
International Journal of Advances in Intelligent Informatics ISSN 2442-6571
Vol. 8, No. 2, July 2022, pp. 165-184 165

 https://doi.org/10.26555/ijain.v8i2.811 http://ijain.org ijain@uad.ac.id

Optimizing complexity weight parameter of use case
points estimation using particle swarm optimization
Ardiansyah a,b,1,*, Ridi Ferdiana a,2, Adhistya Erna Permanasari a,3
a Department of Electrical Engineering and Information Technology, Universitas Gadjah Mada, Yogyakarta, Indonesia
b Department of Informatics, Faculty of Industrial Technology, Universitas Ahmad Dahlan, Yogyakarta, Indonesia
1 ardiansyah2018@mail.ugm.ac.id, ardiansyah@tif.uad.ac.id; 2 ridi@ugm.ac.id; 3 adhistya@ugm.ac.id

* corresponding author

1. Introduction

Software effort estimation (SEE) is one of the early activities of the software life cycle. SDEE
estimates how much effort and cost are required to develop a new software system. Estimating effort is
essential because the software organizations must release the software within a given timeframe and cost.
Unfortunately, most software projects are delivered over time and budget. Time and cost overruns have
been common problems in software projects for many years [1]. As reported by Bloch et al. [2], software
projects with a budget of more than $15 million run 66% over budget and 33% over time. Hence,
estimating effort and cost accuracy is essential in SEE to successfully evade the time and budget overruns
for overall software delivery [3], [4].

A RTIC L E IN F O ABSTRACT

Article history

Received March 14, 2022

Revised June 15, 2022

Accepted June 29, 2022

Available online July 31, 2022

 Among algorithmic-based frameworks for software development effort
estimation, Use Case Points I s one of the most used. Use Case Points is a
well-known estimation framework designed mainly for object-oriented
projects. Use Case Points uses the use case complexity weight as its essential
parameter. The parameter is calculated with the number of actors and
transactions of the use case. Nevertheless, use case complexity weight is
discontinuous, which can sometimes result in inaccurate measurements and
abrupt classification of the use case. The objective of this work is to
investigate the potential of integrating particle swarm optimization (PSO)
with the Use Case Points framework. The optimizer algorithm is utilized
to optimize the modified use case complexity weight parameter. We
designed and conducted an experiment based on real-life data set from
three software houses. The proposed model’s accuracy and performance
evaluation metric is compared with other published results, which are
standardized accuracy, effect size, mean balanced residual error, mean
inverted balanced residual error, and mean absolute error. Moreover, the
existing models as the benchmark are polynomial regression, multiple
linear regression, weighted case-based reasoning with (PSO), fuzzy use case
points, and standard Use Case Points. Experimental results show that the
proposed model generates the best value of standardized accuracy of 99.27%
and an effect size of 1.15 over the benchmark models. The results of our
study are promising for researchers and practitioners because the proposed
model is actually estimating, not guessing, and generating meaningful
estimation with statistically and practically significant.

This is an open access article under the CC–BY-SA license.

Keywords

Use case points

Effort estimation

Particle swarm optimization

Use case complexity

Metaheuristic optimization

https://doi.org/10.26555/ijain.v8i2.811
http://ijain.org/index.php/IJAIN/index
mailto:ijain@uad.ac.id?subject=[IJAIN]
mailto:ardiansyah2018@mail.ugm.ac.id
mailto:ardiansyah@tif.uad.ac.id
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://crossmark.crossref.org/dialog/?doi=10.26555/ijain.v8i2.811&domain=pdf

166 International Journal of Advances in Intelligent Informatics ISSN 2442-6571
 Vol. 8, No. 2, July 2022, pp. 165-184

 Ardiansyah et al. (Optimizing complexity weight parameter of use case points estimation using particle swarm optimization)

Software size and productivity factors are two variables in estimating the software development
project. Use case points (UCP) is a software sizing and estimation framework introduced by Karner [5].
UCP utilizes use case diagrams to calculate the size of the software and multiply it by the productivity
factor. In the second step of UCP, as notated in Eq. (2), the use case (UC) complexity weight level is
classified into simple, average, and complex. Each weight complexity level is assigned based on the
number of UC transactions. The original UCP framework appointed complexity weight levels as 5 for
Simple, 10 for average, and 15 for the complex. Researchers have criticized the origin complexity weight
level as the complexity hierarchy level is discontinuous, which can sometimes result in inaccurate
measurements [6] and abrupt classification of use case [7], [8]. For example, the use case of 8 transactions
has double the weight of the use case with seven transactions. Moreover, they are not considering huge
use case transactions. For example, the use case of 25 transactions has the same weight as the use case
of 9 transactions.

Several works have been conducted to solve the abrupt classification problem of the use case
complexity weight level. For instance, the existing fuzzy approaches are utilized and proposed [6], [7],
[9], [10]. Fuzzy logic is always used to discretize the existing complexity weight level. It tries to smoothen
the abrupt classification by providing continuous and gradual classification. Most studies prove that fuzzy
UCP improved estimation performance compared with the original UCP.

Continuous use case classification weight level allows us to further improve the accuracy of UCP by
conducting optimization. A well-known approach to the continuous problem is optimization. Particle
Swarm Optimization (PSO) is an appropriate optimization algorithm for this problem due to several
considerations. First, PSO is straightforward, easy to implement, and computationally efficient [11],
[12]. Second, the performance of PSO outpaces several well-known evolutionary algorithms such as
simulated annealing and genetic algorithm. Furthermore, PSO converges quickly and is widely proven
for solving various troublesome optimization problems [13].

Search-based software effort estimation research has been used in many studies [14]. Particle swarm
optimization (PSO) [13], Genetic programming [15], [16], simulated annealing [17], Bayesian
optimization [18], hybrid PSO-SA [19], Genetic Algorithm (GA) [20], and differential evolutionary
(DE) [21] optimization are employed for cased-based reasoning effort estimation. COCOMO effort
estimation is optimized by using Firefly [22], [23], PSO [24]–[27], GA [28], stochastic gradient descent
[29], DE [30], and COA [31], [32]. However, little work has been studied in the UCP framework by
utilizing the optimization approach to the best of our knowledge. Hence, there is a gap and challenge to
improve the use case classification weight level derived from the modified use case weight level UCP
proposed by previous studies. Therefore, this study aims to optimize the use case complexity weight
parameter to improve the accuracy of software sizing and effort development using PSO. In contrast, the
contribution of this study is an improved Use Case Point estimation method by integrating the PSO
algorithm.

The structure of the remaining part of this paper is organized as follows: Section 2 related work;
Section 3 the theoretical framework of use case points and particle swarm optimization; Section 4 details
the proposed model in this study; Section 5 details of experiment setup; Section 6 presents and discusses
the experimental results and Section 7 discusses the conclusion and recommends future works of this
study.

ISSN 2442-6571 International Journal of Advances in Intelligent Informatics 167
 Vol. 8, No. 2, July 2022, pp. 165-184

 Ardiansyah et al. (Optimizing complexity weight parameter of use case points estimation using particle swarm optimization)

2. Related works

There are three primary trends in the study of use case points effort estimation: modification of the
UCP sizing technique, simplifying and examining the UCP, and hybridizing the UCP with machine
learning and data mining techniques. Several studies proposed the reconstruction of the UCP sizing
technique. Braz and Vergilio [33] modified the use case complexity weight using fuzzy theory, while [34]
successfully optimized this modified weight. Robiolo and Orosco [35] added two new variables, the size-
transactions and entity objects, computed from the use case description. The study of Anda et al. [36]
has modified the complexity assessment of actors and handled the non-functional requirements. This
study made an essential contribution to the adaptability of the UCP for incremental development.

Anda et al. [37], [38] examined and simplified the UCP to understand the impacts of technical and
environmental complexity factors. The authors suggested that adjusting the environmental factors based
on the type of organization will improve estimation precision. Whereas Ochodek et al. [39], [40]
excluded several parts of UCP to simplify the calculation process of the UCP. The investigator claimed
that these parts are insignificant concerning the effort estimation. Recently, Nhung et al. [41] optimized
the correction factors (ECF and TCF) and multiple regression models to improve the estimation
accuracy of the modified UCP.

The utilization of machine learning and data mining techniques to improve UCP performance has
been studied in recent years. Nassif [42] built cooperation between effort, UCP, and productivity by
introducing a log-linear regression model. This study was followed by a hybrid model that simultaneously
predicts productivity factor and effort estimation from historical data [43]. Meanwhile, Nassif et al. [44]
estimated an effort based on UCP and team productivity using the Treebost model.

The ultimate objective of software effort estimation studies is to minimize an error between actual
and estimated effort. The inflexibility of the use case complexity weight level impacts the accuracy of the
estimation [10]. Moreover, the original complexity and assigned weight levels might not reflect the
actual situations [45]. Fortunately, this was confirmed earlier by Karner [5] that the proposed complexity
weight is based on the people’s approximation at Objective Systems. Karner [5] also strongly suggests
that more data is needed to adjust the model, weights, and parameters. Clearly, the original complexity
weight is not the final ideal weighting parameter. In other words, the granularity should be supported
to achieve the best weighting scheme and yield the best accuracy in estimation. There are three primary
approaches focused on proposing the improvement of use case complexity weight: adding extra
complexity weight level, discretizing existing complexity weight level, and calibrating the complexity
weight level as described.

Silhavy et al. [46] proposed two critical parameters in estimating software effort: actor and use case
specification. Meanwhile, technical and environmental complexity factors have been evaluated by Nhung
et al. [47]. Qi and Boehm [48] measured the project size by automatically calculating the transactions
and class diagram using the USIM tool.

Several studies proposed extra complexity weight due to factors affecting the complexity weight level.
The type of application and use-case-specific style are two examples that affected the complexity weight
level. Hence, the complexity weight should be re-evaluated based on circumstances. Galorath and Evans
[49] proposed weight values 10 (simple), 15 (average), and 20 (complex). Periyasamy and Ghode [50]
proposed an extra level –“most complex” – to the use case complexity weighting. Manzoor and Wahid
[51] proposed the extra level – “critical.” Minkiewicz [52] proposed the extra level – “very high” for more

168 International Journal of Advances in Intelligent Informatics ISSN 2442-6571
 Vol. 8, No. 2, July 2022, pp. 165-184

 Ardiansyah et al. (Optimizing complexity weight parameter of use case points estimation using particle swarm optimization)

than 14 transactions, and assigned weights are 5, 10, 15, and 20. Whereas Nassif [53] added three more
complexity weight levels – 20, 25, and 30.

Fuzzy logic is commonly used for discretizing the existing complexity weight level. It tried to
smoothen over the abrupt classification by providing a continuous and gradual classification. Early works
in discretizing the current complexity weight level was proposed [7], [6], [10]. Wang et al. [7] introduced
the complexity weight level from three to five. They proposed the EUCP by integrating the fuzzy set
theory and Bayesian Belief Network (BBN). The result showed that EUCP was more effective than UCP
for the two projects. Xie et al. [6] proposed discretizing complexity weight level that extends the use-
case complexity from three to four-level. The result showed that the proposed complexity weight
increased by 5.5 (person-hours) with an error rate of 15.45% using four real project data sets. Nassif et
al. [10] offered ten complexity weight levels according to the number of transactions per use case. The
study assumes that the largest use case contains ten transactions, and the complexity factor of the largest
use case is fifteen. The result showed that the proposed method improved by 22% in some projects.

The study of UCP calibration is conducted by Nassif et al. [8] and followed by Qi et al. [45]. Nassif
et al. [8] introduced a six-level use case complexity weight instead of a three-level as initially proposed
by the original UCP. The neural network is used to calibrate the proposed six weight complexity levels.
After successfully calibrating the weight, fuzzy logic is applied to smoothen the abrupt change in
complexity levels and weights. Unfortunately, this study did not report any experimental results in detail
and the model validation. Qi et al. [45] explored the Bayesian analysis to calibrate the use case complexity
weights. The study collected the use case weight and empirical project data as an input. The a priori use
case weights are the source input for calculating a priori mean and variances. At the same time, the
empirical project data is the source input for calibrating the use case weight by using multiple linear
regression. In the final process, the calibration, mean, and variance results calculate the Bayesian
weighted average. Bayesian estimates of the weights are the output of the calculation. The method was
evaluated using 105 projects and compared with a priori, original UCP, and regression approaches. The
result showed that the Bayesian provides better effort estimation accuracy.

Continuous and gradual classification values provided a broader chance to extend the complexity
weight. Moreover, these approaches showed promoting results by expanding the complexity weight in
the original UCP method. Despite Nhung et al. [41] and Hoc et al. [54] conducted the optimization in
UCP. However, they do not explore the potential of continuous complexity weight level in terms of
optimization function. Metaheuristic-based optimization can smoothen the abrupt change in complexity
level because of its ability for continuous function optimization. Thus, this study modified the UCP
estimation method by searching for the optimum use case complexity weight parameter to improve
estimation performance.

3. Method

3.1. Theoretical Background

3.1.1. Use Case Points

The original UCP framework consists of seven steps.

First, calculating unadjusted actor weighting (UAW) by classifying the actors into three levels of
complexity and assigning a weight for each actor based on its complexity, as notated in Eq. (1).

ISSN 2442-6571 International Journal of Advances in Intelligent Informatics 169
 Vol. 8, No. 2, July 2022, pp. 165-184

 Ardiansyah et al. (Optimizing complexity weight parameter of use case points estimation using particle swarm optimization)

𝑈𝐴𝑊 = ∑ 𝑊𝑖
3
𝑖=1 ∗ 𝐴𝑖 ()

where 𝑊𝑖 is the weight factor classified as simple for 1, the average for 2, and complex actor for 3. 𝐴𝑖 is
a number of actors in the use case diagrams based on the same classification as 𝑊𝑖.

Second, calculating unadjusted use case weighting (UUCW) by classifying the use case into three levels
of complexity and assigning a weight for each actor based on its level of complexity as formulated in Eq.
(2).

UUCW = ∑ W𝑖
3
𝑖=1 ∗ UC𝑖 ()

where 𝑊𝑖 is a weight factor classified as simple (5), average (10), and complex (15) use case, respectively.
𝑈𝐶𝑖 is a number of transactions counted in use case specification diagrams based on the same
classification as 𝑊𝑖. Alongside the original weight level, Table 1 presents the complexity weight level
derived [9], [10].

Table 1. The original and modified use case complexity weight level

Number of Use Case Transactions Original weight level Modified weight level

1-2 5 5.00
3 5 6.45
4 10 7.50
5 10 8.55
6 10 10.00
7 10 11.40
8 15 12.50
9 15 13.60

>10 15 15.00

Third, calculating unadjusted use case points (UUCP) as notated in Eq. (3). UAW in Eq. (1) is added
with UUCW in Eq. (2) to obtain UUCP.

𝑈𝑈𝐶𝑃 = 𝑈𝐴𝑊 + 𝑈𝑈𝐶𝑊 ()

Fourth, calculate technical complexity factors (TCF). TCF is formulated in Eq. (4) by grading (𝐺𝑖) 13
weight factors (𝑊𝑖) using a score of 0 to 5.

𝑇𝐶𝐹 = 0.6 + (0.01 ∗ ∑ 𝑊𝑖
13
𝑖=1 ∗ 𝐺𝑖) ()

Fifth, calculating environmental complexity factors (ECF) as notated in Eq. (5) by grading (𝐺𝑖) 8 factors
(𝑊𝑖) using a score of 0 to 5.

ECF = 1.4 + (−0.03 ∗ ∑ W𝑖
8
𝑖=1 ∗ G𝑖) ()

Sixth, calculate the formulae in Eq. (6). UCP is obtained by multiplying UUCP in Eq. (3) by TCF in
Eq. (4), and ECF in Eq. (5).

UCP = UUCP ∗ TCF ∗ ECF ()

Seventh, the estimated effort is obtained from UCP in Eq. (6) is multiplied by PF as notated in Eq. (7).
𝐸𝑓𝑓𝑜𝑟𝑡 = 𝑈𝐶𝑃 ∗ 𝑃𝐹 ()

170 International Journal of Advances in Intelligent Informatics ISSN 2442-6571
 Vol. 8, No. 2, July 2022, pp. 165-184

 Ardiansyah et al. (Optimizing complexity weight parameter of use case points estimation using particle swarm optimization)

PF is the productivity factor. We can set the number of PF equal to 20 person-hours/UCP, 8.2
person-hours/UCP [55], [56], or using the learning productivity ratio as proposed by [57].

3.1.2. Particle Swarm Optimization

PSO was inspired by the behaviour of bird flocking and fish schooling to find a place with enough
food [28]. PSO starts by generating the population according to swarm size parameters randomly. The
population itself consists of N particles in which each particle i act as the representation of potential
solutions to the given problem. A particle is represented by the vector 𝑥𝑖 in the decision space. Each
particle has its position (x) and velocity (v). Position means the flying direction, and velocity means the
step of the particle.

Optimization is achieved from the cooperation between the particles. The nearest particle to the
objective is called the success particle. The successful particles will influence the behaviour of other
particles. They will adjust their positions (𝑥𝑖) toward the global optimum. Two factors affected the
position of the particle. First, the best position visited by itself is called personal best (𝑃𝑏𝑒𝑠𝑡𝑖); second,
the best position visited by the whole particles is called global best (𝐺𝑏𝑒𝑠𝑡𝑖).

After the population successfully created, for the subsequent iterations, each particle will apply the
following operations:

Update the velocity to define the amount of change applied to the particle described as formulated
in Eq. (8).

𝑣𝑖 = 𝜔𝑣𝑖 + 𝐶1𝑅1 ∗ (𝑃𝑏𝑒𝑠𝑡𝑖 − 𝑥𝑖) + 𝐶2𝑅2 ∗ (𝐺𝑏𝑒𝑠𝑡𝑖 − 𝑥𝑖) ()

where 𝑣𝑖 is the current or initialized velocity by assigning a random number between [0, 1] when the
population is generated. 𝐶1 and 𝐶2 represent the constant variables known as cognitive learning and
social learning factors. 𝑅1 and 𝑅2 are two random variables in the range of [0, 1]. 𝑃𝑏𝑒𝑠𝑡𝑖 is the best
position visited by particle i. 𝐺𝑏𝑒𝑠𝑡𝑖 is the best position visited by the overall particles. 𝑥𝑖 is the current
position of the particle. At the same time, ω is an inertia weight defined as a constant value of 0.9.

Update the position of the particle as notated in Eq. (9), where 𝑥𝑖+1 is a new position of the particle, 𝑥𝑖
is the last position, and 𝑣𝑖 is the current velocity of the particle.

𝑥𝑖+1 = 𝑥𝑖 + 𝑣𝑖 ()

Each particle will update its personal best solution if 𝑥𝑖 < 𝑃𝑏𝑒𝑠𝑡𝑖 then 𝑃𝑏𝑒𝑠𝑡𝑖 = 𝑥𝑖 and global best
will be updated if 𝑥𝑖 < 𝐺𝑏𝑒𝑠𝑡𝑖, then 𝐺𝑏𝑒𝑠𝑡𝑖 = 𝑥𝑖 .

3.2. The Proposed Method

This study proposes UCW+PSO for optimizing the use case complexity weight parameters.
UCW+PSO is slightly different from UCP. UCP is a pure estimation method without any modification,
whereas UCW+PSO is a UCP estimation method integrating PSO. PSO is applied to obtain an
optimized weight parameter based on the modified weight classification level submitted by Nassif et al.
[10] and Hariyanto and Wahono [9], as shown in Table 1. UCW+PSO consists of two-phase which are
described as follows.

The first phase is generating the initial population. The population was developed using a random
number from Simple, Average, and Complex complexity weights. The number of particles, fitness value,

ISSN 2442-6571 International Journal of Advances in Intelligent Informatics 171
 Vol. 8, No. 2, July 2022, pp. 165-184

 Ardiansyah et al. (Optimizing complexity weight parameter of use case points estimation using particle swarm optimization)

𝐶1, 𝐶2, 𝑅1, 𝑅2, maximum iterations, and inertia weight is applied together with random complexity
weight. All the parameters and variables are then calculated using UCP methods. This calculation is
called effort estimation and will be used in the first iteration of the second phase.

The second phase is calculating initial velocity and positions. The first iteration, initial velocity, and
positions for all particles are calculated using Eq. (8) and Eq. (9). Positions 𝑥𝑖 itself are acted as same as
the complexity weight in the use case. The UCP method was then calculated again to get new estimation
values. From this first iteration, the AE value is compared with the fitness value. Two conditions make
the iteration stop. The first condition is if the AE value is less than or equal to the fitness value, or the
second condition is reached maximum iteration. When the first condition is fulfilled, we get the best
optimized UCP and jump to the next iteration. If the AE value is greater than the fitness value, then
the best positions and global best value are updated, followed by generating new velocity and positions.
The second phase is repeated until all data points in the data set are used as test data. When the second
condition is fulfilled, the iteration will stop, and the minimum AE will be assigned as the best optimized
UCP. The overall AE will be evaluated using the evaluation metric in Eq. (10) to Eq. (14).

The general description of PSO is pointed out by Algorithm 1 (Fig. 1) whereas our proposed model
is shown in Fig 2. It shows the improved Use Case Point estimation model integrating PSO as the
weight complexity optimizer. The light blue shape of Weight Optimization denoted the original
contribution of this study.

Algorithm 1. Particle Swarm Optimization (PSO).
(1) Input: Dataset X, Parameters settings in Section 5.4
(2) Output: Optimized solutions
(3) for each project in X do
(4) generate initial population
(5) while (Gbest > stopping value) or (Tmax > 0) do
(6) for i = 1, 2, 3, ..., Tmax do
(7) update velocity using Equation (8)
(8) update positions using Equation (9)
(9) calculate effort estimation
(10) updated particles
(11) end for
(12) Gbest ← min(Pbests)
(13) if Gbest > stopping value then
(14) temps[] ← Gbest
(15) else
(16) Gbest
(17) end if
(18) increment++
(19) end while
(20) if temps are not empty then
(21) Gbest ← min(temps)
(22) end if
(23) end for

Fig. 1. Algorithm of Particle Swarm Optimization (PSO)

172 International Journal of Advances in Intelligent Informatics ISSN 2442-6571
 Vol. 8, No. 2, July 2022, pp. 165-184

 Ardiansyah et al. (Optimizing complexity weight parameter of use case points estimation using particle swarm optimization)

Fig. 2. The proposed model

3.3. Experimental Design

Software effort estimation aims to minimize the estimation error between actual and estimated effort,
as notated in Eq. (10). Therefore, the experimental procedure was carried out based on the proposed
method described in Section 4. The experimental design consists of four stages: project data set
description, data preprocessing, model validation, and evaluation.

3.3.1. Project dataset description

This study employed real-life historical project data set from three software houses. The project data
set contains seventy-one projects gathered Silhavy et al. [58]. The data set consists of several problem
domains such as insurance, government, banking, and others. The data set contains the following thirty-
eight (38) variables: Simple Actors, Average Actors, Complex Actors, Simple UC, Complex UC, T1-
T13, Env1-Env8, Sector, Language, Methodology, Application Type, UAW, UUCW, TCF, ECF,
Real_P20, Real_Effort_Person_Hours, and Data Donator. We employed seven (7) variables for this
study and eliminated the rest. The final utilized variables are Simple UC, Average UC, Complex UC,
UAW, TCF, ECF, and Actual Effort. We choose these variables because they are the primary variables

Actor

Use Case

Unadjusted Actor
Weighting (UAW)

Unadjusted Use
Case Weighting

(UUCW)
+

Unadjusted Use Case
Points (UUCP)

Technical
Complexity Factors

(TCF)

Environmental
Complexity Factors

(ECF)

Size
(Use Case Points)

x
Productivity Factor
(20 Person Hours)

Estimated Effort
(person-hours)

Complexity Weights

Complexity Factors
Weight

Optimization

ISSN 2442-6571 International Journal of Advances in Intelligent Informatics 173
 Vol. 8, No. 2, July 2022, pp. 165-184

 Ardiansyah et al. (Optimizing complexity weight parameter of use case points estimation using particle swarm optimization)

of the UCP estimation method, as formulated in Eq. (1)-(7). Most of the projects were written using
Java and C# language. The summary statistics for the project data set are demonstrated in Table 2.

Table 2. Descriptive statistics of the project data set (N = 71)

Variable Mean StDev Skewness Kurtosis Max Min

SimpleUC 2.7 2.9 3.29 17.658 20 0.00
AverageUC 15.84 5.37 0.296 0.140 30 3.00
ComplexUC 14.29 4.45 0.191 -0.290 27 5.00

UAW 10.49 5.01 0.803 -1.264 19 6.00
TCF 0.92 0.114 -0.269 -1.019 1.12 0.71
ECF 0.86 0.117 -0.556 0.861 1.09 0.51

Actual Effort 6558.72 664.24 0.574 -0.922 7970 5775

From Table 2, we can observe that AverageUC, ComplexUC, and TCF variables have a normal
distribution with skewness very close to zero. In comparison, a simple use case variable has not had a
normal distribution with skewness very far away from zero. Interestingly, the complex use case variable
tends to widen with a kurtosis value of -0.290, and a simple use case variable formed a leptokurtosis
curve with a kurtosis value of 17.658. If a kurtosis value is less than three, the variable is less outlier-
prone. Only simple use case variable has a kurtosis value greater than three, which suggests AverageUC,
ComplexUC, UAW, TCF, ECF, and Actual Effort variables are outlier-prone. We can also find that
most of the project use case is average. It pointed out that the mean and maximum value of the
AverageUC variable is more extensive than SimpleUC and ComplexUC.

3.3.2. Model Validation

Model validation is the process where the trained model is evaluated with a testing data set to foresee
how good the performance of the estimation method [59]. The testing data set is a separate portion of
the same data set from which the training set is derived. This study uses leave-one-out cross-validation
(LOOCV) to validate the proposed model [60]. LOOCV takes each project as a test set, while the rest
is used as the training set. Each test data entered the prediction model to obtain the predicted effort.
The accuracy would be calculated each time the model successfully predicted the effort. The difference
between LOOCV and other n-fold cross-validation techniques is that LOOCV uses deterministic
procedures that can be easily applied in other studies with various datasets. Moreover, n-fold methods
use random selection to build their train and test sets, which introduces the problem of conclusion
instability [61]. LOOCV was chosen because it produces lower estimation bias and higher variance values
[43], removing the conclusion instability, especially for a relatively small data set [62]. Furthermore,
LOOCV ensures that any prediction model is constructed from the same set of training data. The
performance of the proposed model is then compared with the existing model, which is polynomial
regression [58], multiple linear regression (MLR) [63], WGRA+PSO with setting K = 2 and Mean [13],
FUCP [9], [10], and original UCP model proposed by Karner [5].

3.3.3. Model Evaluation

The evaluation of estimation models should be evaluated using reliable accuracy measurement
techniques. The measurement results must be unbiased and not produce an asymmetric error
distribution [43]. The first evaluation measurement is an absolute error (AE), as formulated in Eq. (10).

174 International Journal of Advances in Intelligent Informatics ISSN 2442-6571
 Vol. 8, No. 2, July 2022, pp. 165-184

 Ardiansyah et al. (Optimizing complexity weight parameter of use case points estimation using particle swarm optimization)

AE = |y𝑖 − ŷ𝑖| ()

where AE is the estimation or prediction error, 𝑦𝑖 is the 𝑖𝑡ℎ the actual value of the variable being
estimated, and 𝑦̂𝑖 is the 𝑖𝑡ℎ estimated value. AE is the fundamental metric because by using this metric,
we can measure other metrics such as MAE, MBRE, MIBRE, standardized accuracy (SA), and effect
size (Δ). The second evaluation measurement is mean absolute error (MAE), as notated in Eq. (11).

MAE =
1

𝑛
∑ AE𝑖

𝑛
𝑖=1 ()

where n is the number of projects in the data set and 𝐴𝐸𝑖 is the 𝑖𝑡ℎ absolute error value. The third
evaluation measurement is the mean balanced residual error (MBRE) formulated in Eq. (12).

MBRE =
1

𝑛
∑

AE𝑖

min(y𝑖,ŷ𝑖)
𝑛
𝑖=1 ()

where 𝑚𝑖𝑛(𝑦𝑖 , 𝑦̂𝑖) is the minimum value between 𝑦𝑖 and 𝑦̂𝑖. The fourth evaluation measurement is the
mean inverted balanced residual error (MIBRE) formulated in Eq. (13).

MIBRE =
1

𝑛
∑

AEi

max(y𝑖,ŷ𝑖)
𝑛
𝑖=1 ()

where 𝑚𝑎𝑥(𝑦𝑖 , 𝑦̂𝑖) is the maximum value between 𝑦𝑖 and 𝑦̂𝑖.

MAE, MBRE, and MIBRE accuracy measurements are used because they behave differently from
each other. They can be effectively evaluated how well a model performs. The superior model is the one
with the minimum value.

Besides the four metrics, we also used the evaluation framework proposed by [64]. The framework
consists of two metrics: standardized accuracy (SA) and effect size (∆) as notated in Eq. (14) and Eq.
(15). SA is an accuracy measurement used to evaluate that the estimation model 𝑃𝑖 produces meaningful
estimation. The value of SA must be better than the baseline estimation model derived from random
guessing (P0).

SA𝑃𝑖
= 1 − (

MAE𝑃𝑖

𝑀𝐴𝐸𝑃0
̅̅ ̅̅ ̅̅ ̅̅ ̅̅

) x 100 ()

where 𝑀𝐴𝐸𝑃𝑖
 is the mean value produced by the proposed or existing estimated model (𝑃𝑖). 𝑀𝐴𝐸𝑃0

̅̅ ̅̅ ̅̅ ̅̅ ̅ is
the mean value provided by a large number, typically 1000 runs of the random guessing model (𝑃0).
The random guessing model (𝑃0) is defined as estimating a 𝑦̂ for the target case t by randomly sampling
(with equal probability) over all the remaining 𝑛 − 1 cases and takes𝑦̂𝑡 = 𝑦𝑟 where r is drawn randomly
from 1 … 𝑛 ⋀ 𝑟 ≠ 𝑡. SA is interested in one direction that how much better 𝑃𝑖 is than 𝑃0. If 𝑃𝑖 value
is greater than 𝑃0, then we can interpret that 𝑃𝑖 is predicting, not guessing, and 𝑃𝑖 is generating
meaningful estimation in this particular study. The SA is discouraging with a value close to zero or even
negative. The larger the value yielded by the standardized accuracy metric shows a good estimation
model.

Effect size is a metric to interpret the practical or real-world significance of the result [65]. Effect
size is used to ensure the results by 𝑃𝑖 does not produce by chance as formulated in Eq. (15).

Δ =
MAE𝑃𝑖

−MAE̅̅ ̅̅ ̅̅ ̅𝑃0

S𝑃0

 ()

ISSN 2442-6571 International Journal of Advances in Intelligent Informatics 175
 Vol. 8, No. 2, July 2022, pp. 165-184

 Ardiansyah et al. (Optimizing complexity weight parameter of use case points estimation using particle swarm optimization)

where S𝑃0
 is the standard deviation of the random guessing model (P0). There are three margins we can

use to interpret the effect size improvement over the baseline model, small (Δ ≈ 0.2), medium (Δ ≈ 0.5),
and large (Δ ≈ 0.8) [64], [66]. For example, if an effect size does not reach a small effect size (e.g., Δ =
0.1777), we can interpret the result is not attractive. In other words, the improvement of the model
accuracy is not contributed a good effect in a practical matter. The larger value yielded by the effect size
metric shows a good estimation model.

Finally, the significance test was carried out using the Wilcoxon sum ranked at the 95% confidence
level. The null hypothesis H0 is tested based on the absolute errors (AE) of data samples. It then used
the p-value to test the hypothesis to decide whether the null hypothesis was accepted or rejected. Hence,
there are five hypotheses proposed in this study.

H0(1): There is no difference in absolute error between the proposed and random guessing model.

H0(2): There is no difference in absolute error between the proposed and MLR model

H0(3): There is no difference in absolute error between the proposed and FUCP model

H0(4): There is no difference in absolute error between the proposed and Karner model.

H0(5): There is no difference in absolute error between the proposed and WGRA+PSO model.

3.3.4. Parameter settings and constraints

The objective and fitness functions are derived from Eq. (7) and Eq. (10), respectively. There are
three-dimensional variables: simple UC (𝑥1), average UC (𝑥2), and complex UC (𝑥3). The range for
these variables then set as 𝑥1 = 5.00 to 7.49, 𝑥2 = 7.50 to 12.49, and 𝑥3 = 12.50 to 15.00, based on the
modified use case weight level (see Table 1) proposed [9], [10].

The proposed model was developed using PHP 7.2.28, and the parameters of the PSO are set as
particles = 70, C1 = 2.8, C2 = 1.3, maximum iterations = 500, fitness value = 50, and inertia factor (ω) =
0.9, respectively. The parameter of C1, C2, and maximum iterations was adopted from [13]. The number
of particles or swarm size is adopted from [67] as it recommended the size between 70 – 500. For ω itself
is linearly decreasing inertia-weight (LDW) [68].

4. Results and Discussion

This section presented empirical results obtained from the experimental, model validation, and
evaluation. A reliable and meaningful estimation model is indicated by which received a larger SA value.
The estimation model is unlikely to have been generated by chance if the model has a larger effect size
value. Thus, we consider three research questions (RQ): RQ1: How much better 𝑃𝑖 is over random
guessing (𝑃0)? Q2: How much better are Polynomial, MLR, FUCP, WGRA+PSO, and UCW+PSO
than the Karner model? and RQ3: How much better is UCW+PSO than Polynomial, MLR, FUCP,
and WGRA+PSO models?

4.1. RQ1: The performance of 𝑷𝒊 versus 𝑷𝟎 model

All six models were validated using SA and effect size (Δ) while random guessing as to the baseline
model. Table 3 showed that Polynomial, WGRA+PSO, and UCW+PSO obtained better SA values than
random guessing, whereas our proposed model (UCW+PSO) yielded the largest value. It is immediately
apparent that these models were actually predicting, not guessing since they delivered considerably better
accuracy levels than random guessing (𝑃0). Thus, these models generated meaningful predictions in this

176 International Journal of Advances in Intelligent Informatics ISSN 2442-6571
 Vol. 8, No. 2, July 2022, pp. 165-184

 Ardiansyah et al. (Optimizing complexity weight parameter of use case points estimation using particle swarm optimization)

particular study. Surprisingly, FUCP and Karner’s model yielded the worst results signed by the large
negative values. It is immediately apparent that these two models were not actually predicting since they
delivered worse accuracy levels than random guessing (𝑃0). Thus, these two models did not generate
meaningful predictions in this study.

Conversely, all six models yielded considerably better effect size value than random guessing (𝑃0).
Four models produced enormous effect size improvement, and two models (Polynomial and MLR) were
in medium effect size improvement. One can find that Δ of 1.499 (Karner), 1.340 (FUCP), 1.083
(UCW+PSO), and 1.059 (WGRA+PSO) were regarded as considerable effect size improvement over
random guessing, which was worthwhile at the margin. Hence, we can be confident that these six models
were not a chance outcome because the significance test rejected all six null hypotheses (p < 0.05).
However, due to the negative SA value obtained by FUCP and Karner models, it is immediately clear
that these two models were discouraging and perturbing in this study.

Table 3. The results of SA, Δ, and Sig. considering random guessing as to the baseline model.

Method SA (%)
Δ

Sig.

Polynomial 66.782*** 0.737 0.00 (p < 0.05)
MLR 49.159 0.573 0.00 (p < 0.05)
FUCP -114.949 1.340** 0.00 (p < 0.05)
Karner -128.541 1.499* 0.00 (p < 0.05)

WGRA+PSO 96.021** 1.059 0.00 (p < 0.05)
UCW+PSO 98.161* 1.083*** 0.00 (p < 0.05)

*First best model ** Second best model *** Third best model

To confirm the negative results yielded by FUCP and Karner, we added more historical project data
sets from [39], [56], [69], [70]. The new data sets represented various project domains such as
educational information systems, social media, ERP, CMS, and CRM. Four unique data sets, D1, D2,
D3, and D4, consist of 14, 10, 7, and 9 historical projects, respectively. We merged these four data sets
and formed a new data set, MD1. Finally, we joined MD1 with the primary data set used in this study
and created a new data set, MD2. Table 4 showed that the D2 and MD2 yielded positive, more
considerable SA results. It is immediately apparent that these models were actually predicting, not
guessing, since they delivered considerably better accuracy levels than random guessing (𝑃0). Moreover,
in terms of Δ, these results were regarded as medium effect size improvement over random guessing, in
other words, worthwhile at the margin. Hence, we can be confident that these two models were not a
chance outcome because the significance test rejected both null hypotheses (p < 0.05).

Table 4. The accuracy results of UCP, considering random guessing as to the baseline model.

Data set n SA (%)
Δ

Sig.

D1 10 -41.433 0.597** 0.336 (p > 0.05)
D2 14 28.180** 0.474 0.040 (p < 0.05)
D3 8 -598.144 8.865* 0.000 (p < 0.05)
D4 7 -27.838 0.379 0.647 (p > 0.05)

MD1 39 -15.2*** 0.204 0.903 (p > 0.05)
MD2 109 37.407* 0.485*** 0.000 (p < 0.05)

n = number of projects *First best **Second best ***Third best

ISSN 2442-6571 International Journal of Advances in Intelligent Informatics 177
 Vol. 8, No. 2, July 2022, pp. 165-184

 Ardiansyah et al. (Optimizing complexity weight parameter of use case points estimation using particle swarm optimization)

4.2. RQ2: The performance of Polynomial, MLR, FUCP, WGRA+PSO, and UCW+PSO versus Karner model

Karner validated Polynomial, MLR, FUCP, WGRA+PSO, and UCW+PSO as the baseline model.
The Karner model was appointed because the model was the center of all UCP-based effort estimation
studies. Most of the proposed models compared their results with the Karner model, e.g., [43], [58],
[71], [72]. From Table 5, we can observe that all models yielded better SA value over the Karner model,
while our proposed method obtained the largest value. It is immediately apparent that these five models
were actually predicting, not guessing, since they yielded considerably better accuracy levels than Karner's
model.

WGRA+PSO and UCW+PSO yielded more considerable effect size improvement over the Karner
model. At the same time, the medium effect size is obtained by Polynomial and MLR. In other words,
WGRA+PSO, UCW+PSO, Polynomial, and MLR were worthwhile at the margin. Hence, we can be
confident that these four models were not a chance outcome because the significance test rejected all
four null hypotheses. In contrast, FUCP did not even reach a small effect size (Δ = 0.054), which suggests
that the impact was not significant (p > 0.05) and not attractive.

Table 5. The results of SA and Δ considering Karner as the baseline model.

Method SA (%)
Δ

Sig.

Polynomial 86.802*** 0.789*** 0.000 (p < 0.05)
MLR 77.754 0.707 0.000 (p < 0.05)
FUCP 5.9475 0.054 0.614 (p > 0.05)

WGRA+PSO 98.419** 0.895** 0.000 (p < 0.05)
UCW+PSO 99.269* 0.902* 0.000 (p < 0.05)

*First best **Second best ***Third best

4.3. RQ3: The accuracy performance of UCW+PSO versus Polynomial, MLR, FUCP, and WGRA+PSO models

 We validated our proposed model by assigning Polynomial, MLR, FUCP, and WGRA+PSO as the
benchmark model. We observed that our proposed model yielded better SA and Δ over the four models
(see Table 6).

Table 6. The results of SA and Δ considering MLR, FUCP, Polynomial, and WGRA+PSO as the baseline model.

Method SA (%)
Δ

Sig.

Polynomial as baseline 94.465 0.409*** 0.00 (p < 0.05)
MLR as baseline 96.716** 0.942** 0.00 (p < 0.05)
FUCP as baseline 99.223* 1.283* 0.00 (p < 0.05)

WGRA+PSO as baseline 53.790*** 0.024 0.00 (p > 0.05)

*First best **Second best ***Third best

The accuracy results obtained concerning MAE, MBRE, and MIBRE are presented in Table 7. The
results showed that the proposed estimation model performed better than three other models,
suggesting significant improvements over these three different models.

The larger SA and Δ value obtained when FUCP and MLR as the baseline models suggest that the
proposed model was actually estimated. The result was not by chance and significantly improved the

178 International Journal of Advances in Intelligent Informatics ISSN 2442-6571
 Vol. 8, No. 2, July 2022, pp. 165-184

 Ardiansyah et al. (Optimizing complexity weight parameter of use case points estimation using particle swarm optimization)

largest effect size over these two models (p < 0.05). In comparison, medium (Δ = 0.409) and very small
effect size (Δ = 0.024) yielded by UCW+PSO over Polynomial and WGRA+PSO, which indicated that
the result was significant (p < 0.05) but not impressive. However, UCW+PSO obtained a remarkable SA
value over Polynomial and WGRA+PSO, suggesting the proposed model outperformed Polynomial and
WGRA+PSO. Hence, we concluded that our proposed method was actually estimating, generating
meaningful estimation by significance in statistics and practical (e.g., MLR and FUCP) over four models
in this study.

Table 7. MAE, MBRE, and MIBRE results.

Method MAE MBRE MIBRE

Polynomial 240.19 0.038*** 0.035***
MLR 404.85*** 0.064 0.058
FUCP 1712 0.589 0.260
Karner 1820 0.378 0.240

WGRA+PSO 28.77** 0.00422** 0.00419**
UCW+PSO 13.29* 0.00210* 0.00212*

*First best **Second best ***Third best

 Fig. 3 illustrates the plot of all six models’ actual and estimated effort values. Y-axis is the project
data set, and the x-axis is the effort value. The solid green line was representative of the actual effort
value, and the dashed red line was representative of the estimated effort value. All models have tried to
produce estimated value as closely as possible to the actual effort value. From these figures, we found
that when the dashed red line was getting closer and reached the same position over the solid green line,
that means the model was estimated accurately. As we can find, Fig. 3e and 3f have the closest between
the two-line, suggesting that the two models were estimated with the best accuracy. However, in Fig.
3e, we found that there were still some red dash lines that were separated slightly by the whitespace,
suggesting a small gap between the actual and estimated line, whereas, in Fig. 3f, we found the gap itself
almost did not exist. Thus, it was immediately apparent that the proposed model showed the best
accurate estimation of these five models.

 Table 8 shows the results of the Friedman test in ranked using SPSS tools. The Friedman test was
conducted for multiple comparisons to infer the difference among various estimation models. The
estimation models deducted a sample of AE found for the given data set. Friedman’s test considered a
null hypothesis that all estimations are equivalent (H0). From Table 8, we can observe that all models
were significant differences (p < 0.05), and UCW+PSO was the best performing estimation model.

Table 8. Represents the ranks evaluated through the Friedman test (p < 0.05)

Models Friedman ranks

Polynomial 3.39
MLR 3.93
FUCP 5.19
Karner 5.26

WGRA+PSO 2.01
UCW+PSO 1.23

ISSN 2442-6571 International Journal of Advances in Intelligent Informatics 179
 Vol. 8, No. 2, July 2022, pp. 165-184

 Ardiansyah et al. (Optimizing complexity weight parameter of use case points estimation using particle swarm optimization)

 All results yielded by the proposed model confirmed that the chosen number of particles or swarm
sizes 70-500 particles has contributed to better performance [67]. This number of particles is different
from the initial suggestion from [73] and other recommended population sizes of 20-50. Parameter
settings also influenced the efficiency and effectiveness of the search [74]. For example, when 𝑅1 and
𝑅2 values are high, the particles are improved the current solution by moving toward the best and global
positions, whereas the inertia weight parameter (ω) controls the global and local search process to avoid
premature convergence and the poor global search ability. These results confirmed that optimization
could be applied right across the spectrum of software engineering, especially for effort estimation studies
[75]. This also implies that we can establish the automation solution to software engineering problems
using search-based optimization algorithms.

(a) Estimation results for the Polynomial model

(b) Estimation results for MLR model

(c) Estimation results for FUCP model

(d) Estimation results for Karner model

(e) Estimation results for WGRA+PSO model

(f) Estimation results for UCW+PSO model

Fig. 3. Estimation results for (a) polynomial; (b) MLR; (c) FUCP; (d) Karner; (e) WGRA+PSO; (f)
UCW+PSO model

5250

5750

6250

6750

7250

7750

8250

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70

Ef
fo

rt

Project data set

Actual Effort

Estimated Effort
(Polynomial)

5600

6100

6600

7100

7600

8100

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70

Ef
fo

rt

Project data set

Actual Effort

Estimated Effort (MLR)

400

1400

2400

3400

4400

5400

6400

7400

8400

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70

Ef
fo

rt

Project data set

Actual Effort

Estimated Effort (FUCP)

2000

4000

6000

8000

10000

12000

14000

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70

E
ff

o
rt

Project data set

Actual Effort

Estimated Effort (Karner)

5700

6200

6700

7200

7700

8200

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70

Ef
fo

rt

Project data set

Actual Effort

Estimated Effort (WGRA+PSO)

5600

6100

6600

7100

7600

8100

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70

E
ff

o
rt

Project data set

Actual Effort

Estimated Effort (UCW+PSO)

180 International Journal of Advances in Intelligent Informatics ISSN 2442-6571
 Vol. 8, No. 2, July 2022, pp. 165-184

 Ardiansyah et al. (Optimizing complexity weight parameter of use case points estimation using particle swarm optimization)

5. Conclusion

This paper presented a metaheuristic approach to address the abrupt classification issues in the use
case complexity weight level. We proposed UCW+PSO to search for an optimal value of complexity
weight level to obtain the minimum absolute error (MAE). Thus, the objective of this study is generally
to improve the accuracy performance of the UCP-based software development effort estimation. Our
experimental studies demonstrated that the version of the proposed UCW+PSO model was promising
and showed significant improvements over other baseline models. The best performance evaluation for
standardized accuracy, effect size, MAE, MBRE, and MIBRE are 99.223, 1.283, 13.29, 0.0021, and
0.00212, respectively. Interesting observation of UCW+PSO is the choice of the number of particles in
the parameter settings, which contributed to the performance. This study focused on a fixed value of
the control parameter 𝐶1, 𝐶2, and ω. Some objective functions are susceptible to the inappropriate
selection of control parameters. Hence, further research is needed to determine whether the objective
function in the proposed method is sensitive or not by applying adaptive inertia weight and automating
the parameter settings by using a GA. Furthermore, more data is needed to validate the negative results
obtained by Karner and FUCP model, as described in Section 6.

Based on these conclusions, practitioners whose organization already has the historical project data
set should consider UCW+PSO, WGRA+PSO, or MLR model to estimate a new project. Because using
their historical project data set will help make better predictions. Software organizations with no
historical project data set would be better using cross-company data set under some circumstances.

Declarations

Author contribution. All authors contributed equally to the main contributor to this paper. All authors read
and approved the final paper.

Funding statement. None of the authors have received any funding or grants from any institution or funding
body for the research.

Conflict of interest. The authors declare no conflict of interest.

Additional information. No additional information is available for this paper.

References

[1] M. Choetkiertikul, H. K. Dam, T. Tran, A. Ghose, and J. Grundy, “Predicting Delivery Capability in
Iterative Software Development,” IEEE Trans. Softw. Eng., vol. 44, no. 6, pp. 551–573, Jun. 2018, doi:
10.1109/TSE.2017.2693989.

[2] M. Bloch, S. Blumberg, and J. Laartz, “Delivering large-scale IT projects on time, on budget, and on value,”
McKinsey Digital, no. 5. pp. 1–7, 2012. Available at: Google Scholar

[3] A. Kaur and K. Kaur, “A COSMIC function points based test effort estimation model for mobile
applications,” J. King Saud Univ. - Comput. Inf. Sci., vol. 34, no. 3, pp. 946–963, Mar. 2022, doi:
10.1016/j.jksuci.2019.03.001.

[4] K. Rak, Ž. Car, and I. Lovrek, “Effort estimation model for software development projects based on use
case reuse,” J. Softw. Evol. Process, vol. 31, no. 2, pp. 1–17, Feb. 2019, doi: 10.1002/smr.2119.

[5] G. Karner, “Resource Estimation for Objectory Projects.” pp. 1–9, 1993. Available at: Google Scholar

https://doi.org/10.1109/TSE.2017.2693989
https://scholar.google.co.id/scholar?hl=id&as_sdt=0%2C5&q=M.+Bloch%2C+S.+Blumberg%2C+and+J.+Laartz%2C+%22Delivering+large-scale+IT+projects+on+time%2C+on+budget%2C+and+on+value%2C%22+McKinsey+Digital%2C+no.+5.+pp.+1-7%2C+2012&btnG=
https://doi.org/10.1016/j.jksuci.2019.03.001
https://doi.org/10.1002/smr.2119
https://scholar.google.co.id/scholar?hl=id&as_sdt=0%2C5&q=G.+Karner%2C+%22Resource+Estimation+for+Objectory+Projects.%22+pp.+1-9%2C+1993.&btnG=

ISSN 2442-6571 International Journal of Advances in Intelligent Informatics 181
 Vol. 8, No. 2, July 2022, pp. 165-184

 Ardiansyah et al. (Optimizing complexity weight parameter of use case points estimation using particle swarm optimization)

[6] Y. Xie, J. Guo, and A. Shen, “Use Case Points Method of Software Size Measurement Based on Fuzzy
Inference,” in Proceedings of the 4th International Conference on Computer Engineering and Networks, vol. 355,
W. E. Wong, Ed. Cham: Springer International Publishing, 2015, pp. 11–18. doi: 10.1007/978-3-319-
11104-9_2

[7] F. Wang, X. Yang, X. Zhu, and L. Chen, “Extended Use Case Points Method for Software Cost Estimation,”
in 2009 International Conference on Computational Intelligence and Software Engineering, 2009, pp. 1–5, doi:
10.1109/CISE.2009.5364706.

[8] A. B. Nassif, L. F. Capretz, and D. Ho, “Calibrating use case points,” in Companion Proceedings of the 36th
International Conference on Software Engineering - ICSE Companion 2014, 2014, pp. 612–613, doi:
10.1145/2591062.2591141.

[9] M. Hariyanto and R. S. Wahono, “Estimasi Proyek Pengembangan Perangkat Lunak Dengan Fuzzy Use
Case Points,” J. Softw. Eng., vol. 1, no. 1, pp. 54–63, 2015. Available at: Google Scholar

[10] A. B. Nassif, L. F. Capretz, and D. Ho, “Enhancing Use Case Points Estimation Method Using Soft
Computing Techniques,” J. Glob. Res. Comput. Sci., vol. 1, no. 4, pp. 12–21, Dec. 2016. Available at: Google
Scholar

[11] V. Khatibi Bardsiri, D. N. A. Jawawi, S. Z. M. Hashim, and E. Khatibi, “A PSO-based model to increase
the accuracy of software development effort estimation,” Softw. Qual. J., vol. 21, no. 3, pp. 501–526, Sep.
2013, doi: 10.1007/s11219-012-9183-x.

[12] M. Azzeh, A. B. Nassif, S. Banitaan, and F. Almasalha, “Pareto efficient multi-objective optimization for
local tuning of analogy-based estimation,” Neural Comput. Appl., vol. 27, no. 8, pp. 2241–2265, Nov. 2016,
doi: 10.1007/s00521-015-2004-y.

[13] D. Wu, J. Li, and C. Bao, “Case-based reasoning with optimized weight derived by particle swarm
optimization for software effort estimation,” Soft Comput., vol. 22, no. 16, pp. 5299–5310, Aug. 2018, doi:
10.1007/s00500-017-2985-9.

[14] L. Brezočnik, I. Fister, and V. Podgorelec, “Solving Agile Software Development Problems with Swarm
Intelligence Algorithms,” in Lecture Notes in Networks and Systems, vol. 76, E. Karabegovi, Ed. Sarajevo,
Bosnia and Herzegovina: Springer, Cham, 2020, pp. 298–309. doi: 10.1007/978-3-030-18072-0_35

[15] F. Ferrucci, C. Gravino, R. Oliveto, and F. Sarro, “Genetic Programming for Effort Estimation: An Analysis
of the Impact of Different Fitness Functions,” in 2nd International Symposium on Search Based Software
Engineering, 2010, no. 25, pp. 89–98, doi: 10.1109/SSBSE.2010.20.

[16] J. Murillo-Morera, C. Quesada-López, C. Castro-Herrera, and M. Jenkins, “A genetic algorithm based
framework for software effort prediction,” J. Softw. Eng. Res. Dev., vol. 5, no. 1, pp. 1–33, Dec. 2017, doi:
10.1186/s40411-017-0037-x.

[17] Z. Shahpar, V. K. Bardsiri, and A. K. Bardsiri, “Polynomial analogy‐based software development effort
estimation using combined particle swarm optimization and simulated annealing,” Concurr. Comput. Pract.
Exp., vol. 33, no. 20, p. e6358, Oct. 2021, doi: 10.1002/cpe.6358.

[18] P. Phannachitta, “On an optimal analogy-based software effort estimation,” Inf. Softw. Technol., vol. 125,
no. April, p. 106330, Sep. 2020, doi: 10.1016/j.infsof.2020.106330.

[19] Z. Shahpar, V. Khatibi, and A. Khatibi Bardsiri, “Hybrid PSO-SA Approach for Feature Weighting in
Analogy-Based Software Project Effort Estimation,” J. AI Data Min., vol. 9, no. 3, pp. 329–340, 2021, doi:
10.22044/jadm.2021.10119.2152.

[20] Z. Shahpar, V. K. Bardsiri, and A. K. Bardsiri, “An evolutionary ensemble analogy‐based software effort
estimation,” Softw. Pract. Exp., vol. 52, no. 4, pp. 929–946, Apr. 2022, doi: 10.1002/spe.3040.

[21] T. R. Benala and R. Mall, “DABE: Differential evolution in analogy-based software development effort
estimation,” Swarm Evol. Comput., vol. 38, pp. 158–172, Feb. 2018, doi: 10.1016/j.swevo.2017.07.009.

[22] N. Ghatasheh, H. Faris, I. Aljarah, and R. M. H. Al-Sayyed, “Optimizing Software Effort Estimation Models
Using Firefly Algorithm,” J. Softw. Eng. Appl., vol. 08, no. 03, pp. 133–142, 2015, doi:
10.4236/jsea.2015.83014.

https://doi.org/10.1007/978-3-319-11104-9_2
https://doi.org/10.1007/978-3-319-11104-9_2
https://doi.org/10.1109/CISE.2009.5364706
https://doi.org/10.1145/2591062.2591141
https://scholar.google.co.id/scholar?hl=id&as_sdt=0%2C5&q=M.+Hariyanto+and+R.+S.+Wahono%2C+%22Estimasi+Proyek+Pengembangan+Perangkat+Lunak+Dengan+Fuzzy+Use+Case+Points%2C%22+J.+Softw.+Eng.%2C+vol.+1%2C+no.+1%2C+pp.+54-63%2C+2015.&btnG=
https://scholar.google.co.id/scholar?hl=id&as_sdt=0%2C5&q=A.+B.+Nassif%2C+L.+F.+Capretz%2C+and+D.+Ho%2C+%22Enhancing+Use+Case+Points+Estimation+Method+Using+Soft+Computing+Techniques%2C%22+J.+Glob.+Res.+Comput.+Sci.%2C+vol.+1%2C+no.+4%2C+pp.+12-21%2C+Dec.+2016.&btnG=
https://scholar.google.co.id/scholar?hl=id&as_sdt=0%2C5&q=A.+B.+Nassif%2C+L.+F.+Capretz%2C+and+D.+Ho%2C+%22Enhancing+Use+Case+Points+Estimation+Method+Using+Soft+Computing+Techniques%2C%22+J.+Glob.+Res.+Comput.+Sci.%2C+vol.+1%2C+no.+4%2C+pp.+12-21%2C+Dec.+2016.&btnG=
https://doi.org/10.1007/s11219-012-9183-x
https://doi.org/10.1007/s00521-015-2004-y
https://doi.org/10.1007/s00500-017-2985-9
https://doi.org/10.1007/978-3-030-18072-0_35
https://doi.org/10.1109/SSBSE.2010.20
https://doi.org/10.1186/s40411-017-0037-x
https://doi.org/10.1002/cpe.6358
https://doi.org/10.1016/j.infsof.2020.106330
10.22044/jadm.2021.10119.2152
https://doi.org/10.1002/spe.3040
https://doi.org/10.1016/j.swevo.2017.07.009
https://doi.org/10.4236/jsea.2015.83014

182 International Journal of Advances in Intelligent Informatics ISSN 2442-6571
 Vol. 8, No. 2, July 2022, pp. 165-184

 Ardiansyah et al. (Optimizing complexity weight parameter of use case points estimation using particle swarm optimization)

[23] V. Resmi, S. Vijayalakshmi, and R. S. Chandrabose, “An effective software project effort estimation system
using optimal firefly algorithm,” Cluster Comput., vol. 22, no. S5, pp. 11329–11338, Sep. 2019, doi:
10.1007/s10586-017-1388-0.

[24] K. Langsari and R. Sarno, “Optimizing effort and time parameters of COCOMO II estimation using fuzzy
multi-objective PSO,” in 2017 4th International Conference on Electrical Engineering, Computer Science and
Informatics (EECSI), 2017, vol. 2017-Decem, no. September, pp. 1–6, doi: 10.1109/EECSI.2017.8239157.

[25] N. A. Zakaria, A. R. Ismail, N. Z. Abidin, N. H. M. Khalid, and A. Y. Ali, “Optimized COCOMO
parameters using hybrid particle swarm optimization,” Int. J. Adv. Intell. Informatics, vol. 7, no. 2, pp. 177–
187, Apr. 2021, doi: 10.26555/ijain.v7i2.583.

[26] M. D. Alanis-Tamez, C. López-Martín, and Y. Villuendas-Rey, “Particle Swarm Optimization for Predicting
the Development Effort of Software Projects,” Mathematics, vol. 8, no. 10, pp. 1–21, Oct. 2020, doi:
10.3390/math8101819.

[27] S. Chhabra and H. Singh, “Optimizing Design of Fuzzy Model for Software Cost Estimation Using Particle
Swarm Optimization Algorithm,” Int. J. Comput. Intell. Appl., vol. 19, no. 01, pp. 1–16, Mar. 2020, doi:
10.1142/S1469026820500054.

[28] M. Khazaiepoor, A. Khatibi Bardsiri, and F. Keynia, “A Hybrid Approach for Software Development Effort
Estimation using Neural networks, Genetic Algorithm, Multiple Linear Regression and Imperialist
Competitive Algorithm,” Int. J. Nonlinear Anal. Appl, vol. 11, no. 1, pp. 207–224, 2020, doi:
10.22075/ijnaa.2020.4259.

[29] K. E. Rao and G. A. Rao, “Ensemble learning with recursive feature elimination integrated software effort
estimation: a novel approach,” Evol. Intell., vol. 14, no. 1, pp. 151–162, Mar. 2021, doi: 10.1007/s12065-
020-00360-5.

[30] S. P. Singh, G. Dhiman, P. Tiwari, and R. H. Jhaveri, “A soft computing based multi-objective optimization
approach for automatic prediction of software cost models,” Appl. Soft Comput., vol. 113, p. 107981, Dec.
2021, doi: 10.1016/j.asoc.2021.107981.

[31] A. Kaushik, S. Verma, H. J. Singh, and G. Chhabra, “Software cost optimization integrating fuzzy system
and COA-Cuckoo optimization algorithm,” Int. J. Syst. Assur. Eng. Manag., vol. 8, no. S2, pp. 1461–1471,
Nov. 2017, doi: 10.1007/s13198-017-0615-7.

[32] S. Kumari and S. Pushkar, “Cuckoo search based hybrid models for improving the accuracy of software effort
estimation,” Microsyst. Technol., vol. 24, no. 12, pp. 4767–4774, Dec. 2018, doi: 10.1007/s00542-018-3871-
9.

[33] M. R. Braz and S. R. Vergilio, “Using fuzzy theory for effort estimation of object-oriented software,” in 16th
IEEE International Conference on Tools with Artificial Intelligence, 2004, no. Ictai, pp. 196–201, doi:
10.1109/ICTAI.2004.119.

[34] A. Ardiansyah, R. Ferdiana, and A. E. Permanasari, “MUCPSO: A Modified Chaotic Particle Swarm
Optimization with Uniform Initialization for Optimizing Software Effort Estimation,” Appl. Sci., vol. 12,
no. 3, p. 1081, Jan. 2022, doi: 10.3390/app12031081.

[35] G. Robiolo and R. Orosco, “Employing use cases to early estimate effort with simpler metrics,” Innov. Syst.
Softw. Eng., vol. 4, no. 1, pp. 31–43, Apr. 2008, doi: 10.1007/s11334-007-0043-y.

[36] P. Mohagheghi, B. Anda, and R. Conradi, “Effort estimation of use cases for incremental large-scale software
development,” in Proceedings. 27th International Conference on Software Engineering, 2005. ICSE 2005., 2005,
pp. 303–311, doi: 10.1109/ICSE.2005.1553573.

[37] B. Anda, H. Dreiem, D. I. K. Sjøberg, and M. Jørgensen, “Estimating Software Development Effort Based
on Use Cases — Experiences from Industry,” in International Conference on the Unified Modeling Language,
2001, pp. 487–502. doi: 10.1007/3-540-45441-1_35

[38] B. Anda, E. Angelvik, and K. Ribu, “Improving Estimation Practices by Applying Use Case Models,” in
Product Focused Software Process Improvement, vol. 2559, no. 1325, 2002, pp. 383–397. doi: 10.1007/3-540-
36209-6_32

https://doi.org/10.1007/s10586-017-1388-0
https://doi.org/10.1109/EECSI.2017.8239157
https://doi.org/10.26555/ijain.v7i2.583
https://doi.org/10.3390/math8101819
https://doi.org/10.1142/S1469026820500054
10.22075/ijnaa.2020.4259
https://doi.org/10.1007/s12065-020-00360-5
https://doi.org/10.1007/s12065-020-00360-5
https://doi.org/10.1016/j.asoc.2021.107981
https://doi.org/10.1007/s13198-017-0615-7
https://doi.org/10.1007/s00542-018-3871-9
https://doi.org/10.1007/s00542-018-3871-9
https://doi.org/10.1109/ICTAI.2004.119
https://doi.org/10.3390/app12031081
https://doi.org/10.1007/s11334-007-0043-y
https://doi.org/10.1109/ICSE.2005.1553573
https://doi.org/10.1007/3-540-45441-1_35
https://doi.org/10.1007/3-540-36209-6_32
https://doi.org/10.1007/3-540-36209-6_32

ISSN 2442-6571 International Journal of Advances in Intelligent Informatics 183
 Vol. 8, No. 2, July 2022, pp. 165-184

 Ardiansyah et al. (Optimizing complexity weight parameter of use case points estimation using particle swarm optimization)

[39] M. Ochodek, J. Nawrocki, and K. Kwarciak, “Simplifying effort estimation based on Use Case Points,” Inf.
Softw. Technol., vol. 53, no. 3, pp. 200–213, Mar. 2011, doi: 10.1016/j.infsof.2010.10.005.

[40] M. Ochodek, B. Alchimowicz, J. Jurkiewicz, and J. Nawrocki, “Improving the reliability of transaction
identification in use cases,” Inf. Softw. Technol., vol. 53, no. 8, pp. 885–897, Aug. 2011, doi:
10.1016/j.infsof.2011.02.004.

[41] H. L. T. K. Nhung, V. Van Hai, R. Silhavy, Z. Prokopova, and P. Silhavy, “Parametric Software Effort
Estimation Based on Optimizing Correction Factors and Multiple Linear Regression,” IEEE Access, vol. 10,
pp. 2963–2986, 2022, doi: 10.1109/ACCESS.2021.3139183.

[42] A. B. Nassif, “Towards an Early Software Estimation Using Log-Linear Regression and a Multilayer
Perceptron Model,” J. Syst. Softw., vol. 86, no. 1, pp. 144–160, 2013. doi: 10.1016/j.jss.2012.07.050

[43] M. Azzeh and A. B. Nassif, “A hybrid model for estimating software project effort from Use Case Points,”
Appl. Soft Comput., vol. 49, pp. 981–989, Dec. 2016, doi: 10.1016/j.asoc.2016.05.008.

[44] A. B. Nassif, L. F. Capretz, D. Ho, and M. Azzeh, “A Treeboost Model for Software Effort Estimation
Based on Use Case Points,” in 2012 11th International Conference on Machine Learning and Applications,
2012, no. December 2012, pp. 314–319, doi: 10.1109/ICMLA.2012.155.

[45] K. Qi, A. Hira, E. Venson, and B. W. Boehm, “Calibrating use case points using bayesian analysis,” in
Proceedings of the 12th ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement, 2018, pp. 1–10, doi: 10.1145/3239235.3239236.

[46] R. Silhavy, P. Silhavy, and Z. Prokopova, “Using Actors and Use Cases for Software Size Estimation,”
Electronics, vol. 10, no. 5, pp. 1–20, Mar. 2021, doi: 10.3390/electronics10050592.

[47] H. Le Thi Kim Nhung, H. T. Hoc, and V. Van Hai, “An Evaluation of Technical and Environmental
Complexity Factors for Improving Use Case Points Estimation,” in Advances in Intelligent Systems and
Computing, vol. 1294, 2020, pp. 757–768. doi: 10.1007/978-3-030-63322-6_64

[48] K. Qi and B. W. Boehm, “Detailed use case points (DUCPs),” in Proceedings of the 10th International
Workshop on Modelling in Software Engineering - MiSE ’18, 2018, pp. 17–24, doi: 10.1145/3193954.3193955.

[49] D. D. Galorath and M. W. Evans, Software Sizing, Estimation, and Risk Management. Boca Raton: Auerbach
Publications, 2006. doi: 10.1201/9781420013122

[50] K. Periyasamy and A. Ghode, “Cost Estimation Using Extended Use Case Point (e-UCP) Model,” in 2009
International Conference on Computational Intelligence and Software Engineering, 2009, pp. 1–5, doi:
10.1109/CISE.2009.5364515.

[51] M. Manzoor and A. Wahid, “Revised Use Case Point (Re-UCP) Model for Software Effort Estimation,”
Int. J. Adv. Comput. Sci. Appl., vol. 6, no. 3, pp. 65–71, 2015, doi: 10.14569/IJACSA.2015.060310.

[52] A. Minkiewicz, “Use Case Sizing,” in International Forum on COCOMO and Software Cost Modelin, 2004.
Available at: Google Scholar

[53] A. B. Nassif, “Software Size and Effort Estimation from Use Case Diagrams Using Regression and Soft
Computing Models,” The University of Western Ontario, 2012. Available at: Google Scholar

[54] H. T. Hoc, V. Van Hai, and H. Le Thi Kim Nhung, “AdamOptimizer for the Optimisation of Use Case
Points Estimation,” in Advances in Intelligent Systems and Computing, vol. 1294, 2020, pp. 747–756. doi:
10.1007/978-3-030-63322-6_63

[55] Sholiq, A. P. Subriadi, F. A. Muqtadiroh, and R. S. Dewi, “A model of owner estimate cost for software
development project in Indonesia,” J. Softw. Evol. Process, vol. 31, no. 10, p. e2175, Oct. 2019, doi:
10.1002/smr.2175.

[56] Subriadi, A. Pribadi, and P. A. Ningrum, “Critical Review of the Effort Rate Value in Use Case Point
Method for Estimating Software Development Effort,” vol. 59, no. 3, pp. 735–744, 2014. Available at:
Google Scholar

[57] M. Azzeh and A. B. Nassif, “Project productivity evaluation in early software effort estimation,” J. Softw.
Evol. Process, vol. 30, no. 12, p. e2110, Dec. 2018, doi: 10.1002/smr.2110.

https://doi.org/10.1016/j.infsof.2010.10.005
https://doi.org/10.1016/j.infsof.2011.02.004
https://doi.org/10.1109/ACCESS.2021.3139183
https://doi.org/10.1016/j.jss.2012.07.050
https://doi.org/10.1016/j.asoc.2016.05.008
https://doi.org/10.1109/ICMLA.2012.155
https://doi.org/10.1145/3239235.3239236
https://doi.org/10.3390/electronics10050592
https://doi.org/10.1007/978-3-030-63322-6_64
https://doi.org/10.1145/3193954.3193955
https://doi.org/10.1201/9781420013122
https://doi.org/10.1109/CISE.2009.5364515
https://doi.org/10.14569/IJACSA.2015.060310
https://scholar.google.co.id/scholar?hl=id&as_sdt=0%2C5&q=A.+Minkiewicz%2C+%22Use+Case+Sizing%2C%22+in+International+Forum+on+COCOMO+and+Software+Cost+Modelin%2C+2004.&btnG=
https://scholar.google.co.id/scholar?hl=id&as_sdt=0%2C5&q=A.+B.+Nassif%2C+%22Software+Size+and+Effort+Estimation+from+Use+Case+Diagrams+Using+Regression+and+Soft+Computing+Models%2C%22+The+University+of+Western+Ontario%2C+2012.&btnG=
https://doi.org/10.1007/978-3-030-63322-6_63
https://doi.org/10.1002/smr.2175
https://scholar.google.co.id/scholar?hl=id&as_sdt=0%2C5&q=Subriadi%2C+A.+Pribadi%2C+and+P.+A.+Ningrum%2C+%22Critical+Review+of+the+Effort+Rate+Value+in+Use+Case+Point+Method+for+Estimating+Software+Development+Effort%2C%22+vol.+59%2C+no.+3%2C+pp.+735-744%2C+2014.++&btnG=
https://doi.org/10.1002/smr.2110

184 International Journal of Advances in Intelligent Informatics ISSN 2442-6571
 Vol. 8, No. 2, July 2022, pp. 165-184

 Ardiansyah et al. (Optimizing complexity weight parameter of use case points estimation using particle swarm optimization)

[58] R. Silhavy, P. Silhavy, and Z. Prokopova, “Analysis and selection of a regression model for the Use Case
Points method using a stepwise approach,” J. Syst. Softw., vol. 125, pp. 1–14, Mar. 2017, doi:
10.1016/j.jss.2016.11.029.

[59] A. Ali and C. Gravino, “An empirical comparison of validation methods for software prediction models,” J.
Softw. Evol. Process, vol. 33, no. 8, pp. 1–38, Aug. 2021, doi: 10.1002/smr.2367.

[60] E. Alpaydin, Introduction to machine learning. Massachusetts: MIT press, 2014. Available at: Google Books
[61] E. Kocaguneli and T. Menzies, “Software effort models should be assessed via leave-one-out validation,” J.

Syst. Softw., vol. 86, no. 7, pp. 1879–1890, Jul. 2013, doi: 10.1016/j.jss.2013.02.053.
[62] Q. Li, Q. Wang, Y. Yang, and M. Li, “Reducing biases in individual software effort estimations,” in

Proceedings of the Second ACM-IEEE international symposium on Empirical software engineering and
measurement - ESEM ’08, 2008, pp. 223–232, doi: 10.1145/1414004.1414041.

[63] Ardiansyah, R. Ferdiana, and A. E. Permanasari, “Use Case Points based software effort prediction using
regression analysis,” in 2019 International Conference on Advanced Computer Science and information Systems
(ICACSIS), 2019, pp. 15–20, doi: 10.1109/ICACSIS47736.2019.8979851.

[64] M. Shepperd and S. MacDonell, “Evaluating prediction systems in software project estimation,” Inf. Softw.
Technol., vol. 54, no. 8, pp. 820–827, Aug. 2012, doi: 10.1016/j.infsof.2011.12.008.

[65] P. D. Ellis, The Essential Guide to Effect Sizes. Cambridge: Cambridge University Press, 2010. doi:
10.1017/CBO9780511761676

[66] J. Cohen, “A power primer.,” Psychol. Bull., vol. 112, no. 1, pp. 155–159, 1992, doi: 10.1037/0033-
2909.112.1.155.

[67] A. P. Piotrowski, J. J. Napiorkowski, and A. E. Piotrowska, “Population size in Particle Swarm
Optimization,” Swarm Evol. Comput., vol. 58, no. May, p. 100718, Nov. 2020, doi:
10.1016/j.swevo.2020.100718.

[68] Y. Shi and R. C. Eberhart, “Empirical study of particle swarm optimization,” in Proceedings of the 1999
Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), 1999, vol. 3, pp. 1945–1950, doi:
10.1109/CEC.1999.785511.

[69] I. D. Kenestie and Sholiq, “Determining Effort Rate (ER) Value for Use Case Points based Educational
Software Development Effort Estimation,” J. Tek. POMITS, pp. 1–11, 2011. Available at: Google Scholar

[70] Sholiq, T. Sutanto, A. P. Widodo, and W. Kurniawan, “Effort Rate on Use Case Point Method for Effort
Estimation of Website Development,” J. Theor. Appl. Inf. Technol., vol. 63, no. 1, pp. 209–218, 2014.
Available at: Google Scholar

[71] R. Silhavy, P. Silhavy, and Z. Prokopova, “Evaluating subset selection methods for use case points
estimation,” Inf. Softw. Technol., vol. 97, no. June 2017, pp. 1–9, May 2018, doi:
10.1016/j.infsof.2017.12.009.

[72] A. B. Nassif, D. Ho, and L. F. Capretz, “Towards an early software estimation using log-linear regression
and a multilayer perceptron model,” J. Syst. Softw., vol. 86, no. 1, pp. 144–160, Jan. 2013, doi:
10.1016/j.jss.2012.07.050.

[73] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of ICNN’95 - International
Conference on Neural Networks, 1995, vol. 4, no. 2, pp. 1942–1948, doi: 10.1109/ICNN.1995.488968.

[74] E.-G. Talbi, Metaheuristics: From Design to Implementation. Hoboken, NJ, USA: John Wiley & Sons, Inc.,
2009. Available at: Google Scholar

[75] M. Harman, “The Current State and Future of Search Based Software Engineering,” in Future of Software
Engineering (FOSE ’07), 2007, pp. 342–357, doi: 10.1109/FOSE.2007.29.

https://doi.org/10.1016/j.jss.2016.11.029
https://doi.org/10.1002/smr.2367
https://books.google.co.id/books?hl=id&lr=&id=tZnSDwAAQBAJ&oi=fnd&pg=PR7&dq=E.+Alpaydin,+Introduction+to+machine+learning.+Massachusetts:+MIT+press,+2014.&ots=F3XRdZcpvd&sig=WD79zZUoEJ9YciioccvD2QeEp7Q&redir_esc=y#v=onepage&q&f=false
https://doi.org/10.1016/j.jss.2013.02.053
https://doi.org/10.1145/1414004.1414041
https://doi.org/10.1109/ICACSIS47736.2019.8979851
https://doi.org/10.1016/j.infsof.2011.12.008
https://doi.org/10.1017/CBO9780511761676
https://doi.org/10.1037/0033-2909.112.1.155
https://doi.org/10.1037/0033-2909.112.1.155
https://doi.org/10.1016/j.swevo.2020.100718
https://doi.org/10.1109/CEC.1999.785511
https://scholar.google.co.id/scholar?hl=id&as_sdt=0%2C5&q=I.+D.+Kenestie+and+Sholiq%2C+%22Determining+Effort+Rate+%28ER%29+Value+for+Use+Case+Points+based+Educational+Software+Development+Effort+Estimation%2C%22+J.+Tek.+POMITS%2C+pp.+1-11%2C+2011.&btnG=
https://scholar.google.co.id/scholar?hl=id&as_sdt=0%2C5&q=Sholiq%2C+T.+Sutanto%2C+A.+P.+Widodo%2C+and+W.+Kurniawan%2C+%22Effort+Rate+on+Use+Case+Point+Method+for+Effort+Estimation+of+Website+Development%2C%22+J.+Theor.+Appl.+Inf.+Technol.%2C+vol.+63%2C+no.+1%2C+pp.+209-218%2C+2014.++&btnG=
https://doi.org/10.1016/j.infsof.2017.12.009
https://doi.org/10.1016/j.jss.2012.07.050
https://doi.org/10.1109/ICNN.1995.488968
https://scholar.google.co.id/scholar?hl=id&as_sdt=0%2C5&q=E.-G.+Talbi%2C+Metaheuristics%3A+From+Design+to+Implementation.+Hoboken%2C+NJ%2C+USA%3A+John+Wiley+%26+Sons%2C+Inc.%2C+2009.&btnG=
https://doi.org/10.1109/FOSE.2007.29

