm. According to Table 
4, ECG heartbeat and Air Quality datasets display an unusual result for MAPE. For all algorithms, KNN 
and eight metaheuristics-based KNN algorithms, the results imply that the function will return –Inf, 
Inf, or NaN if actual is instability at or near zero. 

Table 2.  Error accuracy for all datasets 

Dataset ML Algorithm MAE MSE RMSE MAPE 

KD1 

KNN 1.6561 4.4834 2.1174 0.1402 

KNN GA 12.054 164.29 12.817 1.1355 

KNNPSO 3.1511 14.682 3.8318 0.2714 

KNNGOA 0.8947 1.5695 1.2523 0.0751 

KD2 

KNN 11.914 831.28 28.832 4.1541 

KNNGA 7.75E+2 2.99E+6 1.73E+3 4.9291 

KNNPSO 10.974 14.338 9.2211 8.4302 

KNNGOA 1.3426 2.8493 1.6880 0.2437 

HCC Survival 

KNN 1.7878 32.491 5.7000 0.0355 

KNNGA 5.1198 26.213 5.1198 0.0841 

KNNPSO 1.3284 2.6266 1.6207 0.0216 

KNNGOA 0.6595 0.6621 0.8136 0.0109 

Table 2. (Continued) 
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Table 2. (Continued) 

Dataset ML Algorithm MAE MSE RMSE MAPE 

AKI 

KNN 2.7619 0.6838 8.2693 2.8554 

KNNGA 5.1111 26.124 5.1111 6.4715 

KNNPSO 1.2897 2.3314 1.5269 1.5847 

KNNGOA 0.7773 1.0139 1.0069 0.9703 

EHP 

KNN 5.2444 661.00 25.709 0.0386 

KNNGA 5.1151 26.163 5.1151 0.0637 

KNNPSO 2.3977 9.9731 3.7243 0.0524 

KNNGOA 2.3719 8.2633 2.8746 0.0303 

ECG 

KNN 7.3614 5.1679 9.7798 NaN 

KNNGA 9.9721 127.52 11.293 Inf 

KNNPSO 0.9266 3.8344 1.9581 Inf 

KNNGOA 1.5718 5.9489 2.4390 Inf 

Blood Test 

Analysis 

KNN 0.1093 0.4427 0.6653 0.0150 

KNNGA 18.133 349.33 18.690 8.2347 

KNNPSO 1.3389 2.8845 1.6983 0.5356 

KNNGOA 0.0259 0.0105 0.0322 0.0102 

Automobile 

KNN 2.1595 114.56 10.703 0.0163 

KNNGA 1.00E+2 1.13E+4 1.06E+2 8.02E-1 

KNNPSO 1.2505 2.5725 1.6039 0.0109 

KNNGOA 0.6461 0.6751 0.8221 0.0057 

Air Quality 

KNN 6.7390 784.88 28.015 NaN 

KNNGA 26.169 689.78 26.263 Inf 

KNNPSO 1.4398 3.5005 1.8709 Inf 

KNNGOA 1.3865 2.7723 1.7932 Inf 

 

3.3. Computation Time 

Another investigation that governs the efficiency of an algorithm is by measuring the computation 
time. The tradeoff between error accuracy and time complexity is considered by comparing the results. 
Table 3 shows that 4 out of 9 datasets have the fastest time using GOA. Time computation tradeoff 
refers to slow execution time in exchange for the lowest error accuracy. Although only four datasets 
show GOA achieved as the fastest computation time, GOA still appeared and achieved as the high 
accuracy. 

Table 3.  Computation time for all dataset 

Dataset KNNGA KNNPSO KNNGOA 

KD1 10.38 11.16 40.19 

KD2 22.34 18.82 17.9 

HCC Survival 12.3 12.05 7.54 

AKI 1.05 1.68 1.19 min 

EHP 53.34 2.23 min 30.39 

ECG Heartbeat 12.43 11.84 11.59 

Blood test analysis 24.73 25.90 23.45 

Automobile 15.89 17.45 13.96 

Air Quality 3.14 hrs 3.58 hrs 43.59 min 
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4. Conclusion 

In this paper, we present a novel method that improves imputation performance based on K-nearest 
neighbors by using the Grasshopper Optimization Algorithm (GOA). The hybrid model KNNGOA is 
applied to optimize the imputation algorithm and missing value problems. It is essential because any 
analysis can draw an inaccurate inference due to the missing value. Experiments are conducted to evaluate 
the imputation accuracy of the proposed KNNGOA on the five real-world datasets from all public 
websites. According to three different evaluation criteria, error accuracy, statistical test, and time 
computing, the proposed KNNGOA constantly outperforms and performs better than other algorithms. 
Currently, the proposed solution is time-consuming because the training procedure for GOA is repeated 
many times to find the optimal solution and attribute weights for big datasets. Therefore, some 
modifications are needed as a tradeoff, thus reducing the computational time. In future work, we attempt 
to tailor the model for big datasets by concurrently applying a solution of speeding up the training time 
of KNN by using some methods to reduce the size of datasets. 
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