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ABSTRACT

Computer vision-based cyber-physical-social systems (CPSS) are predicted
to be the future of independent hand rehabilitation. However, there is a
link between hand function and cognition in the elderly that this
technology has not adequately supported. To investigate this issue, this
paper proposes a multiscopic CPSS framework by developing hand—object
interaction (HOI) based on visual attention. First, we use egocentric vision

to extract features from hand posture at the microscopic level. With
94.87% testing accuracy, we use three layers of graph neural network
(GNN) based on hand skeletal features to categorize 16 grasp postures.
Second, we use a mesoscopic active perception ability to validate the HOI
with eye tracking in the task-specific reach-to-grasp cycle. With 90.75%
testing accuracy, the distance between the fingertips and the center of an
object is used as input to a multi-layer gated recurrent unit based on
recurrent neural network architecture. Third, we incorporate visual
attention into the cognitive ability for classifying multiple objects at the
macroscopic level. In two scenarios with four activities, we use GNN with
three convolutional layers to categorize some objects. The outcome
demonstrates that the system can successfully separate objects based on
related activities. Further research and development are expected to support
the CPSS application in independent rehabilitation.
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1. Introduction

Rehabilitation is required for patients recovering from neurological illnesses, particularly hand stroke.
However, roughly two-thirds of hand stroke survivors have visual impairments because of visual field
loss, double vision, and perception issues [1]. Vision problems may lead to different adverse outcomes,
including grasping objects because of their limited range of motion and vision. Individuals find it more
convenient to receive rehabilitation treatment at home rather than in a hospital setting. However,
visiting patients’ homes is difficult during the COVID-19 outbreak. Telemedicine allows therapists to
monitor rehabilitation patients via online therapy or video visits [2]. Because of limited therapeutic staff
or privacy concerns, patients can not use this method indefinitely. Cyber-physical-social system (CPSS)
[3] seamlessly integrates physical and social space in cyberspace. This technology can deliver valuable
information which not available from typical physical sensors.

Hand movement progress in poststroke patients has been studied using cyber-physical systems (CPS)
[4]. This study has been conducted to track individual hand therapy. Hand monitoring can be done in
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two ways: contact and noncontact. Most studies employ the contact method, where patients wear a
device in their hands. In rehabilitation research, wearable hand devices are commonly used as contact
methods. It provides accurate data by utilizing a variety of sensors, including flex, accelerometers, and
hall-effect sensors [5]. However, this strategy has drawbacks, such as high equipment costs and
uncomfortable use.

Consequently, scientists are investigating new possibilities using noncontact techniques, such as low-
cost computer vision systems. Still, suppose this method does not consider some social aspects, such as
dealing with privacy issues, getting justification from a clinical background, and understanding user
experiences to provide better benefits. In that case, it may fail in user acceptance. Noncontact techniques
for detecting human action recognition [6] still deal with complicated processing, multiple
interpretations, and privacy concerns. Hence, an egocentric vision like smart glasses is required to address
these issues [7]. Egocentric vision has the advantages of reducing privacy concerns, monitoring mobile
devices, and attracting attention during activities. Hand—object interaction (HOI) recognition using
egocentric vision should be studied further in rehabilitation applications [8].

HOI recognition is increasingly being used in post-stroke therapy to track patients’ progress [9]. This
recognition study outperforms full-body human interaction detection. This vision analyzes images
captured by an on-body camera, such as smart glasses or an action cam. Still, HOI recognition is more
straightforward because only hands and objects are detected, especially when using egocentric vision
[10]. However, when using this vision, the expansion of HOI recognition encounters several challenges,
particularly in 2D images. First, researchers frequently encounter data on hand and object invalid contact
detection. This issue arises because 2D image data cannot express depth data. As a result, the system
could not pinpoint the precise location of the hand and objects. Numerous approaches can address the
issues, such as learning with the interaction point [11]. However, these approaches are limited to
recognizing a single object type, and problems may arise when detecting many objects.

Furthermore, the application of this method is limited to identifying hands and objects but not
considering persons with visual impairment. Because of their visual impairment, patients struggle to
make physical hand movements and apply their recognition ability. The egocentric vision that focuses
on HOI recognition has the potential to monitor both physical and cognitive rehabilitation
simultaneously. This vision system, for example, could use hand skeletal estimations and the kinematic
finger model to assess the person’s physical condition. Besides that, specific cameras are outfitted with
eye tracking to gather data on the user’s visual attention. Gaining user experience and developing
cognitive abilities are required. Therefore, while handling objects, it’s crucial to pay attention to hand
movements and vision.

The study’s primary contributions are: (1) We apply egocentric vision and feature extraction to
observe hand posture at the microscopic level. We use three layers of graph neural network (GNN) as a
feature-based classifier to differentiate 16 grasp poses when interacting with objects. (2) At the
mesoscopic level, we use active perception to validate HOI recognition with eye tracking in the task-
specific reach-to-grasp cycle. To identify the connection of the hand with an object, we use the distance
between the fingertips and the center of an object as inputs to a multi-layer gated recurrent unit
(MGRU) based on recurrent neural networks (RNN) architecture. (3) We implement a cognitive ability
at the macroscopic level by incorporating visual attention. In two different scenarios, we use the object
relation as the input of a GNN node classifier with three convolutional layers to separate objects based
on related activities. This method’s output indicates the object’s relationship in activities based on
personal behavior.

The structure of this article is as follows. Section 2 discusses the research in hand rehabilitation
monitoring and our proposed method for improving HOI recognition based on visual attention. Section
3 discusses the findings and assesses the efticacy of the proposed framework. Finally, Section 4 discusses
the research’s findings and some future directions.
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2. Method

Recent research trends in hand movements analysis using egocentric vision have been widely used to
advance the field of rehabilitation. Some researchers are interested in introducing the patient’s hand
behavior, for example, by using fingertip detection when using a therapy ball [12], monitoring hands in
spinal cord injury patients [13]-[15], and stroke patients [9] [16]. Other research focuses on
computational problem solutions, such as the high cost of additional equipment and pixel-level
observations [17] and overcoming occlusion, inference, and contact [18]. Many studies employ
egocentric approaches, like GoPro wearable cameras or datasets like Deeplab-VGG16, EgoHand, EPIC-
ADL, and multi-datasets [19]. Existing research focuses solely on physical hand evaluation. It is
uncommon to find studies that combine physical hand and cognitive abilities [20], such as in hand-eye
coordination research for predicting the “next active object” shortly [21]. Table 1 shows the research on
hand rehabilitation with egocentric vision in the last 5 years.

Table 1.  The research of hand rehabilitation with egocentric vision (2018-2022)

No. Research

Application (Sensor Types/Dataset)

Methods

Qurratu’aini
et al. [12]

2. Lietal [17]

3 Likitlersuang
' et al. [13]
4 Visée et al.

[14]

5. Xu et al. [16]

6.  Tsaietal [9]

7 Jiang et al.
' (21]
8 Bandini et al.
' [16]
9 Lee et al.
(18]
Our
10. proposed
method

Fingertips gripping a therapy ball for hand
recovery. (HD Logitech C615 Web Camera
with 1920 x 1080)

Overcoming expensive equipment and pixel—
level annotations. (Deeplab-VGG16 Dataset)

Monitoring spinal cord injury patients' hand
usage at home. (GoPro Hero4 with 1920 x
1080/30fps)

Home monitoring of SCI patient’s upper
limb function. (GoPro Hero4 with 1920 x
1080/30fps)

Developing a low-cost technology to monitor
stroke patient hand motions and gestures.
(EgoHand datasets)

Evaluating hand functions after a stroke.
(GoPro Hero 5 with 1280 x 720/30fps)

Visual attention and hand posture to predict
the next active object. (EPIC and ADL
Dataset)

Assessing hand usage at home after a cervical
spinal cord injury. (GoPro Hero 5 Black
(1280 x 720/30fps)

Detecting hand motion tracking with
robustness against occlusion, interference,
and contact. (Stereo camera, intelligent
gloves, and IMU)

Develop HOI based on visual attention
using multiscopic CPSS for physical-
cognitive rehabilitation support. (Tobii Pro
3 Eye tracker 1920 x 1080/30fps)

Speeded Up Robust Features (SURF)
descriptors, K-mean clustering, and Support
Vector Machine (SVM).
Un-supervised hand segmentation using a
fully convolutional neural network (FCN).
Fast R-CNN (hand detection), Contour
Selection (hand segmentation), and
Functional Measure Extraction (interaction
detection).

YOLOV2 (hand detection), DAT (hand
tracking), and Random Forest Classifiers
(interaction detection).

CNN-based hand motion and gesture
detection.

YOLOV2 (hand detection), UNET (hand
tracking); Random Forest Classifiers
(interaction detection).

The deep neural network model combines
visual and hand cues.

Deep learning model (hand localization),
HOID-Net (interaction detection), statistical
analysis.

Visual-Inertial Skeleton Tracking (VIST)

GNN graph classifier (grasp pose
classification), MGRU (multivariate time-
series for HOI classification), and GNN
node classifier (object classification).

Previous work in our laboratory focused on nonverbal communication for socially integrated robot
companions using directed learning [22]. This study examines person’s intents and abilities when
reaching for and gripping objects. However, determining individual’s preferences for using the robot
companion as a third person is difficult [23]. Occlusion limits the third-person perspective, which
depends on many different viewpoints. From an egocentric standpoint, it is critical to support the current
system. With a case study on the Chopsticks Manipulation Test, we examined the significance of
combining finger joint angle estimation and a visual attention measurement in hand rehabilitation [24].

Our previous work used a multiscopic method to address dynamic locomotion in a legged robot [25]
E
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and simulation for human-robot interactions [26]. We propose a multiscopic approach for developing a
CPSS for HOI recognition based on visual attention based on this experience. Fig. 1 depicts the
framework of HOI recognition based on visual attention using multiscopic CPSS. The subsections
explain GNN, microscopic, mesoscopic, and macroscopic levels. Each subsection outlines methodology,
algorithm, and development in detail.
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Relationship { ~ 7 @

cup

+ experience knowledge embedding  social optimization
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Fig. 1. The framework of HOI recognition is based on visual attention using multiscopic CPSS

Promoting independent hand rehabilitation from the ground up is critical, from the physical to the
cognitive. This study presents the CPSS framework, which employs the multiscopic method to address
the following technical issues: (a) Classify hand data at the microscopic level utilizing feature extraction
abilities; data from vision sensors will be the input for this level. Using symbolic information, we develop
a feature extraction capability to estimate hand and finger posture. (b) Using active perception ability,
extract HOI at the mesoscopic level. At the mesoscopic level, this information will be used as input. As
a knowledge graph, we will build active perceptions’ ability to categorize HOL (c) Discover the object
relationship via macroscopic cognition ability. At this level, the graph data will be used as input. We
hone our cognitive abilities to demonstrate recommendations based on human behavior.

2.1. Graph Neural Networks

GNN is neural network architecture used to learn the representations of graphs data and has become
a popular learning model for prediction tasks on nodes, graphs, and links. The basic idea of GNN is to
learn suitable graph data representation for neural networks [27]. Before we talk about GNN, we should
look at the basic mathematics of graph structure data in computer science. A graph G can be a part of
set atributed graphs G. GNN use all graph information as an input, including the node features and the
connections stored in the adjacency matrix. A graph G is defined by the following equation:

G=,EX), GegG (1)

Where V = {vy, ..., v }isaset of nodesand E = {e,,..., e} is aset of ordered couples representing
the connection between two nodes belonging to V. Each node comes with X = {x,,} as a set of node
attributes where v € V. GNN output new representation called embeddings for each node. These node
embeddings contain the structural and feature information of other nodes in the graph. The embeddings
can finally be used to perform predictions. We embed each node through several rounds of message
passing. This paradigm can be broken down into (a) initialization, (b) aggregation, and (c) update. We
initialize each node v at layer k = 0 as the first round of message passing with the following equation:

-
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h) =x,, veV )
Suppose hég represents the node embeddings for some vertex v at layer k-th, where node feature

Xy of all nodes v € V in graph G. Second, we do the aggregation function for each node v with the
following equations:

k
m{9 = £ (RS D), 1<k < K. “
|N<v)|2u€N(v>W RGP, i), 1< V). @

We utilize the next step of the neural message passing scheme where we localized node v from their

neighbors N (v). The node feature h(k_l) of allnodes u € N(v) in graph G are iteratively aggregating

and stored in mél as aggregation function fg;re gate- The N(v)CV denotes the neighborhood of

v € V. The aggregation function performs a significant role and is shared by all nodes within an
iteration. An average, degree-normalized sum or coordinate-wise min or max may also replace the
sum.

(k-1)

Third, we employ the last step of the neural message passing scheme where the node feature hGva

of all nodes v € V in graph G are iteratively updated by the aggregating result from their neighbors
N (v) with the following equations:

k k k-1 k
ho = fiy (hGy ' mG3): ®)
= o(W,;hYS P +mlD), 1<i< ). (6)

The update function fU(Z) is usually a weighted combination with learnable weight matrices. The

update functions are implemented as a fully connected layer that alternates linear transformations
and coordinate-wise nonlinear activations ¢ such as ReLU, tanh, or sigmoid. Fig 2 shows the graph
representation including the graph with node feature and message passing mechanism.

G = (V, E,X) Neighborhood hops

L 10—
h(O) h 0 hg?; _§ i i i i Aggregate & Update Aggregate & Update
61 ¢+ HNEN e | S AN D’éw’?_"? Wﬁ? 4D
- l I 4 Ny g
B I S } ] a L\ X o | / \
' I AN o L
\ \ > : .... l ‘_C“ i } } ° E 0
\ ) G
o == O
09 o & mmi | g
Y O e E
he, M cs MmN 51 =
(0)
he,; k = 0 (initial) k=K-1 k=K
(a) graph with node feature (b) message passing mechanism

Fig. 2. Graph representation

The final node representation héu) is the last layer, possibly concatenated with a linear classifier. If
we want to make a graph-level prediction, all node embeddings can be aggregated into a unified graph
embedding H; ) with freaq- The most popular method is to take the average of node embeddings. We
add up all the node features of all nodes h 1n the K-th layer and then dividing by the number of

nodes, as the following equation:

Hg = freaa(h). )
T
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In the end, we use a linear transformation based on a fully connected layer with Wp,.,; as weight
projection and arg max function to determine which class corresponds to the graph input with the

highest probability, as the following equation:
Vi = HeWpyoj 9)

y=arg miaxyi (10)

We utilize Pytorch Geometric (PyG) as the GNN development framework. Our design uses high-
level graph computation with PyG to teach scene interpretation. Because our graph classification datasets
are small, we do a mini-batch for the graphs before inputting them into a GNN to guarantee full GPU
utilization. PyG automatically takes care of batching multiple graphs into a single giant graph.

2.2. Microscopic Level: Feature Extraction Ability

The experimental setup and hand pose classification comprise the feature extraction ability at the
microscopic level. We use egocentric vision with smart glasses facing the table and the objects. A
participant facing down directly at the object wore Tobii Pro Glasses 3 smart glasses [28]. The smart
glasses have a 1920 x 1080-pixel resolution and a frame rate of 25 frames per second. To capture hands
and objects, this camera is used in 16:9 scene camera format with a wide field of view of 106° with 95°
horizontal and 63° vertical. Visual attention or awareness is predicted to be appropriately detected when
the interaction between the hand and the object falls within the field of view range.

We used the YOLOVS5 [24] model to extract the object’s location from picture frames represented by
the bounding box and labels. To improve this detection, the Simple Online Real-time Tracking (SORT)
[29] technique was used. This framework excels at representation learning and applying it to object
recognition and tracking applications. We employ MediaPipe [30] hand tracking to obtain estimated
hand posture data. A construction designed specifically for complex perceptual channels that use rapid
real-time inference. We only utilize hand posture prediction as supporting data to validate HOI
recognition in our approach. Object detection and hand estimation provide us with two pieces of
information. First, we can look for an object in a specific image, and then we can pinpoint the precise
location of the hand and its feature in the two-dimensional image. Fig. 3 depicts the experiment’s design,
which includes the experimental setup of the systems and the implementation of an egocentric view of
HOI recognition with visual attention.

Hand Pose
Representation

Egocentric View

hand posture
estimation|

Experimental Setup

Pz
TobiiPro3 Eye Tracker/ <

_—

frame,
time(second)
(a) Experimental setup (b) Egocentric vision with attention
Fig. 3. Design of the experiment
p— ]
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Many hand grasp variants and orientations are collected. We standardize the angular data to eliminate
outliers. Then, we perform three positions in the vector-to-joint-angle conversion to obtain each finger
feature. This transformation is accomplished by converting these three-dimensional coordinate points
into an angle. Below is the equation used to calculate an angle from two vectors in three-dimensional
coordinates:
ABBC

0 = arccos (W) (11)

We can compute AB and BC if we have the coordinates for three points (A, B, and C). The angle
obtained by A = B — C employing the right-hand rule from B continues using dot products, whereas
||E” determines the length of A—B), |B—C)|| determines the size of B—C), and 0 (theta) is the angle formed
by two vectors. And then, we can get the dot product AB - BC as well as the lengths ||E|| and ||R')||
After all, by replacing the equation, we rearrange the formula for determining §. These joint angle values

are used for features in the data graph. We represent the relationship between joints in a directed graph
(digraph).

We use this GNN to classify 16 manipulation grasping poses. We acquire 130 data for every grasp
pose in various orientations. Thus, we have 2080 graphs with divisions of 1600 for training and 480 for
testing. Our data graph consists of 16 nodes consisting of all nodes connected by 15 edges. We utilize a
graph input layer consisting of 15 joint angle nodes and one wrist node as the center of the finger
connection. The layer of output consists of 16 nodes representing grasping posture. We train a final
classifier on graph embedding. Before applying the final classifier on top of the graph, we employ
Rectifier Linear Unit (ReL.U) activation function to create localized node embeddings. We use three
layers of GNN with the same training cycle: construct an optimizer, feed the model inputs, compute the
loss, and optimize using autograd. A linear transformation layer and argmax function are used to classify
and determine which class of grasp posture corresponds to the input with highest probability.
We discuss training and testing outcomes in the results and discussion section. Fig. 4 shows the
microscopic level design using a three-layer GNN for hand pose classification.

Grasp Pose Dataset Hand Data Transformation GNN for Graphs Classification
s N
3D Positions / . — \
/7 — — Yo R
> — >
‘ ‘ - = V1
, —> > V2 B
o/ > —> —> y a\x
‘ ‘ — —» J3 A
— = ~ N a; — Y4 é\
; © ~ > 5 — & > 5 > &8 > V5 <y
i < = T 5 5 ° > Y6 .';3;\
=, 2. = - . & 5
- c . c c . 15 Y7 1 ~
~ o o o (] > Armax> Y
~ |— B . =} =] . S — yg I
I = 3 = M G
0 Il B S
—> <] = >
— el gouo S S S = Yio # 4
50 8O I > - > Vi1 @
\ 11Q 150 —> > —> -
o . — Y12
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/ —> -
X e T e e
1 \l/ S
Cutkosky Graph P ° - > 15 ==
utkosky Graph Pose
\ Taxonomy J S J \ /

Fig. 4. The microscopic level design uses a three-layer GNN for hand pose classification

2.3. Mesoscopic Level: Active Perception Ability

This subsection describes the phases of active perception ability development at the mesoscopic
level. These phases are object-centered coordinate transformation and validation of HOI recognition
using the task-specific reach-to-grasp cycle. We accomplished a coordinate transformation centered
on the object to simplify the validation procedure and get fewer data [31]. The goal of centering the
item is to relocate the image coordinates’ initials (0,0) to the middle of the object. We obtain a new
center and identify the position of the new coordinates for every new frame. This method uses for
any pixel (x,,y,) in the image plane. The joint finger position in the new coordinate plane contains
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the object’s length (a,) and width (b,). The inner and outer borders of the object are acquired using
this additional bounding box location information. Then, using the Pythagorean equation, we can
estimate the distance between a point (a,, b,) to the center of the object coordinates (0,0). The
distance d,, must be determined between the fingertip or finger joint and the object-centered
coordinate. To get these properties, we then utilize a,,, b,,, and d,, to validate the HOI transformation.

Validation of HOI recognition is restricted to the reference grasp of the approved hand usage section
in ICF for hand rehabilitation, notably in the case of the reach-to-grasp cycle [32]. The procedure has
four distinct tasks, each of which is defined separately. The “wonder” task, which indicates that the user
moves the hand without reaching for the object, is the first task displayed as the starting status. The
second task is the “reach” task, which requires the subject to extend his arm and open his hand to the
object. The third task is the “grasp,” in which the participant holds the object in any position. The task
switches to a new state called transport when the user moves the holding object. The fourth task is the
“released” task, which occurs when the individual pulls their open palm away from the item. Fig. 5
compares the traditional method to object-centered coordinates with visual attention in HOI
recognition.

0,0 b

outer

(b) object-centered coordinate with visual attention

(a) conventional interaction point L
and fingertips distance

grasp

release

4 -
e > .
, Task:
Se— B—— Hold the object l I
with any poses. Taske
Task: Task: Open hand and maove
Move the hand without Extend arm and open hand transport away from the object.
reaching for the object. to the target object. ’?s— .
Task:
Move the holding object.

(c) phases of the task-specific reach-to-grasp cycle
Fig. 5. The comparison method

In our initial stage, we utilize a single object as a reference. We picked a medium-sized cup with
various hand postures. We use ten features: five elements of each fingertip’s distance to the center of the
object (d,,dy,d;,d3,dy), four elements of each fingertip’s distance to the thumb fingertip
(eq, e;, €3, €4), and one visual attention (fy). We obtain 50 frames per sample using our computer specs,
which becomes our benchmark for estimating the length of a data stream. We analyze 10 data points in
each picture capture series to obtain a real-time result. In our neural networks, we use this data as input
for the learning system.

We use an RNN architecture to classify multivariate time series using an MGRU [32]. The total

number of layers, input size, hidden size, and the number of recurrent layers are some variables that can
L ee—
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be changed in this design. To compute each element in every layer of an MGRU, we calculate as the
following functions:

e = o(Wipxe + by + Wyrhe_qy + bpy), (12)
zr = oW x, + b, + Wh,zh(t—l) + bp,2), (13)
ne = op(WinXe + by + 10 Whpheq + bpy)), (14)
hy = (1 —z) * ng + 2z, * hy_q. (15)

The time is symbolized by t. The hidden states are represented by h;; the inputs are characterized by
X, the hidden states of the layers at t — 1 is expressed by h;_; or the early hidden states at the initial
time 0, and 7%, Z¢, n¢ are the resets, updates, and new gates. The sigmoid function is represented by and

* symbolized by the product. In the MGRU, the input xt(l) of the [-th layer (I >= 2) is the hidden

states hgl_l) of the previous layers multiplied by dropout, 551_1) where each 551_1) is a Bernoulli random
variable O with a probability of dropout. Fig. 6 illustrates the mesoscopic level design for multivariate
time-series classification using MGRU-RNN.

Physical Evaluation Index in
Time Series Database

Hand Object Interaction with Visual
Attention System Integration

Multivariate Time Series Classification
based on Gated Recurrent Unit-RNN Architecture

Object Detection Hand Pose / — \ \
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Fig. 6. The mesoscopic level design for multivariate time-series classification using MGRU-RNN

After building the MGRU-based RNN architecture, the next step is to generate a dataset to evaluate
each action on HOI recognition. For each sequence, we collect 1-2 seconds of video with a minimum
of 50 frames per sample. We compiled a collection of 100 videos of hands interacting with various objects.
We shot the video using the following division: 25 data for the wonder, 25 data for the reach, 25 data
for the grabbing job involving transportation, and 25 data for the release. We randomly divided the
training and validation data into an 80:20 ratio. We decided this distinction was appropriate because the
data we obtained was subjective. This experiment includes a responder. The system utilizes 80 movies
and 20 videos for instruction. The training and testing outcomes are then discussed in the results and
discussion section.

2.4. Macroscopic Level: Cognitive Ability

This subsection investigates the active perception ability development at the mesoscopic level. Using
vision-based data collection, we create datasets for an object detection algorithm. The goal is to compile
a list of captured objects at a given time. The Tobii Pro eyewear eye tracker sensor analyzes how the
human eye responds to different environmental stimuli. Two scenarios are used to demonstrate human

interaction with items found in everyday life. The scenario includes table activities, such as eating and
—
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working. This experiment utilizes eleven different objects. In each scenario, we choose a participant to
perform these exercises in sequence for approximately 5 minutes. Every time, the camera records these
interactions and stores them in the Neo4j graph database. We create a system that generates a network
of nodes and their interactions. The system computes each item’s frequency of occurrence and
relationships with others. The system then deduces the relationship between the objects and adds them
to the graph's edge components. Fig. 7 depicts the lifelog graph dataset generation as the input of the
macroscopic level.
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Fig. 7. Lifelog graph dataset generation at macroscopic level

The collected data will be converted into graph data structures. This data representation is
increasingly being used to detect connections between nodes. When two objects are connected, the edges
show how they relate. Symbolic logic is used to develop a graph. This paradigm’s information can be
processed by computer programs and stored in graph database structures. As in previous works, we create
a graph structure from the collected data to demonstrate the relationship [32]. The spring model is used
to create a graph structure from this data. The features can then be assigned to network nodes and edges.
GNN recently broadened the scope of datasets using graph-based topologies. We use Kipf and Welling’s
approach to the GNN convolutional framework to perform node classification [33]. The convolution
layer is implemented by passing in the node feature representation and the graph connectivity
representation. The macroscopic level design for object classification using the GNN node classifier with
three convolutional layers is shown in Fig. 8.
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We initialize the building blocks and define the flow of our network as a forward function. We
present three convolution layers that aggregate 3-hop neighborhood information around each node.
This layer reduces the node feature dimensionality from the number of the node to the number of the
class (i.e.,11 - 4 = 4 — 2). Tanh nonlinearity is used to improve each convolutional layer. After
that, we apply a single linear transformation as a classifier to map our nodes to the classes. We return
both the final classifier output and the final node embeddings produced by the GNN convolution
layer. The node embeddings are then processed by passing the initial node feature X and graph
connectivity information V to the model and visualizing with two-dimensional embeddings. It
generates an embedding of nodes that closely resembles the structure of the graph before training our
model weights. Nodes of the same color are already closely clustered in the embedding space. Before
training, the weights of our model are completely randomized. This indicates the conclusion that
GNNs introduce a solid inductive bias, leading to similar embeddings for nodes close to each other
in the input graph.

We train our network parameters using information about the activities of each node in the graph.
We train the model by adding some objects with labels. Because our model is differentiable and
parameterized, we observe how the embeddings react. We define a semi-supervised or transductive
learning procedure by training against one node per class but are allowed to use the complete input graph
data. We use a loss criterion to define our network architecture and start a gradient optimizer. Each
round consists of a forward and backward pass to compute the gradient parameters of the loss derived
from the forward pass. We compute node embeddings for all of our nodes, but only the training nodes
are used to calculate the loss. This is implemented by filtering the output of the classifier out and ground-
truth labels data to only contain the nodes in the training mask. The GNN model’s three convolutional
layers successfully separate the objects and classify the majority of the nodes.

This experiment focused on object classification in our everyday lives. The scenario creates a graph
of ten daily items and their relationships in two scenarios of four activities. Next, the object is divided
into two groups. In this semi-supervised learning scenario, only a person and single objects are labeled.
Next, we discuss the training and testing outcomes in the results and discussion section.

3. Results and Discussion

This part describes the results obtained at the microscopic, mesoscopic, and macroscopic levels. Then,
we discuss the key points that must be emphasized in the current multiscopic system development for
future improvement.

3.1. Discussion on Microscopic Level

We have developed a microscopic level by designing feature extraction ability using an egocentric
vision to observe hand and finger posture. The GNN learning results for classifying 16 grasp poses in a
directed graph structure were reported. During training, the grasp acquisition collects input from the
system. The loss was less than 0.1 after 1000 epochs. The experiment result demonstrated that the GNN
for supervised classification is considered enough to be discussed. The performance of the classification
is then validated during testing. The approach integrates the testing dataset into the model. GNN graph
classifiers are evaluated by comparing the accuracy of our model’s predictions to traditional models such
as multi-layer perceptron (MLP). The confusion matrix of grasp poses classification at the 1000™ epoch
of GNN compared to MLP is shown in Fig. 9.

All training for the GNN and MLP architectures has been completed for categorization. We used
the learning outcomes model in the testing dataset to detect grasp posture. The testing accuracy for the
16 grasps pose using the GNN model is 94.87%. This result outperformed the accuracy of the MLP
network, which scored 78.75% in our previous work [34]. This discovery demonstrates that the gathered
dataset of grasp postures contains essential characteristics. We could see that MLP is considered to fail
to recognize three classes properly, namely, in classes 3, 4, and 5 (adducted thumb, light tool, thumb-4
finger). The results show that adding a three-layer GNN to the MLP can improve it. This result indicates
that GNN has a pretty good accuracy value, between 0.8 to 1, to classify 16 grasp poses. However, there
is no way to know how well the model has trained each hand grasp posture. We must test the model on
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diverse datasets to estimate its success rate. Hence, we must first decide whether we need power or
precision to compare each grasp. These assignments have a variety of similar grab poses. For future
developments, the deep learning application in grasp analysis requires hyperparameter optimization.
Detailing specific grab postures might boost their accuracy.
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Fig. 9.The confusion matrix of grasp poses classification at the 1000th epoch

We summarize the basics microscopic level. It is reported in this section that the grasp pose
categorization uses angle features. The egocentric vision with a single camera and eye tracker sensor
module produced a homogeneous hand skeleton model in the form of a directed graph structure. The
grasping posture was observed while the hand interacted with the item that generated the data. The data
was collected and covered into angular attributes. The suggested approach was then tested using real-
world grab position datasets. The categorization of grasp poses has been tested in a real-time application.
Personal datasets, particularly from rehabilitation patients, are required to recognize grasp posture with
multiple options for practical applications. In the future, we will employ the suggested technology to

acknowledge a person’s behavior when grasping the object in rehabilitation.
ee——
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3.2. Discussion on Mesoscopic Level

Several experiments were carried out to test the proposed frameworks at the mesoscopic level. First,
we conducted a single-participant task-specific reach-to-grasp cycle experiment. We extended the
egocentric vision feature extraction capabilities discovered in our earlier research [34]. To make it easier
to extract these characteristics, we used object-centered coordinate transformation to make it simple to
extract these characteristics. Nonetheless, significant technical issues with the extraction occurred
throughout the system’s deployment. The first issue we discovered was that MediaPipe’s hand position
evaluation predicted only one frame. Object identification using YOLOV5 in conjunction with object
tracking produces less accuracy in certain gripping poses because it does not use previous data. Hand and
finger tracking with estimation filters, such as those found in the Leap Motion Controller [35], could
be used to address this issue. Another issue is that the collected data is in 2D pixel units, whereas the
egocentric approach is in three dimensions. Despite its limitations, the RGB camera may provide
consistent results if the captured range is as far as the hand can reach, eliminating the need for precise
data, such as millimeters. As a result, additional research may be conducted to improve the spread of
this low-cost application.

Second, we evaluate the testing results regarding active perception ability in the task-specific reach-
to-grasp action. We trained three RNN models five times: vanilla-RNN, MGRU, and long short-term
memory (LSTM). With an average training time of 13.03 seconds (20.48 seconds), the MGRU is
expected to outperform the RNN and LSTM in the 50th epoch. All RNN-based learning systems are
well classified. The system’s accuracy yields the best recognition results, with MGRU averaging 97.0%
and 94.0% for LSTM. In this experiment, the MGRU outperformed the standard RNN. MGRU uses
fewer tensor operations and takes less training time than LSTM. The results of the three RNN-based
models, however, are nearly identical. In real-time testing, the average accuracy of MGRU is 90.75%
and LSTM is 77.75%. The confusion matrix of HOI recognition at the 50 epoch of MGRU compared
to LSTM is shown in Fig. 10.
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Fig. 10. The confusion matrix of HOI recognition at the 50 epoch

We investigate active perception capability by using an MGRU-based RNN to solve a multivariate
time-series classification problem. By benchmarking multivariate time-series classification studies, this
MGRU solves the vanishing and rising gradient problem of traditional RNNs [36]. MGRU is rated
higher than vanilla-RNN and LSTM. Several studies show that for a simple model, the MGRU model
integrates quickly and improves time-series identification performance. Compared with traditional
algorithms, like the RNN and the LSTM, this learning technique improves accuracy. Even though we
only use a few features for training, we achieve adequate accuracy.

The overall mesoscopic level is summarized. For the task-specific reach-to-grasp cycle, we
investigated visual attention to obtain information about hand action from objects. In this study, a new
concept for independent rehabilitation in a patient with grasping and vision problems was developed. To

Besari et al. (Hand—object interaction recognition based on visual attention using multiscopic ...)



200 International Journal of Advances in Intelligent Informatics ISSN 2442-6571

Vol. 9, No. 2, July 2023, pp. 187-205
EETT

investigate HOI in real-world activities, we developed an egocentric viewpoint. Using active perception
and hand skeleton model estimation, we successfully created object grasp detection. Then, we used RNN
in conjunction with an MGRU-based architecture to classify essential hand activities. We analyzed our
approach using a new dataset for object-grasping behavior. Our research has shown that our proposed
method accurately verifies HOI recognition. In the future, we will work with the recommendation
system [37] to solve nonstandard grasp pose and object affordance problems. We hope that this study
will be used as the foundation of the macroscopic level for diverse and multi-object hand rehabilitation.

3.3. Discussion on Macroscopic Level

We present the macroscopic level learning stage findings in this subsection. We discovered that a
GNN algorithm is intended to learn the graph data. Because the network has a small number of nodes
and edges, we perform graph learning on each object in several daily activities and compare it with other
objects [38]. Table 2 depicts data collection in four activities: (a) working using a laptop, (b) playing
with a phone, (c) pouring water from a bottle into a cup, and (d) eating from a bowl. After a few epochs,
the GNN learning system could perform semi-supervised classification in four cases. The graphic
representation is used to calculate the distance between objects.

Table 2. Data collection in two scenarios with four different activities

Scenario A Scenario B
Activity 3 Activity 4

Activity 1

N
&C

laptop 0.';2 p—
kgihourd 0.,
¥

phone~{with attention)

laptoprO66™
==

Working with a laptop Playing with a phone Pouring water into a cup Taking food from a bowl

These findings imply that the relationship between objects in each scenario influences their class
position. The experimental result for classifying some objects using the GNN node classifier is shown in
Fig. 11. This diagram shows how the initial epoch can generate node embeddings similar to the graph
structure. In the embedding space, nodes of the same color are close together, though some objects still
overlap with other classes. The red line represents the laptop’s relationship to the closest related object.
The three-layer GNN model separated the communities linearly and correctly classified the nodes.
Objects from Activities 1 and 2 appear close together as objects in Activities 3 and 4. As a result, after
the 100th epoch, it is clear that GNN can separate two clusters that are far apart. This occurs because
working on laptops and playing with phones occur in the same work environment as eating and drinking
at the dining table.

The entire macroscopic level is summarized. We addressed graph learning research for object
classification in the application. Based on the accumulated graph, we can observe how the system evolves.
All interactions can be described as knowledge domains at the macroscopic level. A GNN application
with weights on each attribute is required for input graphs with various contexts [39]. This method’s
goals are for semi-supervised categorization in daily activities related to objects. This system requires
more dispersed personal datasets for real-world applications. This object classification method should be
tested in several daily activities in real time. These technologies will be developed as a result of this work
for future cognitive rehabilitation. Environmental constraints must be considered to tailor the
rehabilitation system to specific issues. We hope that this study will help therapists and researchers by
providing information unavailable in the clinic. We hope to collect patient samples for further validation
and use this technology for rehabilitation in the future.
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Fig. 11. The experimental result for classifying some objects using the GNN node classifier

4, Conclusion

This paper proposed HOI recognition based on visual attention using multiscopic CPSS. Feature
extraction capacity utilizing an egocentric vision has been designed to observe hand and finger posture
at the microscopic level. The GNN successfully enhanced the MLP in classifying hand grasp pose with
94.87% average accuracy. At the mesoscopic level, an active perception ability has been proposed to
validate HOI recognition with eye tracking in the task-specific reach-to-grasp cycle. Objects with hand
skeletal tracking were combined as inputs to MGRU, which is based on RNN architecture and has
90.75% average accuracy in categorizing hand interactions with objects. At the macroscopic level,
cognitive ability has been implemented by adding visual attention to describe human behavior when
interacting with multiple objects. GNN node classifiers can differentiate between two scenarios with four
main activities. The outcome demonstrates that the system can successfully separate some objects based
on related activities. Further research is expected to benefit independent rehabilitation support and boost
community self-efficacy.
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Data and Software Availability Statements

We develop applications using Python 3.8, Windows 11 operating system, and open-source
frameworks, including OpenCV 4.6.0 for standard computer vision applications, YOLOv5 and SORT
for tracking objects, and Mediapipe 0.8.10.1 for tracking hands. For the learning environment, we use
Pytorch 1.8.2 with several additional graph learning features utilizing Pytorch Geometric 2.0.4. We
employ the Tobii Glasses 1.12.11 software for the eye tracker sensor reader and the RTSP protocol. We
use PostgreSQL as the time-series database and Neo4;j as the graph database. The code and data set can
be accessed at https://github.com/anom-tmu/hoi-attention.

Appendix

Appendix 1 shows the commonly used notations in this paper.

Appendix 1. Commonly used notations.

Notations Descriptions
G Agraph G € G.
g The set of graphs.
%4 The set of nodes in a graph.
v,u Anodev,u€ev
X The set of node features in a graph
Xy A feature vector in a node v
E The set of edges in a graph
e j Anedgee;j EE
N() The neighbors of a node v
he v The embedding vector of a node v in a graph G
meg o, The embedding vector of aggregation result
H; The embedding vector of a graph G
w The set of weight / learnable model parameter
f A function
kK The layer index
t,T The time step/interation index
i,j The dimension of weight matrix
o (v) The activation function
[ -] The length of a set
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