
International Journal of Advances in Intelligent Informatics ISSN 2442-6571 

Vol. 9, No. 2, July 2023, pp. 187-205  187 

       https://doi.org/10.26555/ijain.v9i2.901    http://ijain.org         ijain@uad.ac.id  

Hand–object interaction recognition based on visual  

attention using multiscopic cyber-physical-social system 

Adnan Rachmat Anom Besari 

a,b,1,*

, Azhar Aulia Saputra 

a,2

, Wei Hong Chin 

a,3

, Kurnianingsih 

c,4

, 

Naoyuki Kubota 

a,5

 

a Department of Mechanical Systems Engineering, Graduate School of Systems Design, Tokyo Metropolitan University, Tokyo 191-0065, Japan 
b Department of Information and Computer Engineering, Politeknik Elektronika Negeri Surabaya, Sukolilo, Surabaya 60111, Indonesia 
c Department of Electrical Engineering, Politeknik Negeri Semarang, Jl.Prof. Sudarto, Tembalang, Semarang 50275, Indonesia 
1 anom@pens.ac.id; 2 aa.saputra@tmu.ac.jp; 3 weihong@tmu.ac.jp; 4 kurnianingsih@polines.ac.id; 5 kubota@tmu.ac.jp 
* corresponding author 

 

1. Introduction 
Rehabilitation is required for patients recovering from neurological illnesses, particularly hand stroke. 

However, roughly two-thirds of hand stroke survivors have visual impairments because of visual field 

loss, double vision, and perception issues [1]. Vision problems may lead to different adverse outcomes, 

including grasping objects because of their limited range of motion and vision. Individuals find it more 

convenient to receive rehabilitation treatment at home rather than in a hospital setting. However, 

visiting patients’ homes is difficult during the COVID-19 outbreak. Telemedicine allows therapists to 

monitor rehabilitation patients via online therapy or video visits [2]. Because of limited therapeutic staff 

or privacy concerns, patients can not use this method indefinitely. Cyber-physical-social system (CPSS) 

[3] seamlessly integrates physical and social space in cyberspace. This technology can deliver valuable 

information which not available from typical physical sensors. 

Hand movement progress in poststroke patients has been studied using cyber-physical systems (CPS) 

[4]. This study has been conducted to track individual hand therapy. Hand monitoring can be done in 
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 Computer vision-based cyber-physical-social systems (CPSS) are predicted 

to be the future of independent hand rehabilitation. However, there is a 

link between hand function and cognition in the elderly that this 

technology has not adequately supported. To investigate this issue, this 

paper proposes a multiscopic CPSS framework by developing hand–object 

interaction (HOI)  based on visual attention. First, we use egocentric vision 

to extract features from hand posture at the microscopic level. With 

94.87% testing accuracy, we use three layers of graph neural network 

(GNN) based on hand skeletal features to categorize 16 grasp postures. 

Second, we use a mesoscopic active perception ability to validate the HOI 

with eye tracking in the task-specific reach-to-grasp cycle. With 90.75% 

testing accuracy, the distance between the fingertips and the center of an 

object is used as input to a multi-layer gated recurrent unit based on 

recurrent neural network architecture. Third, we incorporate visual 

attention into the cognitive ability for classifying multiple objects at the 

macroscopic level. In two scenarios with four activities, we use GNN with 

three convolutional layers to categorize some objects. The outcome 

demonstrates that the system can successfully separate objects based on 

related activities. Further research and development are expected to support 

the CPSS application in independent rehabilitation.  
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two ways: contact and noncontact. Most studies employ the contact method, where patients wear a 

device in their hands. In rehabilitation research, wearable hand devices are commonly used as contact 

methods. It provides accurate data by utilizing a variety of sensors, including flex, accelerometers, and 

hall-effect sensors [5]. However, this strategy has drawbacks, such as high equipment costs and 

uncomfortable use. 

Consequently, scientists are investigating new possibilities using noncontact techniques, such as low-

cost computer vision systems. Still, suppose this method does not consider some social aspects, such as 

dealing with privacy issues, getting justification from a clinical background, and understanding user 

experiences to provide better benefits. In that case, it may fail in user acceptance. Noncontact techniques 

for detecting human action recognition [6] still deal with complicated processing, multiple 

interpretations, and privacy concerns. Hence, an egocentric vision like smart glasses is required to address 

these issues [7]. Egocentric vision has the advantages of reducing privacy concerns, monitoring mobile 

devices, and attracting attention during activities. Hand–object interaction (HOI) recognition using 

egocentric vision should be studied further in rehabilitation applications [8].  

HOI recognition is increasingly being used in post-stroke therapy to track patients’ progress [9]. This 

recognition study outperforms full-body human interaction detection. This vision analyzes images 

captured by an on-body camera, such as smart glasses or an action cam. Still, HOI recognition is more 

straightforward because only hands and objects are detected, especially when using egocentric vision 

[10]. However, when using this vision, the expansion of HOI recognition encounters several challenges, 

particularly in 2D images. First, researchers frequently encounter data on hand and object invalid contact 

detection. This issue arises because 2D image data cannot express depth data. As a result, the system 

could not pinpoint the precise location of the hand and objects. Numerous approaches can address the 

issues, such as learning with the interaction point [11]. However, these approaches are limited to 

recognizing a single object type, and problems may arise when detecting many objects. 

Furthermore, the application of this method is limited to identifying hands and objects but not 

considering persons with visual impairment. Because of their visual impairment, patients struggle to 

make physical hand movements and apply their recognition ability. The egocentric vision that focuses 

on HOI recognition has the potential to monitor both physical and cognitive rehabilitation 

simultaneously. This vision system, for example, could use hand skeletal estimations and the kinematic 

finger model to assess the person’s physical condition. Besides that, specific cameras are outfitted with 

eye tracking to gather data on the user’s visual attention. Gaining user experience and developing 

cognitive abilities are required. Therefore, while handling objects, it’s crucial to pay attention to hand 

movements and vision. 

The study’s primary contributions are: (1) We apply egocentric vision and feature extraction to 

observe hand posture at the microscopic level. We use three layers of graph neural network (GNN) as a 

feature-based classifier to differentiate 16 grasp poses when interacting with objects. (2) At the 

mesoscopic level, we use active perception to validate HOI recognition with eye tracking in the task-

specific reach-to-grasp cycle. To identify the connection of the hand with an object, we use the distance 

between the fingertips and the center of an object as inputs to a multi-layer gated recurrent unit 

(MGRU) based on recurrent neural networks (RNN) architecture. (3) We implement a cognitive ability 

at the macroscopic level by incorporating visual attention. In two different scenarios, we use the object 

relation as the input of a GNN node classifier with three convolutional layers to separate objects based 

on related activities. This method’s output indicates the object’s relationship in activities based on 

personal behavior. 

The structure of this article is as follows. Section 2 discusses the research in hand rehabilitation 

monitoring and our proposed method for improving HOI recognition based on visual attention. Section 

3 discusses the findings and assesses the efficacy of the proposed framework. Finally, Section 4 discusses 

the research’s findings and some future directions. 
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2. Method 
Recent research trends in hand movements analysis using egocentric vision have been widely used to 

advance the field of rehabilitation. Some researchers are interested in introducing the patient’s hand 

behavior, for example, by using fingertip detection when using a therapy ball [12], monitoring hands in 

spinal cord injury patients [13]–[15], and stroke patients [9] [16]. Other research focuses on 

computational problem solutions, such as the high cost of additional equipment and pixel-level 

observations [17] and overcoming occlusion, inference, and contact [18]. Many studies employ 

egocentric approaches, like GoPro wearable cameras or datasets like Deeplab-VGG16, EgoHand, EPIC-

ADL, and multi-datasets [19]. Existing research focuses solely on physical hand evaluation. It is 

uncommon to find studies that combine physical hand and cognitive abilities [20], such as in hand-eye 

coordination research for predicting the “next active object” shortly [21]. Table 1 shows the research on 

hand rehabilitation with egocentric vision in the last 5 years. 

Table 1.  The research of hand rehabilitation with egocentric vision (2018–2022) 

No. Research Application (Sensor Types/Dataset) Methods 

1. 

Qurratu’aini 

et al. [12] 

Fingertips gripping a therapy ball for hand 

recovery. (HD Logitech C615 Web Camera 

with 1920 × 1080) 

Speeded Up Robust Features (SURF) 

descriptors, K-mean clustering, and Support 

Vector Machine (SVM). 

2. Li et al. [17] 

Overcoming expensive equipment and pixel-

level annotations. (Deeplab-VGG16 Dataset) 

Un-supervised hand segmentation using a 

fully convolutional neural network (FCN). 

3. 

Likitlersuang 

et al. [13] 

Monitoring spinal cord injury patients' hand 

usage at home. (GoPro Hero4 with 1920 × 

1080/30fps) 

Fast R-CNN (hand detection), Contour 

Selection (hand segmentation), and 

Functional Measure Extraction (interaction 

detection). 

4. 

Visée et al. 
[14] 

Home monitoring of SCI patient’s upper 

limb function. (GoPro Hero4 with 1920 × 

1080/30fps) 

YOLOv2 (hand detection), DAT (hand 

tracking), and Random Forest Classifiers 

(interaction detection). 

5. Xu et al. [16] 

Developing a low-cost technology to monitor 

stroke patient hand motions and gestures. 

(EgoHand datasets) 

CNN-based hand motion and gesture 

detection. 

6. Tsai et al. [9] 

Evaluating hand functions after a stroke. 

(GoPro Hero 5 with 1280 × 720/30fps) 

YOLOv2 (hand detection), UNET (hand 

tracking); Random Forest Classifiers 

(interaction detection). 

7. 

Jiang et al. 
[21] 

Visual attention and hand posture to predict 

the next active object. (EPIC and ADL 

Dataset) 

The deep neural network model combines 

visual and hand cues. 

8. 

Bandini et al.  
[16] 

Assessing hand usage at home after a cervical 

spinal cord injury. (GoPro Hero 5 Black 

(1280 × 720/30fps) 

Deep learning model (hand localization), 

HOID-Net (interaction detection), statistical 

analysis. 

9 

Lee et al. 
[18] 

Detecting hand motion tracking with 

robustness against occlusion, interference, 

and contact. (Stereo camera, intelligent 

gloves, and IMU) 

Visual-Inertial Skeleton Tracking (VIST) 

10. 

Our 
proposed 
method 

Develop HOI based on visual attention 
using multiscopic CPSS for physical-

cognitive rehabilitation support. (Tobii Pro 
3 Eye tracker 1920 × 1080/30fps) 

GNN graph classifier (grasp pose 
classification), MGRU (multivariate time-

series for HOI classification), and GNN 
node classifier (object classification). 

 
Previous work in our laboratory focused on nonverbal communication for socially integrated robot 

companions using directed learning [22]. This study examines person’s intents and abilities when 

reaching for and gripping objects. However, determining individual’s preferences for using the robot 

companion as a third person is difficult [23]. Occlusion limits the third-person perspective, which 

depends on many different viewpoints. From an egocentric standpoint, it is critical to support the current 

system. With a case study on the Chopsticks Manipulation Test, we examined the significance of 

combining finger joint angle estimation and a visual attention measurement in hand rehabilitation [24]. 

Our previous work used a multiscopic method to address dynamic locomotion in a legged robot [25] 
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and simulation for human-robot interactions [26]. We propose a multiscopic approach for developing a 

CPSS for HOI recognition based on visual attention based on this experience. Fig. 1 depicts the 

framework of HOI recognition based on visual attention using multiscopic CPSS. The subsections 

explain GNN, microscopic, mesoscopic, and macroscopic levels. Each subsection outlines methodology, 

algorithm, and development in detail. 

 

Fig. 1. The framework of HOI recognition is based on visual attention using multiscopic CPSS 

Promoting independent hand rehabilitation from the ground up is critical, from the physical to the 

cognitive. This study presents the CPSS framework, which employs the multiscopic method to address 

the following technical issues: (a) Classify hand data at the microscopic level utilizing feature extraction 

abilities; data from vision sensors will be the input for this level. Using symbolic information, we develop 

a feature extraction capability to estimate hand and finger posture. (b) Using active perception ability, 

extract HOI at the mesoscopic level. At the mesoscopic level, this information will be used as input. As 

a knowledge graph, we will build active perceptions’ ability to categorize HOI. (c) Discover the object 

relationship via macroscopic cognition ability. At this level, the graph data will be used as input. We 

hone our cognitive abilities to demonstrate recommendations based on human behavior. 

2.1. Graph Neural Networks 
GNN is neural network architecture used to learn the representations of graphs data and has become 

a popular learning model for prediction tasks on nodes, graphs, and links. The basic idea of GNN is to 

learn suitable graph data representation for neural networks [27]. Before we talk about GNN, we should 

look at the basic mathematics of graph structure data in computer science.  A graph 𝐺𝐺 can be a part of 

set atributed graphs 𝒢𝒢. GNN use all graph information as an input, including the node features and the 

connections stored in the adjacency matrix. A graph 𝐺𝐺 is defined by the following equation: 

𝐺𝐺 = (𝑉𝑉,𝐸𝐸,𝑋𝑋), 𝐺𝐺 ∈ 𝒢𝒢   (1) 

Where 𝑉𝑉 = {𝑣𝑣1, … , 𝑣𝑣𝑛𝑛} is a set of nodes and 𝐸𝐸 = �𝑒𝑒𝑎𝑎,𝑏𝑏, . . . , 𝑒𝑒𝑖𝑖,𝑗𝑗� is a set of ordered couples representing 

the connection between two nodes belonging to 𝑉𝑉. Each node comes with 𝑋𝑋 = {𝑥𝑥𝑣𝑣}  as a set of node 

attributes where 𝑣𝑣 ∈ 𝑉𝑉. GNN output new representation called embeddings for each node. These node 

embeddings contain the structural and feature information of other nodes in the graph. The embeddings 

can finally be used to perform predictions. We embed each node through several rounds of message 

passing. This paradigm can be broken down into (a) initialization, (b) aggregation, and (c) update. We 

initialize each node 𝑣𝑣 at layer 𝑘𝑘 = 0 as the first round of message passing with the following equation: 
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ℎ𝐺𝐺,𝑣𝑣
(0) = 𝑥𝑥𝑣𝑣, 𝑣𝑣 ∈ 𝑉𝑉   (2) 

Suppose ℎ𝐺𝐺,𝑣𝑣
(𝑘𝑘)  represents the node embeddings for some vertex 𝑣𝑣 at layer 𝑘𝑘-th, where node feature 

𝑥𝑥𝑣𝑣 of all nodes 𝑣𝑣 ∈ 𝑉𝑉 in graph 𝐺𝐺. Second, we do the aggregation function for each node 𝑣𝑣 with the 

following equations: 

𝑚𝑚𝐺𝐺,𝑣𝑣
(𝑘𝑘) = 𝑓𝑓𝐴𝐴𝐴𝐴𝐴𝐴

(𝑘𝑘) �ℎ𝐺𝐺,𝑢𝑢
(𝑘𝑘−1)�, 1 ≤ 𝑘𝑘 ≤ 𝐾𝐾.   (3) 

= 1
|𝑁𝑁(𝑣𝑣)|

∑ 𝑊𝑊𝑖𝑖,𝑗𝑗ℎ𝐺𝐺,𝑢𝑢
(𝑘𝑘−1)

𝑢𝑢∈𝑁𝑁(𝑣𝑣) , 𝑖𝑖 ≠ 𝑗𝑗, 1 ≤ 𝑖𝑖, 𝑗𝑗 ≤ |𝑉𝑉|.   (4) 

We utilize the next step of the neural message passing scheme where we localized node 𝑣𝑣 from their 
neighbors 𝑁𝑁(𝑣𝑣). The node feature ℎ𝑢𝑢

(𝑘𝑘−1) of all nodes 𝑢𝑢 ∈ 𝑁𝑁(𝑣𝑣) in graph 𝐺𝐺 are iteratively aggregating 
and stored in 𝑚𝑚𝐺𝐺,𝑣𝑣

(𝑙𝑙)  as aggregation function 𝑓𝑓𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
(𝑘𝑘) . The 𝑁𝑁(𝑣𝑣)⊂V  denotes the neighborhood of 

𝑣𝑣 ∈ 𝑉𝑉. The aggregation function performs a significant role and is shared by all nodes within an 
iteration. An average, degree-normalized sum or coordinate-wise min or max may also replace the 
sum.   

Third, we employ the last step of the neural message passing scheme where the node feature ℎ𝐺𝐺,𝑣𝑣
(𝑘𝑘−1)

 

of all nodes 𝑣𝑣 ∈ 𝑉𝑉 in graph 𝐺𝐺 are iteratively updated by the aggregating result from their neighbors 

𝑁𝑁(𝑣𝑣) with the following equations: 

ℎ𝐺𝐺,𝑣𝑣
(𝑘𝑘) = 𝑓𝑓𝑈𝑈𝑈𝑈

(𝑘𝑘)�ℎ𝐺𝐺,𝑣𝑣
(𝑘𝑘−1),𝑚𝑚𝐺𝐺,𝑣𝑣

(𝑘𝑘)�.   (5) 

= 𝜎𝜎�𝑊𝑊𝑖𝑖,𝑖𝑖ℎ𝐺𝐺,𝑣𝑣
(𝑘𝑘−1) + 𝑚𝑚𝐺𝐺,𝑣𝑣

(𝑘𝑘)�, 1 ≤ 𝑖𝑖 ≤ |𝑉𝑉| .   (6) 

The update function 𝑓𝑓𝑈𝑈𝑈𝑈
(𝑘𝑘) is usually a weighted combination with learnable weight matrices. The 

update functions are implemented as a fully connected layer that alternates linear transformations 
and coordinate-wise nonlinear activations 𝜎𝜎 such as ReLU, tanh, or sigmoid. Fig 2 shows the graph 
representation including the graph with node feature and message passing mechanism. 

  

(a) graph with node feature (b) message passing mechanism 

Fig. 2. Graph representation 

The final node representation ℎ𝐺𝐺,𝑣𝑣
(𝐾𝐾)

 is the last layer, possibly concatenated with a linear classifier. If 

we want to make a graph-level prediction, all node embeddings can be aggregated into a unified graph 

embedding 𝐻𝐻𝐺𝐺
(𝐾𝐾)

 with 𝑓𝑓𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅. The most popular method is to take the average of node embeddings. We 

add up all the node features of all nodes ℎ𝐺𝐺,𝑣𝑣
(𝐾𝐾) in the 𝐾𝐾-th layer and then dividing by the number of 

nodes,  as the following equation: 

𝐻𝐻𝐺𝐺 = 𝑓𝑓𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅�ℎ𝐺𝐺,𝑣𝑣
(𝐾𝐾)�.   (7) 
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= 1
|𝑉𝑉|
∑ ℎ𝐺𝐺,𝑣𝑣

(𝐾𝐾)
𝑣𝑣∈𝑉𝑉 .   (8) 

In the end, we use a linear transformation based on a fully connected layer with 𝑊𝑊𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 as weight 

projection and arg max function to determine which class corresponds to the graph input with the 

highest probability, as the following equation: 

𝑦𝑦𝑖𝑖 = 𝐻𝐻𝐺𝐺𝑊𝑊𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝   (9) 

𝑦𝑦� = 𝑎𝑎𝑎𝑎𝑎𝑎max
𝑖𝑖
𝑦𝑦𝑖𝑖   (10) 

We utilize Pytorch Geometric (PyG) as the GNN development framework. Our design uses high-

level graph computation with PyG to teach scene interpretation. Because our graph classification datasets 

are small, we do a mini-batch for the graphs before inputting them into a GNN to guarantee full GPU 

utilization. PyG automatically takes care of batching multiple graphs into a single giant graph. 

2.2. Microscopic Level: Feature Extraction Ability 
 The experimental setup and hand pose classification comprise the feature extraction ability at the 

microscopic level. We use egocentric vision with smart glasses facing the table and the objects. A 

participant facing down directly at the object wore Tobii Pro Glasses 3 smart glasses [28]. The smart 

glasses have a 1920 × 1080-pixel resolution and a frame rate of 25 frames per second. To capture hands 

and objects, this camera is used in 16:9 scene camera format with a wide field of view of 106° with 95° 

horizontal and 63° vertical. Visual attention or awareness is predicted to be appropriately detected when 

the interaction between the hand and the object falls within the field of view range.  

We used the YOLOv5 [24] model to extract the object’s location from picture frames represented by 

the bounding box and labels. To improve this detection, the Simple Online Real-time Tracking (SORT) 

[29] technique was used. This framework excels at representation learning and applying it to object 

recognition and tracking applications. We employ MediaPipe [30] hand tracking to obtain estimated 

hand posture data. A construction designed specifically for complex perceptual channels that use rapid 

real-time inference. We only utilize hand posture prediction as supporting data to validate HOI 

recognition in our approach. Object detection and hand estimation provide us with two pieces of 

information. First, we can look for an object in a specific image, and then we can pinpoint the precise 

location of the hand and its feature in the two-dimensional image. Fig. 3 depicts the experiment’s design, 

which includes the experimental setup of the systems and the implementation of an egocentric view of 

HOI recognition with visual attention. 

 

(a) Experimental setup (b) Egocentric vision with attention 

Fig. 3. Design of the experiment 
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Many hand grasp variants and orientations are collected. We standardize the angular data to eliminate 

outliers. Then, we perform three positions in the vector-to-joint-angle conversion to obtain each finger 

feature. This transformation is accomplished by converting these three-dimensional coordinate points 

into an angle. Below is the equation used to calculate an angle from two vectors in three-dimensional 

coordinates: 

𝜃𝜃 =  𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 � 𝐴𝐴𝐴𝐴�����⃗ ∙𝐵𝐵𝐵𝐵�����⃗

�𝐴𝐴𝐴𝐴�����⃗ ��𝐵𝐵𝐵𝐵�����⃗ �
�   (11) 

We can compute 𝐴𝐴𝐴𝐴�����⃗  and 𝐵𝐵𝐵𝐵�����⃗  if we have the coordinates for three points (A, B, and C). The angle 

obtained by 𝐴𝐴 → 𝐵𝐵 → 𝐶𝐶
 
employing the right-hand rule from B continues using dot products, whereas 

�𝐴𝐴𝐴𝐴�����⃗ � determines the length of 𝐴𝐴𝐴𝐴�����⃗ , �𝐵𝐵𝐵𝐵�����⃗ � determines the size of 𝐵𝐵𝐵𝐵�����⃗ , and θ (theta) is the angle formed 

by two vectors. And then, we can get the dot product 𝐴𝐴𝐴𝐴�����⃗ ∙ 𝐵𝐵𝐵𝐵�����⃗  as well as the lengths �𝐴𝐴𝐴𝐴�����⃗ � and �𝐵𝐵𝐵𝐵�����⃗ �. 

After all, by replacing the equation, we rearrange the formula for determining θ. These joint angle values 

are used for features in the data graph. We represent the relationship between joints in a directed graph 

(digraph). 

We use this GNN to classify 16 manipulation grasping poses. We acquire 130 data for every grasp 

pose in various orientations. Thus, we have 2080 graphs with divisions of 1600 for training and 480 for 

testing. Our data graph consists of 16 nodes consisting of all nodes connected by 15 edges. We utilize a 

graph input layer consisting of 15 joint angle nodes and one wrist node as the center of the finger 

connection. The layer of output consists of 16 nodes representing grasping posture. We train a final 

classifier on graph embedding. Before applying the final classifier on top of the graph, we employ 

Rectifier Linear Unit (ReLU) activation function to create localized node embeddings. We use three 

layers of GNN with the same training cycle: construct an optimizer, feed the model inputs, compute the 

loss, and optimize using autograd. A linear transformation layer and argmax function are used to classify 

and determine which class of grasp posture corresponds to the input with highest probability. 

We discuss training and testing outcomes in the results and discussion section. Fig. 4 shows the 

microscopic level design using a three-layer GNN for hand pose classification. 

 

Fig. 4. The microscopic level design uses a three-layer GNN for hand pose classification 

2.3. Mesoscopic Level: Active Perception Ability 
This subsection describes the phases of active perception ability development at the mesoscopic 

level. These phases are object-centered coordinate transformation and validation of HOI recognition 
using the task-specific reach-to-grasp cycle. We accomplished a coordinate transformation centered 
on the object to simplify the validation procedure and get fewer data [31]. The goal of centering the 
item is to relocate the image coordinates’ initials (0,0) to the middle of the object. We obtain a new 
center and identify the position of the new coordinates for every new frame. This method uses for 
any pixel (𝑥𝑥𝑛𝑛,𝑦𝑦𝑛𝑛) in the image plane. The joint finger position in the new coordinate plane contains 
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the object’s length (𝑎𝑎0) and width (𝑏𝑏0). The inner and outer borders of the object are acquired using 
this additional bounding box location information. Then, using the Pythagorean equation, we can 
estimate the distance between a point (𝑎𝑎𝑛𝑛,𝑏𝑏𝑛𝑛) to the center of the object coordinates (0,0). The 
distance 𝑑𝑑𝑛𝑛 must be determined between the fingertip or finger joint and the object-centered 
coordinate. To get these properties, we then utilize 𝑎𝑎𝑛𝑛, 𝑏𝑏𝑛𝑛, and 𝑑𝑑𝑛𝑛 to validate the HOI transformation. 

Validation of HOI recognition is restricted to the reference grasp of the approved hand usage section 

in ICF for hand rehabilitation, notably in the case of the reach-to-grasp cycle [32]. The procedure has 

four distinct tasks, each of which is defined separately. The “wonder” task, which indicates that the user 

moves the hand without reaching for the object, is the first task displayed as the starting status. The 

second task is the “reach” task, which requires the subject to extend his arm and open his hand to the 

object. The third task is the “grasp,” in which the participant holds the object in any position. The task 

switches to a new state called transport when the user moves the holding object. The fourth task is the 

“released” task, which occurs when the individual pulls their open palm away from the item. Fig. 5 

compares the traditional method to object-centered coordinates with visual attention in HOI 

recognition. 

  

(a) conventional interaction point 

(b) object-centered coordinate with visual attention 

and fingertips distance 

 

(c) phases of the task-specific reach-to-grasp cycle 

Fig. 5. The comparison method 

In our initial stage, we utilize a single object as a reference. We picked a medium-sized cup with 

various hand postures. We use ten features: five elements of each fingertip’s distance to the center of the 

object (𝑑𝑑𝑜𝑜,𝑑𝑑1,𝑑𝑑2,𝑑𝑑3,𝑑𝑑4), four elements of each fingertip’s distance to the thumb fingertip 

(𝑒𝑒1, 𝑒𝑒2, 𝑒𝑒3, 𝑒𝑒4), and one visual attention (𝑓𝑓0). We obtain 50 frames per sample using our computer specs, 

which becomes our benchmark for estimating the length of a data stream. We analyze 10 data points in 

each picture capture series to obtain a real-time result. In our neural networks, we use this data as input 

for the learning system.  

We use an RNN architecture to classify multivariate time series using an MGRU [32]. The total 

number of layers, input size, hidden size, and the number of recurrent layers are some variables that can 
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be changed in this design. To compute each element in every layer of an MGRU, we calculate as the 

following functions: 

𝑟𝑟𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑖𝑖,𝑟𝑟𝑥𝑥𝑡𝑡 + 𝑏𝑏𝑖𝑖,𝑟𝑟 + 𝑊𝑊ℎ,𝑟𝑟ℎ(𝑡𝑡−1) + 𝑏𝑏ℎ,𝑟𝑟),   (12) 

𝑧𝑧𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑖𝑖,𝑧𝑧𝑥𝑥𝑡𝑡 + 𝑏𝑏𝑖𝑖,𝑧𝑧 + 𝑊𝑊ℎ,𝑧𝑧ℎ(𝑡𝑡−1) + 𝑏𝑏ℎ,𝑧𝑧),   (13) 

𝑛𝑛𝑡𝑡 = 𝜎𝜎ℎ(𝑊𝑊𝑖𝑖,𝑛𝑛𝑥𝑥𝑡𝑡 + 𝑏𝑏𝑖𝑖,𝑛𝑛 + 𝑟𝑟𝑡𝑡 ∗ (𝑊𝑊ℎ,𝑛𝑛ℎ𝑡𝑡−1 + 𝑏𝑏ℎ,𝑛𝑛)),  (14) 

ℎ𝑡𝑡 = (1 − 𝑧𝑧𝑡𝑡) ∗  𝑛𝑛𝑡𝑡 + 𝑧𝑧𝑡𝑡 ∗ ℎ𝑡𝑡−1.  (15) 

The time is symbolized by 𝑡𝑡. The hidden states are represented by ℎ𝑡𝑡; the inputs are characterized by 

𝑥𝑥𝑡𝑡, the hidden states of the layers at 𝑡𝑡 − 1 is expressed by ℎ𝑡𝑡−1 or the early hidden states at the initial 

time 𝑜𝑜, and 𝑟𝑟𝑡𝑡, 𝑧𝑧𝑡𝑡, 𝑛𝑛𝑡𝑡 are the resets, updates, and new gates. The sigmoid function is represented by and 

∗ symbolized by the product. In the MGRU, the input 𝑥𝑥𝑡𝑡
(𝑙𝑙)

 of the 𝑙𝑙-th layer (𝑙𝑙 >= 2) is the hidden 

states ℎ𝑡𝑡
(𝑙𝑙−1)

 of the previous layers multiplied by dropout, 𝛿𝛿𝑡𝑡
(𝑙𝑙−1)

 where each 𝛿𝛿𝑡𝑡
(𝑙𝑙−1)

 is a Bernoulli random 

variable 0 with a probability of dropout. Fig. 6 illustrates the mesoscopic level design for multivariate 

time-series classification using MGRU-RNN. 

 

Fig. 6. The mesoscopic level design for multivariate time-series classification using MGRU-RNN 

After building the MGRU-based RNN architecture, the next step is to generate a dataset to evaluate 

each action on HOI recognition. For each sequence, we collect 1–2 seconds of video with a minimum 

of 50 frames per sample. We compiled a collection of 100 videos of hands interacting with various objects. 

We shot the video using the following division: 25 data for the wonder, 25 data for the reach, 25 data 

for the grabbing job involving transportation, and 25 data for the release. We randomly divided the 

training and validation data into an 80:20 ratio. We decided this distinction was appropriate because the 

data we obtained was subjective. This experiment includes a responder. The system utilizes 80 movies 

and 20 videos for instruction. The training and testing outcomes are then discussed in the results and 

discussion section. 

2.4. Macroscopic Level: Cognitive Ability 
This subsection investigates the active perception ability development at the mesoscopic level. Using 

vision-based data collection, we create datasets for an object detection algorithm. The goal is to compile 

a list of captured objects at a given time. The Tobii Pro eyewear eye tracker sensor analyzes how the 

human eye responds to different environmental stimuli. Two scenarios are used to demonstrate human 

interaction with items found in everyday life. The scenario includes table activities, such as eating and 
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working. This experiment utilizes eleven different objects. In each scenario, we choose a participant to 

perform these exercises in sequence for approximately 5 minutes. Every time, the camera records these 

interactions and stores them in the Neo4j graph database. We create a system that generates a network 

of nodes and their interactions. The system computes each item’s frequency of occurrence and 

relationships with others. The system then deduces the relationship between the objects and adds them 

to the graph's edge components. Fig. 7 depicts the lifelog graph dataset generation as the input of the 

macroscopic level. 

  

(a) attention to a laptop (b) attention to a cup and spoon 

  

(c) interaction with a spoon (d) interaction with a cup 

Fig. 7. Lifelog graph dataset generation at macroscopic level 

The collected data will be converted into graph data structures. This data representation is 

increasingly being used to detect connections between nodes. When two objects are connected, the edges 

show how they relate. Symbolic logic is used to develop a graph. This paradigm’s information can be 

processed by computer programs and stored in graph database structures. As in previous works, we create 

a graph structure from the collected data to demonstrate the relationship [32]. The spring model is used 

to create a graph structure from this data. The features can then be assigned to network nodes and edges. 

GNN recently broadened the scope of datasets using graph-based topologies. We use Kipf and Welling’s 

approach to the GNN convolutional framework to perform node classification [33]. The convolution 

layer is implemented by passing in the node feature representation and the graph connectivity 

representation. The macroscopic level design for object classification using the GNN node classifier with 

three convolutional layers is shown in Fig. 8. 

 

Fig. 8. The macroscopic level design for object classification using the GNN node classifier with three 

convolutional layers 
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We initialize the building blocks and define the flow of our network as a forward function. We 
present three convolution layers that aggregate 3-hop neighborhood information around each node. 
This layer reduces the node feature dimensionality from the number of the node to the number of the 
class (i. e. ,11 → 4 → 4 → 2). Tanh nonlinearity is used to improve each convolutional layer. After 
that, we apply a single linear transformation as a classifier to map our nodes to the classes. We return 
both the final classifier output and the final node embeddings produced by the GNN convolution 
layer. The node embeddings are then processed by passing the initial node feature 𝑋𝑋 and graph 
connectivity information 𝑉𝑉 to the model and visualizing with two-dimensional embeddings. It 
generates an embedding of nodes that closely resembles the structure of the graph before training our 
model weights. Nodes of the same color are already closely clustered in the embedding space. Before 
training, the weights of our model are completely randomized. This indicates the conclusion that 
GNNs introduce a solid inductive bias, leading to similar embeddings for nodes close to each other 
in the input graph.   

We train our network parameters using information about the activities of each node in the graph. 

We train the model by adding some objects with labels. Because our model is differentiable and 

parameterized, we observe how the embeddings react. We define a semi-supervised or transductive 

learning procedure by training against one node per class but are allowed to use the complete input graph 

data. We use a loss criterion to define our network architecture and start a gradient optimizer. Each 

round consists of a forward and backward pass to compute the gradient parameters of the loss derived 

from the forward pass. We compute node embeddings for all of our nodes, but only the training nodes 

are used to calculate the loss. This is implemented by filtering the output of the classifier out and ground-

truth labels data to only contain the nodes in the training mask. The GNN model’s three convolutional 

layers successfully separate the objects and classify the majority of the nodes.  

This experiment focused on object classification in our everyday lives. The scenario creates a graph 

of ten daily items and their relationships in two scenarios of four activities. Next, the object is divided 

into two groups. In this semi-supervised learning scenario, only a person and single objects are labeled. 

Next, we discuss the training and testing outcomes in the results and discussion section. 

3. Results and Discussion 
This part describes the results obtained at the microscopic, mesoscopic, and macroscopic levels. Then, 

we discuss the key points that must be emphasized in the current multiscopic system development for 

future improvement. 

3.1. Discussion on Microscopic Level 
We have developed a microscopic level by designing feature extraction ability using an egocentric 

vision to observe hand and finger posture. The GNN learning results for classifying 16 grasp poses in a 

directed graph structure were reported. During training, the grasp acquisition collects input from the 

system. The loss was less than 0.1 after 1000 epochs. The experiment result demonstrated that the GNN 

for supervised classification is considered enough to be discussed. The performance of the classification 

is then validated during testing. The approach integrates the testing dataset into the model. GNN graph 

classifiers are evaluated by comparing the accuracy of our model’s predictions to traditional models such 

as multi-layer perceptron (MLP). The confusion matrix of grasp poses classification at the 1000

th

 epoch 

of GNN compared to MLP is shown in Fig. 9. 

All training for the GNN and MLP architectures has been completed for categorization. We used 

the learning outcomes model in the testing dataset to detect grasp posture. The testing accuracy for the 

16 grasps pose using the GNN model is 94.87%. This result outperformed the accuracy of the MLP 

network, which scored 78.75% in our previous work [34]. This discovery demonstrates that the gathered 

dataset of grasp postures contains essential characteristics. We could see that MLP is considered to fail 

to recognize three classes properly, namely, in classes 3, 4, and 5 (adducted thumb, light tool, thumb-4 

finger). The results show that adding a three-layer GNN to the MLP can improve it. This result indicates 

that GNN has a pretty good accuracy value, between 0.8 to 1, to classify 16 grasp poses. However, there 

is no way to know how well the model has trained each hand grasp posture. We must test the model on 
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diverse datasets to estimate its success rate. Hence, we must first decide whether we need power or 

precision to compare each grasp. These assignments have a variety of similar grab poses. For future 

developments, the deep learning application in grasp analysis requires hyperparameter optimization. 

Detailing specific grab postures might boost their accuracy. 

 
(a) MLP testing accuracy (77.75%) 

 
(b) GNN testing accuracy (94.87%) 

Fig. 9. The confusion matrix of grasp poses classification at the 1000

th

 epoch 

We summarize the basics microscopic level. It is reported in this section that the grasp pose 

categorization uses angle features. The egocentric vision with a single camera and eye tracker sensor 

module produced a homogeneous hand skeleton model in the form of a directed graph structure. The 

grasping posture was observed while the hand interacted with the item that generated the data. The data 

was collected and covered into angular attributes. The suggested approach was then tested using real-

world grab position datasets. The categorization of grasp poses has been tested in a real-time application. 

Personal datasets, particularly from rehabilitation patients, are required to recognize grasp posture with 

multiple options for practical applications. In the future, we will employ the suggested technology to 

acknowledge a person’s behavior when grasping the object in rehabilitation. 
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3.2. Discussion on Mesoscopic Level 
Several experiments were carried out to test the proposed frameworks at the mesoscopic level. First, 

we conducted a single-participant task-specific reach-to-grasp cycle experiment. We extended the 

egocentric vision feature extraction capabilities discovered in our earlier research [34]. To make it easier 

to extract these characteristics, we used object-centered coordinate transformation to make it simple to 

extract these characteristics. Nonetheless, significant technical issues with the extraction occurred 

throughout the system’s deployment. The first issue we discovered was that MediaPipe’s hand position 

evaluation predicted only one frame. Object identification using YOLOv5 in conjunction with object 

tracking produces less accuracy in certain gripping poses because it does not use previous data. Hand and 

finger tracking with estimation filters, such as those found in the Leap Motion Controller [35], could 

be used to address this issue. Another issue is that the collected data is in 2D pixel units, whereas the 

egocentric approach is in three dimensions. Despite its limitations, the RGB camera may provide 

consistent results if the captured range is as far as the hand can reach, eliminating the need for precise 

data, such as millimeters. As a result, additional research may be conducted to improve the spread of 

this low-cost application. 

Second, we evaluate the testing results regarding active perception ability in the task-specific reach-

to-grasp action. We trained three RNN models five times: vanilla-RNN, MGRU, and long short-term 

memory (LSTM). With an average training time of 13.03 seconds (20.48 seconds), the MGRU is 

expected to outperform the RNN and LSTM in the 50th epoch. All RNN-based learning systems are 

well classified. The system’s accuracy yields the best recognition results, with MGRU averaging 97.0% 

and 94.0% for LSTM. In this experiment, the MGRU outperformed the standard RNN. MGRU uses 

fewer tensor operations and takes less training time than LSTM. The results of the three RNN-based 

models, however, are nearly identical. In real-time testing, the average accuracy of MGRU is 90.75% 

and LSTM is 77.75%. The confusion matrix of HOI recognition at the 50

th

 epoch of MGRU compared 

to LSTM is shown in Fig. 10. 

  

(a) LSTM (b) MGRU 

Fig. 10. The confusion matrix of HOI recognition at the 50

th

 epoch 

We investigate active perception capability by using an MGRU-based RNN to solve a multivariate 

time-series classification problem. By benchmarking multivariate time-series classification studies, this 

MGRU solves the vanishing and rising gradient problem of traditional RNNs [36]. MGRU is rated 

higher than vanilla-RNN and LSTM. Several studies show that for a simple model, the MGRU model 

integrates quickly and improves time-series identification performance. Compared with traditional 

algorithms, like the RNN and the LSTM, this learning technique improves accuracy. Even though we 

only use a few features for training, we achieve adequate accuracy. 

The overall mesoscopic level is summarized. For the task-specific reach-to-grasp cycle, we 

investigated visual attention to obtain information about hand action from objects. In this study, a new 

concept for independent rehabilitation in a patient with grasping and vision problems was developed. To 
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investigate HOI in real-world activities, we developed an egocentric viewpoint. Using active perception 

and hand skeleton model estimation, we successfully created object grasp detection. Then, we used RNN 

in conjunction with an MGRU-based architecture to classify essential hand activities. We analyzed our 

approach using a new dataset for object-grasping behavior. Our research has shown that our proposed 

method accurately verifies HOI recognition. In the future, we will work with the recommendation 

system [37] to solve nonstandard grasp pose and object affordance problems. We hope that this study 

will be used as the foundation of the macroscopic level for diverse and multi-object hand rehabilitation. 

3.3. Discussion on Macroscopic Level 
We present the macroscopic level learning stage findings in this subsection. We discovered that a 

GNN algorithm is intended to learn the graph data. Because the network has a small number of nodes 

and edges, we perform graph learning on each object in several daily activities and compare it with other 

objects [38]. Table 2 depicts data collection in four activities: (a) working using a laptop, (b) playing 

with a phone, (c) pouring water from a bottle into a cup, and (d) eating from a bowl. After a few epochs, 

the GNN learning system could perform semi-supervised classification in four cases. The graphic 

representation is used to calculate the distance between objects.  

Table 2.  Data collection in two scenarios with four different activities 

Scenario A Scenario B 
Activity 1 Activity 2 Activity 3 Activity 4 

    

Working with a laptop Playing with a phone Pouring water into a cup Taking food from a bowl 

 

These findings imply that the relationship between objects in each scenario influences their class 

position. The experimental result for classifying some objects using the GNN node classifier is shown in 

Fig. 11. This diagram shows how the initial epoch can generate node embeddings similar to the graph 

structure. In the embedding space, nodes of the same color are close together, though some objects still 

overlap with other classes. The red line represents the laptop’s relationship to the closest related object. 

The three-layer GNN model separated the communities linearly and correctly classified the nodes. 

Objects from Activities 1 and 2 appear close together as objects in Activities 3 and 4. As a result, after 

the 100th epoch, it is clear that GNN can separate two clusters that are far apart. This occurs because 

working on laptops and playing with phones occur in the same work environment as eating and drinking 

at the dining table. 

The entire macroscopic level is summarized. We addressed graph learning research for object 

classification in the application. Based on the accumulated graph, we can observe how the system evolves. 

All interactions can be described as knowledge domains at the macroscopic level. A GNN application 

with weights on each attribute is required for input graphs with various contexts [39]. This method’s 

goals are for semi-supervised categorization in daily activities related to objects. This system requires 

more dispersed personal datasets for real-world applications. This object classification method should be 

tested in several daily activities in real time. These technologies will be developed as a result of this work 

for future cognitive rehabilitation. Environmental constraints must be considered to tailor the 

rehabilitation system to specific issues. We hope that this study will help therapists and researchers by 

providing information unavailable in the clinic. We hope to collect patient samples for further validation 

and use this technology for rehabilitation in the future. 
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(a) epoch 1 (b) epoch 15 (c) epoch 45 

   

(d) epoch 75 (e) epoch 100 (f) epoch 135 

Fig. 11. The experimental result for classifying some objects using the GNN node classifier 

4. Conclusion 
This paper proposed HOI recognition based on visual attention using multiscopic CPSS. Feature 

extraction capacity utilizing an egocentric vision has been designed to observe hand and finger posture 

at the microscopic level. The GNN successfully enhanced the MLP in classifying hand grasp pose with 

94.87% average accuracy. At the mesoscopic level, an active perception ability has been proposed to 

validate HOI recognition with eye tracking in the task-specific reach-to-grasp cycle. Objects with hand 

skeletal tracking were combined as inputs to MGRU, which is based on RNN architecture and has 

90.75% average accuracy in categorizing hand interactions with objects. At the macroscopic level, 

cognitive ability has been implemented by adding visual attention to describe human behavior when 

interacting with multiple objects. GNN node classifiers can differentiate between two scenarios with four 

main activities. The outcome demonstrates that the system can successfully separate some objects based 

on related activities. Further research is expected to benefit independent rehabilitation support and boost 

community self-efficacy. 
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Data and Software Availability Statements  
We develop applications using Python 3.8, Windows 11 operating system, and open-source 

frameworks, including OpenCV 4.6.0 for standard computer vision applications, YOLOv5 and SORT 

for tracking objects, and Mediapipe 0.8.10.1 for tracking hands. For the learning environment, we use 

Pytorch 1.8.2 with several additional graph learning features utilizing Pytorch Geometric 2.0.4. We 

employ the Tobii Glasses 1.12.11 software for the eye tracker sensor reader and the RTSP protocol. We 

use PostgreSQL as the time-series database and Neo4j as the graph database. The code and data set can 

be accessed at https://github.com/anom-tmu/hoi-attention. 

Appendix 
 
Appendix 1 shows the commonly used notations in this paper. 

Appendix 1. Commonly used notations. 

Notations Descriptions 

𝐺𝐺 A graph 𝐺𝐺 ∈ 𝒢𝒢. 
𝒢𝒢 The set of graphs. 

𝑉𝑉 The set of nodes in a graph. 
𝑣𝑣,𝑢𝑢 A node 𝑣𝑣,𝑢𝑢 ∈ 𝑉𝑉 
𝑋𝑋 The set of node features in a graph 
𝑥𝑥𝑣𝑣 A feature vector in a node 𝑣𝑣 
𝐸𝐸 The set of edges in a graph 
𝑒𝑒𝑖𝑖,𝑗𝑗 An edge 𝑒𝑒𝑖𝑖,𝑗𝑗 ∈ 𝐸𝐸 

𝑁𝑁(𝑣𝑣) The neighbors of a node 𝑣𝑣 
ℎ𝐺𝐺,𝑣𝑣 The embedding vector of a node 𝑣𝑣 in a graph 𝐺𝐺 
𝑚𝑚𝐺𝐺,𝑣𝑣 The embedding vector of aggregation result 
𝐻𝐻𝐺𝐺  The embedding vector of a graph 𝐺𝐺 
𝑊𝑊 The set of weight / learnable model parameter 
𝑓𝑓 A function 

𝑘𝑘,𝐾𝐾 The layer index 
𝑡𝑡,𝑇𝑇 The time step/interation index 

𝑖𝑖, 𝑗𝑗 The dimension of weight matrix 
𝜎𝜎 (·) The activation function 
| · | The length of a set 
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