
International Journal of Advances in Intelligent Informatics ISSN 2442-6571 

Vol. 8, No. 1, March 2022, pp. 58-68  58 

       https://doi.org/10.26555/ijain.v8i1.748    http://ijain.org         ijain@uad.ac.id  

Machine learning for the prediction of phenols cytotoxicity 

Latifa Douali 

a,1,*

 

a Regional Centre of Training and Education (CRMEF) Marrakech-Safi, Marrakech -Morocco, Department of computer sciences 
1 Email l_douali@yahoo.fr* 
* corresponding author 

 

1. Introduction 
Phenols are chemical compounds that are very abundant in nature and can be synthesized. They are 

largely used in agriculture, food processing, and many industries. Mainly, they are present in many 

synthetic products; dye, leather, polymers, pesticides, resin manufacturing, and wood preservatives. They 

are present in many kinds of cereal, fruits, and vegetables. They are well-known for their beneficial 

antioxidant effect [1]–[4]. They were suggested suppressing oxidative stress by scavenging peroxy radicals 

[5], [6]. However, it was also reported that they present fatal environmental and toxicological risks [7]. 

They are discharged in nature as a waste product of industrial units and cause substantial environmental 

damage to air, water, and soil [8], [9]. Their toxicity is very high. The Environmental and Protection 

Agency (EPA) and the European Union (EU) consider the phenols as pollutants at high risk and 

mandate the removal of phenols from wastewater during the treatment process. It was reported in many 

instances that some phenols cause serious health problems [10], [11]. They are harmful to humans and 

animals, even in small amounts [7], [12]–[14]. Besides the skin irritation, liver, and kidney damage that 

phenols can cause to humans, estrogenic and teratogenic problems may also be evolved [15], [16]. 

The described perplexing behavior of phenols raises important questions about their toxicity 

mechanism [5], [9], [17]  and there is an excessive need to develop theoretical models describing these 
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 Quantitative structure-activity relationships (QSAR) are relevant  

techniques that assist biologists and chemists in accelerating the drug 

design process and help understanding many biological and chemical 

mechanisms. Using classical statistical methods may affect the accuracy and 

the reliability of the developed QSAR models. This work aims to use a 

machine learning approach to establish a QSAR model for phenols 

cytotoxicity prediction. This issue concern many chemists and biologists. 

In this investigation, the dataset is diverse, and the cytotoxicity data are 

sparse. Multi-component description of the compounds has then been 

considered. A set of molecular descriptors fed the deep neural network 

(DNN) and served to train the DNN. The established DNN model was able 

to predict the cytotoxicity of the phenols at high precision. The correlation 

coefficient at the fitting stage was higher than other statistical methods 

reported in the literature or developed in the present work, specifically 

multiple linear regression (MLR) and shallow artificial neural networks 

(ANN), and was equal to 0.943. The predictive capability of the model, as 

estimated by the coefficient of determination on an external predictive 

dataset, was significantly high and was about 0.739. This finding could help 

implement many molecular descriptors relevant to describing the 

compounds, representing the effects governing the phenols cytotoxicity 

toward Tetrahymena pyriformis, avoiding overfitting and outlier exclusion.  
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processes or models predicting the toxicity accurately. Quantitative Structure-Activity Relationships 

(QSAR) are relevant techniques that develop theoretical models and help to understand such 

mechanisms [18], [19]. QSAR models are of big interest to biologists and chemists in many research 

domains for modeling the relationships between key parameters and endpoints [20]. Endpoints may be 

a biological activity, toxicity, or physicochemical property. The objective of the development of QSAR 

models is mainly to shed light on the complex chemical and biological mechanisms and hence to 

accelerate the drug design process [18], [21], [22]. In toxicology, the QSAR approach is important in 

investigating the toxicity of new compounds. Cytotoxicity assays may benefit mainly from rigorously 

established models. While several statistical methods help establish QSAR models, machine learning 

(ML) proved to be highly pertinent and successful in developing accurate models. They have proven 

powerful, especially for non-linear optimization problems frequently encountered in biological and 

chemical processes. Artificial neural networks (ANN), support vector machines (SVM), and random 

forest (RF) was used as a QSAR model-building in numerous studies and for many chemical compounds. 

Deep learning is an ML algorithm based on ANN. It is essentially based on emulating the biological 

neurons' behavior. Known for their ability to map complex functions, deep neural networks (DNN) 

represent an ideal tool for establishing non-linear QSAR and building highly predictive models. Using 

ML and ANN in QSAR has known many advances since its first application by Hiller et al. [23]. The 

authors used perceptron to classify 1,3-dioxanes as active or inactive concerning their physiological 

activity. This field has known a considerable growth, and it was developed in a well-established field 

with new approaches and methodologies. ANN is the most popular non-linear tool used in QSAR 

development. Genetic, Bayesian, K-nearest neighbors (KNN), and the back-propagation neural networks 

were used. They proved to be more efficient than other statistical methods and ML models. However, 

although the advantages ANN present, they suffer from serious problems: Actually, molecular 

descriptors constitute the inputs of the networks, and in many instances, there is a need to use many of 

them since they contribute to a better description of the molecules and their effects on the biological 

activity or property. Often, correlations between them added to the dataset size limit their 

implementation in the model and reduce the model interpretability and reliability [24]. In previous work, 

we were brought to determine a ratio ρ to avoid this problem [25]. Very often, the application of ANN 

leads to the overfitting problem that significantly affects the model's prediction ability.  Much attention 

was given to these problems, and the typical solutions proposed to deal with these issues were to reduce 

the number of inputs, which affects the chemical information provided to the model, to use few neurons 

in the hidden layers, or limit the number of samples used to train the network by removing the samples 

that the modeling technique cannot appropriately handle.  

The immense progress provided by the DNN helps to circumvent these issues [26]–[29]. In fact, by 

effectively using a multi-level learning strategy, the DNN can process data more accurately. We go 

hierarchically through the different layers from low-level pattern extraction to a higher level. These 

different levels correspond to different levels of data abstraction. Processing these extracted patterns leads 

to high accuracy in detecting meaningful features and making accurate predictions. They are rapidly 

optimized, and they avoid the overfitting issue from which they suffer the application of shallow neural 

networks [19], [30], [31]. Using numerous descriptors, large datasets, and multiple hidden layers 

becomes possible. They now gain significant interest in almost all problems that need information 

extraction without human intervention and QSAR model development. 

It is noteworthy that DNNs are intensively used in classification and transcription problems. Few 

works use DNN in building regression models [32], [33]. They achieve high performance in predicting 

biological and pharmaceutical properties [32]–[35]. Many QSAR models studying different datasets of 

phenols were established [17], [36]–[41]. Most of them have used multiple linear regression (MLR) and 

led to many linear models. Other models were also developed, namely by MLR and ANN. 

In this study, we use DNN to develop a regression-based QSAR model to predict the cytotoxicity of 

phenols to Tetrahymena pyriformis. For this purpose, we generated several molecular descriptors to serve 

as network inputs. 
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2. Method 

2.1. Dataset 
Phenols are chemical compounds with a structure containing a hydroxy group connected to an 

aromatic ring. In the present work, we investigate a dataset containing 250 phenolic compounds with 

different types of substituents on the aromatic ring. Substituents in different positions (ortho, meta, and 

para) were considered. These compounds were studied earlier by Cronin et al. [42], and are available via 

the QDB Databank repository [42], [43]. The data contain mono-, bi-, and tri-substituted phenols. In 

previous work, Selassi et al. [39], [44], [45] studied different datasets of phenols. Datasets with electron-

releasing and electron-withdrawing substituents were considered separately, and in the present work, 

both types of substituents were implemented in the same dataset. The structures of phenol and some 

studied phenolic compounds are represented in Fig. 1. 

 

Fig. 1. The general structure of some phenols studies. 

IGC50 expresses the cytotoxicity of the 250 phenols to the Tetrahymena pyriformis, the 50% growth 

inhibitory concentration (mmol/L) of a compound to Tetrahymena pyriformis, regardless of their mode 

of action (MOA). For calculation conformity, the log values (1/IGC50) were considered as endpoints. It 

is noteworthy that the dataset contains very diversified endpoints. The log values (1/IGC50) range from 

-1.5 to 2.71, with a mean value of 0.739 and a standard deviation of 0.828. The variability of the 

cytotoxicity in our data is shown in Fig. 2. 

 

Fig. 2. The distribution of the cytotoxicity endpoints. 

To build the model, the dataset was divided into two subsets. We used randomly selected 80% of 

phenols to perform the fitting stage, and the remaining 20 % served as an external predictive dataset. 

The datasets were carefully checked to ensure that compounds with electron-withdrawing and electron-

releasing substituents were implemented in both subsets. 
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2.2. Generation of Molecular Descriptors 
From our experience, a successful QSAR study relies largely on the set of molecular descriptors used 

and their ability to depict the biological effect meticulously [25], [46]. There are two levels of molecular 

description; the first level consists of describing only the substituents, and the second consists of 

describing the whole molecule. For this investigation, the endpoint values were sparse, and the 

substituents were significantly diversified, and there was a need to generate unswerving molecular 

descriptors that represent the features of the whole dataset and characterize its diversity. We choose then 

to use molecular descriptors that describe the entire molecule. 

DNN accepts as inputs a large amount of information as precise as possible to extract features and 

achieve good results. In fact, a chemical compound is constituted of a connection of atoms of different 

nature. Each atom has its inherent characteristics, and it is connected to other atoms and so affects the 

behavior of the whole compound. A small change in this structure induces, in many instances, 

meaningful changes in the biological behavior of the compound. The molecular connectivity approach 

based on chemical graph theory [47] provides such precision and information. Many structural 

descriptors that give details on the molecular connectivity were implemented. They were represented by 

Kier [47], [48] indices a structural fingerprint [49]. They were generated by the QSARIN software [50]. 

Actually, fingerprints are numerical values that encode fragments or subgroups in a molecule. 

Molecular reactivity depends not only on the graphical representation of a molecule but also on the 

atoms' intrinsic quantum and physicochemical properties. In addition, molecules interact with biological 

systems involving three-dimensional dynamic processes and mechanisms. To take into account these 

characteristics, we implemented molecular descriptors such as the molar refractivity (MR) and the Mc 

Gowan volume (McVol) [51]. Those descriptors were calculated using the CLogP program. The 

hydrophobic character of the compounds, which reflects their penetration mechanism through biological 

systems, is a determining factor. We introduced this characteristic via logP parameter, the octanol-water 

partition coefficient of the whole compound, calculated using the CLogP program. 

The electronic aspect of the substituents was considered, and many electronic descriptors, such as 

HOMO (Highest Occupied Molecular Orbital) and LUMO (Lower Unoccupied Molecular Orbital), Ip 

(the ionization potential), Pka (the acid dissociation constant) were implemented. These parameters 

were calculated after a geometry optimization of the molecules using the PM6 semiempirical quantum 

method implemented in MOPAC 7 program [52], [53]. This implementation helped to investigate a 

dataset of phenolic compounds containing both electron-releasing and electron-withdrawing 

substituents. A total number of 118 molecular descriptors were then generated. 

2.3. Generation of Molecular Descriptors 
To establish the QSAR model, we developed our own program using the Keras library package [54] 

with the Tensorflow framework [28], [55]. DNNs are based on ANN concepts with many deep nodes 

[26]. Many hyperparameters had to be adjusted with attention to the calculation time optimization and 

the network accuracy. The inputs of the networks were carefully chosen. Although many molecular 

descriptors were generated, only the relevant ones were considered and served as inputs. A total number 

of 24 molecular descriptors were then implemented. The robustness of DNN lies in its non-linear units 

that process data features at one level into feature data at a higher level. The hyperbolic tangent function 

was used as the activation function of the hidden nodes. The stochastic gradient descent optimizer was 

adopted, and the learning rate was 0.01 [35] to update the network parameters. One node in the output 

layer represented the target activity, log(1/IGC50). The constructed networks were trained for 10000 

epochs.  

Two regression models were also developed using MLR and ANN methods to compare with DNN. 

The ANN was constructed with one hidden layer. The learning rate was set to 0.1. 
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3. Results and Discussion 
The dataset was randomly split into a training dataset (200 samples) and a predictive dataset (50 

samples). The distributions of the cytotoxicity for both datasets (training and predictive) were quasi 

similar. The training stage afforded an opportunity to fine-tune the internal networks hyperparameters 

To assess the accuracy of the established models, two metrics were adopted; the statistical root-mean-

square deviation (RMSD) and the correlation coefficient R². The analytical formulae of these parameters 

are given in (1) and (2) below. 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �∑ (𝑇𝑇𝑡̂𝑡−𝑇𝑇𝑡𝑡)𝑡𝑡=𝑁𝑁
𝑡𝑡=1

𝑁𝑁
  (1) 

𝑅𝑅² = ∑ (𝑇𝑇𝑡𝑡−𝑇𝑇)𝑡𝑡
∑ (𝑇𝑇𝑡𝑡−𝑇𝑇𝑡̄𝑡)𝑡𝑡

  (2) 

where  𝑇𝑇 is the calculated cytotoxicity, 𝑇𝑇  is the mean of the observed cytotoxicity, and N is the number 

of studied compounds. A correlation coefficient and an RMSD as close as possible to 1 and 0, 

respectively, are anticipated. A developed MLR model implementing all molecular descriptors resulted 

in an R² of 0.67 and an RMSD of 0.51. The linear model generated one outlier. The established ANN 

resulted in a relatively high R² of 0.74 and an RMSD of 0.60 with ten nodes in the hidden layer with 

the sigmoid activation function. Adding more nodes to the hidden layer pushes the network into 

overfitting. 

For the DNN model, the best achievement, revealed by the values of the statistical metrics R² and 

RMSD, was obtained by a DNN structure with two layers containing 20 and 14 nodes, respectively; 

While the correlation coefficient is high and it amounts 0.943, the RMSD is very low, and it amounts 

0.194. It is significantly better than the results of the MLR and ANN models. Furthermore, the problem 

of overfitting was avoided. The previous works reported in the literature had to remove any outliers. 

However, no outliers were detected in the present study. Much information can be deduced from these 

compounds, and removing them from the model will lead to poor performance. 

The metrics mentioned above can infer that the DNN outperformed MLR and ANN. It 

accomplished a perfect fit of the data. It extracted the molecular features that govern the phenols' 

cytotoxicity. It could extract information provided by the molecular descriptors that fed the DNN, 

Namely the physicochemical parameters augmented by the topological parameters. The DNN 

performances can be perceived by further examination of Fig. 3. It represents the cytotoxicity values 

calculated by the DNN model versus the experimental values. 

 

Fig. 3. Calculated versus experimental cytotoxicity of phenols. 
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After the fulfilling results of the fitting stage, we had to validate the model and ensure that the 

network built could process new data and predict the cytotoxicity of new compounds. A testing stage 

was then performed using a Leave-One-Out procedure. The promising results led to a leave-one-out 

cross-validated R² (q²) of 0.941 and an RMSD of 0.203. These results led to adopting the constructed 

model to predict new activities. 

In this investigation, our main focus was the model's predictive accuracy. Fifty phenolic compounds 

were used as an external prediction set. We ensured that this dataset comprised new phenolic compounds 

structurally close to the compounds in the fitting stage (Fig. 2), and the network had never been seen. 

To assess the DNN prediction capability, we used the coefficient of determination and the root-mean-

square error of prediction (RMSEP) metrics. This stage resulted in a high R² that equals 0.739, and an 

RMSEP equals 0.434. The predicted values versus the valid cytotoxicity values are reported in Fig. 4. It 

shows that the established DNN model can predict the cytotoxicity of new phenols with high accuracy. 

 

Fig. 4. Calculated versus experimental cytotoxicity of phenols. 

Moreover, a residual analysis has been carried out to assess our model. It led to a closer examination 

of the established regression-model quality and its capability to predict the cytotoxicity of new phenols 

to Tetrahymena pyriformis. This analysis offers the opportunity to investigate each error made on the 

target outputs. The results are depicted in Fig. 5. 

 

Fig. 5. The DNN generates prediction errors. 

A gaussian-like distribution of the prediction residuals was obtained. As shown in the histogram of 

Fig. 5, most of the errors made on the predicted values of cytotoxicity were between -0.5 and +0.5. This 

proves the accuracy and the validity of the model and that the choice of the model is appropriate. 
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Outliers, the samples from the dataset that a developed model cannot fit correctly, represent a big 

challenge for QSAR modeling, yet the success of the QSAR model relies on its ability to predict the 

endpoints of new compounds. Removal of these prototypes is assumed to improve the accuracy of the 

model. 

Interestingly, for almost all the established QSAR models for phenols cytotoxicity reported in the 

literature [39], [42] using other statistical methods (MLR, partial least squares (PLS)), there was a 

necessity to exclude large numbers of outliers to obtain good fitting models. Especially in [42], up to 80 

outliers were excluded. Though, the fitting ability of the developed models was modest compared to the 

present DNN-developed model. The highest correlation coefficient reported in his work was 0.83. 

Models established with 200 prototypes led to poor statistical fit, and the correlation coefficients did not 

exceed 0.69. The big question was to determine the reason behind the existence of these outliers. As 

Maggiora suggested [56], this might be due to the existence of activity cliffs, which are samples with 

small differences in chemical structure that exhibit dramatic changes in the target activity. A tiny change 

in the structure causes a considerable effect on the target activity. Nevertheless, highly precise methods, 

such as DNN, may detect the subtle nuances and succeed to extract the features to determine precisely 

the endpoints. Furthermore, molecular recognition is a key ingredient to determine the biological 

activity. The implication of structural description along with physicochemical description of the 

compounds disclose tiny valuable details on the activity variability.  

Similarly, for the prediction stage, outliers had to be excluded. Up to 4 outliers were prone to be 

excluded from all models established in [42]. A direct explanation is that the model could not predict 

at least these four compounds, which calls the model's reliability into question. For the model developed 

by the DNN, no outlier was excluded. The DNN could fit all the prototypes. The selected molecular 

descriptors provided the DNN with precise information. The DNN successfully extracted the features 

required to predict the cytotoxicity accurately. 

A DNN model was successfully developed to predict the phenol's cytotoxicity to Tetrahymena 

pyriformis in the present study. As proved by the statistical metrics and the performed residual analysis, 

the DNN model succeeded in mapping the molecular features of the phenols to their cytotoxicity. Unlike 

other modeling approaches reported in the literature and in this study, where several input outliers had 

to be excluded, the present DNN model fit well all the samples and predicted all the proposed new 

compounds accurately. Both the fitting quality and the predictability accuracy were significantly high. 

Two main factors played a part in this success: 1) the use of DNN ensuring an automatic feature 

extraction capability and non-linear transformation functions involved in learning chemical patterns, and 

2) the multi-component representation of the inputs. The present description of the compounds 

consisted of parameters that precisely described the molecular graphs of the compounds and simulated 

the molecules' spatial images. Parameters that described the physicochemical characteristics of the 

molecules were caused mainly by the different substituents on the aromatic ring. This provided the 

networks with informative chemical features. Indeed, DNN excel in image recognition. Considering that 

a molecule is far from a static image/graph, we proposed adding physicochemical parameters. They 

convey valuable information on the intrinsic features of a molecule. Specifically, electronic and 

hydrophobic characteristics play a key role in a compound-biological system interaction. For instance, 

electron-releasing and electron-withdrawing groups affect the reactivity of a phenolic compound 

differently and hence affect their biological responses, and the hydrophobic character manages the 

penetration of a chemical compound into the biological system. The parameters provided to the 

networks should be sufficiently precise and diverse to ensure reliable predictions.  

4. Conclusion 
The research objective in this QSAR investigation is to build an accurate predictive model. Thus, an 

external dataset of 50 phenols, as sparse as the training dataset and with structural features close to the 

fitting dataset (containing electron-donor, electron-attracting, and mono, bi-, tree- substituents) served 

as a predictive dataset. In contrast to the models reported in the literature, the present DNN predicted 

the cytotoxicity of new compounds at about 74% of precision. All the proposed compounds were well 
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predicted, as it was asserted by the statistical metrics and the residual analysis. Cytotoxicity assays may 

benefit largely from deep learning and rigorously established models. This would be of considerable help 

in evolving animal-free assays. 
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