
International Journal of Advances in Intelligent Informatics ISSN 2442-6571

Vol. 9, No. 3, November 2023, pp. 402-417 402

 https://doi.org/10.26555/ijain.v9i3.981 http://ijain.org ijain@uad.ac.id

Detection of code smells using machine learning

techniques combined with data-balancing methods

Nasraldeen Alnor Adam Khleel

a,1,*

, Károly Nehéz

a,2

a Department of Information Engineering, University of Miskolc, Miskolc, H-3515, Hungary
1 nasr.alnor@uni-miskolc.hu; 2 aitnehez@uni-miskolc.hu
* corresponding author

1. Introduction
Code smells indicate design issues that violate basic design principles such as hierarchy encapsulation,

abstraction, and others, potentially affecting software quality [1], [2]. Detecting code smells is crucial

for guiding the subsequent refactoring process to improve software quality and reduce software failure

risk [3], [4]. Code smells usually appear during the design or coding phase due to developers' activities

in emergencies, inadequate design, or coding solutions [5], [6]. Table 1 lists the four specific code smells

that we have investigated.

Software metrics are crucial in measuring and enhancing software quality and are utilized to

characterize software engineering products [7]. They have diverse applications, including bug

identification, test complexity prediction, code smell detection, and clone prediction. Object-oriented

metrics are the most commonly used software metrics [8], [9].

ARTICLE I NFO

ABSTRACT

Article history
Received January 1, 2023
Revised April 5, 2023
Accepted April 16, 2023
Available online October 15, 2023

 Code smells are prevalent issues in software design that arise when

implementation or design principles are violated. These issues manifest as

symptoms or anomalies in the source code. Timely identification of code

smells plays a crucial role in enhancing software quality and facilitating

software maintenance. Previous studies have shown that code smell

detection can be accomplished through the utilization of machine learning

(ML) methods. However, despite their increasing popularity, research

suggests that the suitability of these methods are not always appropriate

due to the problem of imbalanced data. Consequently, the effectiveness of

ML models may be negatively affected. This study aims to propose a novel

method for detecting code smells by employing five ML algorithms,

namely decision tree (DT), k-nearest neighbors (K-NN), support vector

machine (SVM), XGboost (XGB), and multi-layer perceptron (MLP).

Additionally, to tackle the challenge of imbalanced data, the proposed

method incorporates the random oversampling technique. Experiments

were conducted in this study using four datasets that encompassed code

smells, specifically god-class, data-class, long-method, and feature-envy.

The experimental outcomes were evaluated and compared using various

performance metrics. Upon comparing the outcomes of our models on

both the balanced and original datasets, we found that the XGB model

achieved the highest accuracy of 100% for detecting the data class and long

method on the original datasets. In contrast, the highest accuracy of 100%

was obtained for the data class and long method using DT, SVM, and XGB

models on the balanced datasets. According to the empirical findings, there

is significant promise in using ML techniques for the accurate prediction

of code smells.

This is an open access article under the CC–BY-SA license.

Keywords
Code smells
Software metrics
Machine learning techniques
Class Imbalance
Data balancing methods

https://doi.org/10.26555/ijain.v9i3.981
http://ijain.org/index.php/IJAIN/index
mailto:ijain@uad.ac.id?subject=%5BIJAIN%5D
mailto:nasr.alnor@uni-miskolc.hu
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://crossmark.crossref.org/dialog/?doi=10.26555/ijain.v9i3.981&domain=pdf

403 International Journal of Advances in Intelligent Informatics ISSN 2442-6571

 Vol. 9, No. 3, November 2023, pp. 402-417

 Khleel and Nehéz (Detection of code smells using machine learning techniques combined with data-balancing methods)

Table 1. Lists the four specific code smells that we have investigated [9].

Code smells Description Affected entity

God _Class

Refers to classes that have many members and implement different

behaviors.

Class

Data _Class Refers to classes that contain data only. Class

Long _Method Refers to the too-long method. Method

Feature _Envy

Refers to a method that displays a greater interest in the properties of

other classes than those belonging to its class.

Method

Many techniques and tools have been devised for detecting code smells, encompassing manual,

automatic, and metrics-based approaches [2], [10]. However, most of these methods employ a heuristic

two-step approach, which involves calculating metrics first and then applying threshold values to

differentiate between smelly and non-smelly classes [6]. The dissimilarities among these strategies lie in

the algorithms employed, the subjective interpretation involved, the lack of consensus among detectors,

and the dependence on thresholds [11]. Researchers have recently turned to ML algorithms to mitigate

these limitations in code smell detection to avoid thresholds and reduce the incidence of false positives

in detection tools [12].

ML models are mathematical techniques that employ historical data to automatically identify

intricate patterns and make informed and intelligent decisions [3]. Supervised ML techniques are

commonly used for code smells detection [13], [14]. With supervised classification algorithms, the

machine can acquire knowledge of the associations between instances and decision labels [10], [15].

Studies on code smells detection have recently gained more attention, and scientific researchers have

presented many studies for code smells detection using ML models. For example, Mhawish and Gupta

[1] presented an approach for predicting code smells using ML techniques and software metrics. The

authors utilized datasets obtained from Fontana et al. and their experimental results showed that the

accurate prediction of code smells can be significantly facilitated by employing ML techniques. Fabiano

Pecorelli et al. [2] examined five distinct data balancing methods to alleviate issues of data imbalance

and gauge their effects on ML algorithms in code smell detection. During the experiment, five datasets

on code smells were utilized. The findings indicate that ML models utilizing the synthetic minority

oversampling technique exhibited the most promising performance. This technique effectively addressed

the problem of class imbalance. Fontana et al. [9] presented an approach for identifying code smells that

involves the use of various ML techniques. The results indicate that all techniques performed

satisfactorily, however, the imbalanced data adversely affected the performance of certain models. Cruz

et al. [16] conducted an assessment of seven ML algorithms to identify four distinct types of code smells,

while also analyzing the influence of software metrics on the detection of code smells. The experimental

results found that ML algorithms can perform well in detecting bad code smells, and metrics play a

fundamental role in detecting bad code smells. Martins et al. [17] conducted an empirical study to predict

classes that are susceptible to change using eight ML techniques. In their study, three distinct training

scenarios were involved, which included object-oriented metrics, code smells, and a fusion of both. The

experiments were conducted on a dataset of 32 code odor types and eight object-oriented metrics. The

experimental results found that some ML algorithms presented the best results based on the training

scenario of a combination of code smells and object-oriented metrics. Hozano et al. [18] evaluated and

compared the effectiveness of six ML algorithms in detecting four different code smells across a sample

of 40 developers. The findings revealed that the ML algorithms performed poorly for the participating

developers, indicating their susceptibility to the type of smells and the individual developer. These

algorithms were unable to learn effectively from a limited training set. Sharma et al. [19] presented a

method for code smells detection based on convolution neural networks and recurrent neural network

models. The experiment results showed that detecting code smells is feasible using deep learning

methods. Dewangan et al. [20] proposed an approach based on six ML algorithms to predict code smells

based on four datasets obtained from 74 open-source systems. The proposed approach's effectiveness was

assessed using various performance metrics, and two feature selection methods were implemented to

improve the accuracy of the predictions. The experimental results showed that their approach achieved

high prediction accuracy. Jain and Saha [21] proposed a method for code smell detection based on several

ISSN 2442-6571 International Journal of Advances in Intelligent Informatics 404

 Vol. 9, No. 3, November 2023, pp. 402-417

 Khleel and Nehéz (Detection of code smells using machine learning techniques combined with data-balancing methods)

ML models. The method was evaluated based on different performance metrics. The experimental

results demonstrate that boosted decision trees and Naive Bayes models yielded superior performance

compared to other models, following dimensionality reduction.

Our analysis of prior research on code smells detection revealed that most proposed methods overlook

the issue of class imbalance. However, studies that addressed this problem and implemented data

balancing methods [2], [22] emphasized such methods' critical and essential role in code smells

detection.

Data imbalance in a training data set, where classes are unevenly distributed, hinders the efficiency

of ML algorithms and biases their performance towards the majority class [3]. That leads to unbalanced

false-positive and false-negative results, making data imbalance the biggest problem for ML algorithms

[22]. This study selects imbalanced datasets extracted from 74 open-source systems [9]. Consequently,

there is a growing impetus to employ data balancing methods and develop unbiased classifiers that

operate effectively on imbalanced code smells datasets.

To our knowledge, a few studies have applied ML combined with sampling techniques for code

smells detection. To address these gaps, our work offers a novel method that aims to achieve the

following key objectives and contributions:

• The present study introduces a novel method that combines machine learning (ML) with a random

oversampling technique to effectively detect code smells.

• This study evaluates the efficiency of the proposed method utilizing various performance measures

and compares it with the currently employed methods for detecting code smells.

• We show that the performance of ML models in code smells detection can be significantly improved

when balancing the data set by applying data-balancing methods.

The paper is structured in the following manner: Section 2 specifies the research method. Section 3

outlines the results and corresponding discussions, while the final Section (Section 4) presents the

conclusion.

2. Method
Our study proposes a method for training and testing code smell detection models, which utilizes

high-performance supervised machine learning algorithms in combination with a random oversampling

technique. Fig. 1 illustrates the proposed research process for detecting code smells. The following

sections describe the steps taken in this study, which encompass dataset description, data pre-processing,

feature selection, dataset balancing, classification algorithms, model building, and evaluation.

Fig. 1. Shows the overview of the proposed research process for detecting code smells.

2.1. Dataset Description
To perform the analysis and experiments, our method was implemented using the datasets proposed

by Fontana et al. [9], which include 74 open-source systems of varying sizes and domains sourced from

Qualitas Corpus (QC) [23], as detailed in Table 2. The justification for selecting these datasets is that

the systems must be able to calculate metric values correctly. Moreover, these data sets are freely available,

and researchers can iterate, compare and evaluate their studies. In QC systems, metrics are chosen for

405 International Journal of Advances in Intelligent Informatics ISSN 2442-6571

 Vol. 9, No. 3, November 2023, pp. 402-417

 Khleel and Nehéz (Detection of code smells using machine learning techniques combined with data-balancing methods)

both class and method levels. The metrics chosen comprise a standardized set of metrics that address

various aspects of the code, such as size, cohesion, encapsulation, etc. [9]. The computed metrics for all

74 systems of the QC are displayed in Table 3.

Table 2. A summary of the QC systems [9].

The count of systems Code Lines The count of packages The count of classes
74 6,785,568 3420 51,826

Table 3. Metrics computed on all 74 systems of the QC [9].

Size Complexity Cohesion Coupling Encapsulation Inheritance
LOCNAMM* WMC LCOM5 ATFD NOAM NOII

NOM CYCLO TCC FANOUT NOPA NOI

LOC WOC CINT LAA NIM

NOA AMWNAMM* RFC NMO

NOMNAMM* NOP CDISP NOC

NOCS MAXNESTING CFNAMM* DIT

NOPK WMCNAMM* FDP

 CLNAMM CBO

 AMW MeMCL§

 NOLV MaMCL§

 ATLD* NMCS§

 NOAV CM

 CC

2.2. Data Pre-processing and Features Selection
Before constructing the model, it is essential to carry out pre-processing of the collected data. To

ensure the production of an optimal model, careful attention must be paid to the quality of the data

[24]. Data pre-processing refers to a collection of procedures utilized to enhance data quality before

constructing a model. Its primary objectives are the removal of noise and extraneous outliers, managing

missing values, converting feature types, and more [10], [11], [25]. Selecting the most informative

features from a list of features through suitable methods is a crucial step commonly referred to as Feature

Selection (FS). [26]–[28]. FS aims to identify the most relevant features for the target class from a high-

dimensional feature set and eliminate redundant and uncorrelated features [1], [17], [21], [29]. There

are three distinct categories of FS methods, which are wrapper methods, embedded methods, and filter

methods, each method has rules for selecting the most relevant features as independent variables for

training ML models [29]. In this study, our models were based on embedded methods because these

methods fit ML models.

2.3. Class Imbalance and Sampling Techniques
Class imbalance is a common issue in code smells detection, wherein one class has significantly fewer

examples than the others. That is particularly relevant since code smells datasets often consist of a small

number of smelly instances and many non-smelly ones [3]. Therefore, the class imbalance problem can

often lead to misclassifying cases in the minority class [30]. To address this problem, various techniques

have been proposed, including data sampling methods, boosting-based ensemble methods, bagging-

based ensemble methods, cost-sensitive learning approaches, and other similar approaches [2]. the

dataset used for code smells detection in this study is significantly imbalanced [15]. Specifically, the

initial datasets consisted of 561 smelly instances and 1119 non-smelly instances. The first two datasets

pertain to code smells at the class level, specifically for the god class (with 140 smelly cases and 280 non-

smelly instances) and data class (with 140 smelly cases and 280 non-smelly instances). In contrast, the

remaining two datasets focus on code smells at the method level, namely feature envy (with 140 smelly

instances and 280 non-smelly instances) and long method (with 141 smelly instances and 279 non-smelly

instances). We address the class imbalance issue by enhancing the original datasets to make the data

more realistic. We mitigate the class imbalance problem by using the random oversampling technique,

which involves randomly selecting examples to increase the minority class [2], [17]. Fig. 2 illustrates the

learning instances distribution in all datasets.

ISSN 2442-6571 International Journal of Advances in Intelligent Informatics 406

 Vol. 9, No. 3, November 2023, pp. 402-417

 Khleel and Nehéz (Detection of code smells using machine learning techniques combined with data-balancing methods)

Fig. 2. illustrates the learning instances distribution in all datasets.

2.4. Classification Algorithms
This section briefly describes the classification algorithms used to detect and classify code smells in

our study.

2.4.1. DT
DT is a supervised ML algorithm utilized for carrying out both regression and classification tasks [9].

DTs function by segregating instances based on feature values and branching them out. In an ID3

decision tree, all features are initially assigned as root nodes. Subsequently, the features are separated by

computing their Entropy, which measures data homogeneity. Entropy values fall within the range of 0

to 1[12], [13]. Mathematically, entropy for a single attribute is represented as:

 E(F) = -∑ c
i=1 pi log2 pi (1)

Where C is the number of outputs, 𝑝𝑝𝑖𝑖 Is the probability of occurrences of each output from all outputs, and F is a

feature with some data.

2.4.2. K-NN
K-NN is a basic supervised ML algorithm that operates by examining K neighboring objects and

selecting the most commonly occurring class or calculating the distance between them [28].

Additionally, it is a lazy-learning technique that categorizes elements according to their spatial

arrangement on a hyperplane. The algorithm necessitates the selection of k closest points. Therefore,

the first stage involves determining the distance between the input data point and other points in our

training data [29], [31]. The distance between these two points can be calculated using:

𝑑𝑑(𝑥𝑥,𝑦𝑦) = �∑ (𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖)2 𝑝𝑝
𝑖𝑖=1 (2)

Suppose x is a point with coordinates (𝑥𝑥1,𝑥𝑥2,...,𝑥𝑥𝑝𝑝) and y is a point with coordinates (𝑦𝑦1,𝑦𝑦2,..., 𝑦𝑦𝑝𝑝).

2.4.3. SVM
SVM is a widely-used and regularized machine learning algorithm employed mainly for classification

and regression purposes. SVMs leverage a margin on both sides of a hyperplane to separate two features,

and they optimize the hyperplane to maximize the margin between features [2], [29]. The general form

of the SVM function is defined as:

 F(x) = W ∗ Q(x) + b (3)

In this context, the weight vector is denoted by w, the input vector is represented by x, and the

hyperplane equations' intercept and bias terms are indicated by b.

407 International Journal of Advances in Intelligent Informatics ISSN 2442-6571

 Vol. 9, No. 3, November 2023, pp. 402-417

 Khleel and Nehéz (Detection of code smells using machine learning techniques combined with data-balancing methods)

2.4.4. XGB
XGB is a robust ML algorithm that has been recently introduced. It is grounded in the principle of

gradient boosting and utilizes parallel tree boosting to predict the target through the consolidated results

of numerous weak models. XGB delivers exceptional speed and accuracy. The formula for the XGB

model is given as:

𝑌𝑌𝑖𝑖 = 𝑤𝑤𝑞𝑞(𝑥𝑥𝑖𝑖) = ∑ 𝑓𝑓𝑡𝑡𝑇𝑇
𝑡𝑡 =1 (𝑥𝑥𝑖𝑖) (4)

Where 𝑓𝑓𝑡𝑡(𝑥𝑥𝑖𝑖) = 𝑤𝑤𝑞𝑞(𝑥𝑥) represents the domain of classification trees, while 𝑤𝑤𝑞𝑞(𝑥𝑥) represents the score of

a particular sample, x represents the predicted value generated by the model. In addition, q signifies the

structure of each tree, T refers to the total number of trees, and each 𝑓𝑓𝑡𝑡 corresponds to a different tree

structure q with its corresponding leaf weight w.

2.4.5. MLP
MLP is an artificial neural network composed of multiple layers of interconnected perceptrons,

specifically designed to handle intricate data inputs and execute diverse tasks such as regression or

classification. The network employs nodes with specific weights to create connections between these

layers. The backpropagation algorithm is used to train the model in the MLP network [7]. The formula

of the MLP model is as follows:

𝑌𝑌𝑖𝑖 = 𝑓𝑓𝑖𝑖(∑ 𝑋𝑋𝑗𝑗𝑛𝑛
𝑗𝑗 =1 𝑊𝑊𝑖𝑖𝑗𝑗 + 𝑏𝑏𝑖𝑖) (5)

The given context states that the output is denoted by𝑌𝑌𝑖𝑖 , while n represents the overall number of inputs

that are provided to the neuron. Additionally, 𝑋𝑋𝑗𝑗 represents the input to the network, The weights of

the connections between input and output nodes are denoted by𝑊𝑊𝑖𝑖𝑖𝑖 , the bias term is represented by𝑏𝑏𝑖𝑖,
and the transfer function is symbolized by𝑓𝑓𝑖𝑖.

2.5. Models Building and Evaluation
The proposed models were built and evaluated by utilizing 80% of the dataset for training and

keeping the remaining 20% for validation. Table 4 outlines the various parameters used for creating each

model independently. We assess the effectiveness of our proposed models by utilizing standard evaluation

metrics, namely the confusion matrix, which includes measures such as (accuracy, precision, recall, and

𝑓𝑓- measure), MCC, and AUC. MCC is a widely adopted metric for model assessment, which captures

the variation between predicted and actual values through true and false positives and negatives. AUC is

a visual depiction of classifier efficacy that plots the true positive rate versus the false positive rate at

varying classification thresholds. A confusion matrix is a table that assists in evaluating the performance

of a classification model by comparing the predicted class labels to the actual class labels of a dataset as

illustrated in Table 5.

Table 4. Shows the parameters setting for the models

Models Parameters setting
DT No passing parameters (default parameters)

K-NN N_neighbors = 3

SVM Probability = True, kernel = 'linear'

XGB Max_depth=3, n_estimators=100, n_jobs=2, objectvie='binary:logistic', learning_rate=0.01,

Subsample=0.7, colsample_bytree=0.8

MLP Hidden_layer_sizes=(10,5), max_iter=1000

Table 5. Shows the confusion matrix

Predicted class Actual class
Yes No

Yes TP FN

No FP TN

ISSN 2442-6571 International Journal of Advances in Intelligent Informatics 408

 Vol. 9, No. 3, November 2023, pp. 402-417

 Khleel and Nehéz (Detection of code smells using machine learning techniques combined with data-balancing methods)

Accuracy = (TP+TN)
(TP+FP+FN+TN)

 (6)

Precision = TP
(TP+FP)

 (7)

Recall = TP
(TP + FN)

 (8)

F − Measure = (2 ∗ Recall ∗Precision)
(Recall + Precision)

 (9)

MCC = TP ∗ TN − FP ∗ FN / �(TP + FP) ∗ (TP + FN) ∗ (TN + FP) ∗ (TN + FN) (10)

AUC =
∑ rank(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)− M(M+1)

2
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∈ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

M . N
 (11)

In this given scenario, the sum of ranks for all positive samples is represented

by∑ rank(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∈ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 , while the number of positive examples is denoted by "𝑀𝑀," and the

number of negative examples is represented by "𝑁𝑁".

3. Results and Discussion
The experimental setup was implemented in Python, and the training and validation datasets were

obtained from the same project. To ensure reliable performance evaluation, the proposed models were

trained and tested on large datasets with over 6,785,568 lines of source code. Table 6 to Table 9, and

Fig. 3 to Fig. 7 show the results.

Table 6. The results for the class-level dataset: god class _ original and balanced datasets

Original datasets
Machine

Learning Models
Performance measurement

Accuracy Precision Recall F- measure MCC AUC

DT 0.95 0.97 0.92 0.94 0.90 0.94

K-NN 0.90 0.97 0.81 0.88 0.81 0.94

SVM 0.92 0.94 0.86 0.90 0.83 0.97

XGB 0.98 0.97 0.97 0.97 0.95 0.99

MLP 0.93 0.97 0.86 0.91 0.85 0.99

Averages 0.93 0.96 0.88 0.92 0.86 0.96
Balanced datasets

Machine
Learning Models

Performance measurement
Accuracy Precision Recall F- measure MCC AUC

DT 0.98 0.97 1.00 0.98 0.96 0.98

K-NN 0.97 0.97 0.98 0.98 0.94 0.97

SVM 0.96 0.95 0.98 0.97 0.92 0.99

XGB 0.96 0.95 0.97 0.96 0.90 0.98

MLP 0.97 0.97 0.98 0.98 0.94 0.98

Averages 0.96 0.96 0.98 0.97 0.93 0.98

Based on the DT model, we observed that accuracy values varied from 0.92 to 0.99 on the original

datasets and from 0.98 to 1.00 on the balanced datasets. In terms of precision, the values ranged from

0.86 to 1.00 on the original datasets and from 0.97 to 1.00 on the balanced datasets. The recall values

ranged from 0.89 to 0.96 on the original datasets and were 1.00 on the balanced datasets. In the context

of f-measure, the values varied from 0.87 to 0.98 on the original datasets and from 0.98 to 1.00 on the

balanced datasets. Moreover, MCC values ranged from 0.81 to 0.97 on the original datasets and from

0.96 to 1.00 on the balanced datasets, whereas AUC values ranged from 0.90 to 0.98 on the original

datasets and from 0.98 to 1.00 on the balanced datasets.

409 International Journal of Advances in Intelligent Informatics ISSN 2442-6571

 Vol. 9, No. 3, November 2023, pp. 402-417

 Khleel and Nehéz (Detection of code smells using machine learning techniques combined with data-balancing methods)

Table 7. The results for the class-level dataset: data class_ original and balanced datasets

 Original datasets
Machine

Learning Models
Performance measurement

Accuracy Precision Recall F- measure MCC AUC

DT 0.98 1.00 0.91 0.95 0.94 0.95

K-NN 0.89 0.75 0.91 0.82 0.75 0.97

SVM 0.96 0.92 0.96 0.94 0.91 0.99

XGB 1.00 1.00 1.00 1.00 1.00 1.00

MLP 0.98 0.92 1.00 0.96 0.94 0.99

Averages 0.96 0.91 0.95 0.93 0.90 0.98
Balanced datasets

Machine
Learning Models

Performance measurement
Accuracy Precision Recall F- measure MCC AUC

DT 1.00 1.00 1.00 1.00 1.00 1.00

K-NN 0.96 0.93 0.98 0.96 0.91 0.98

SVM 0.97 0.95 1.00 0.97 0.94 0.99

XGB 1.00 1.00 1.00 1.00 1.00 1.00

MLP 0.98 0.97 1.00 0.98 0.96 0.99

Averages 0.98 0.97 0.99 0.98 0.96 0.99

The K-NN model demonstrates that the accuracy values vary between 0.86 to 0.92 on the original

datasets and from 0.91 to 0.97 on the balanced datasets. Additionally, the precision values on the original

datasets vary from 0.75 to 0.97 and from 0.88 to 0.97 on the balanced datasets. The recall values vary

from 0.70 to 0.91 on the original datasets and from 0.97 to 0.98 on the balanced datasets. In the context

of f-measure, the values range from 0.76 to 0.88 on the original datasets and from 0.92 to 0.98 on the

balanced datasets. Furthermore, the MCC values range from 0.66 to 0.81 on the original datasets and

from 0.82 to 0.94 on the balanced datasets. Finally, the AUC values range from 0.85 to 0.97 on the

original datasets and from 0.93 to 0.98 on the balanced datasets.

Table 8. The results for the method-level dataset: long method_ original and balanced datasets

Original datasets
Machine

Learning Models
Performance measurement

Accuracy Precision Recall F- measure MCC AUC

DT 0.99 1.00 0.96 0.98 0.97 0.98

K-NN 0.92 0.92 0.81 0.86 0.80 0.94

SVM 0.98 0.96 0.96 0.96 0.94 0.99

XGB 1.00 1.00 1.00 1.00 1.00 1.00

MLP 0.94 0.87 0.96 0.91 0.87 0.98

Averages 0.96 0.95 0.93 0.94 0.91 0.97
Balanced datasets

Machine
Learning Models

Performance measurement
Accuracy Precision Recall F- measure MCC AUC

DT 1.00 1.00 1.00 1.00 1.00 1.00

K-NN 0.96 0.93 0.98 0.95 0.91 0.97

SVM 1.00 1.00 1.00 1.00 1.00 1.00

XGB 1.00 1.00 1.00 1.00 1.00 1.00

MLP 0.98 0.96 1.00 0.98 0.96 1.00

Averages 0.98 0.97 0.99 0.98 0.97 0.99

Following the SVM model, it can be observed that the accuracy values vary between 0.90 and 0.98

on the original datasets, and from 0.96 to 1.00 on the balanced datasets. On the original datasets, the

precision values vary from 0.85 to 0.96, while on the balanced datasets, the precision values vary from

0.94 to 1.00. In the context of recall, the values range from 0.85 to 0.96 on the original datasets, and

from 0.98 to 1.00 on the balanced datasets. In the context of f-measure, the values range from 0.85 to

ISSN 2442-6571 International Journal of Advances in Intelligent Informatics 410

 Vol. 9, No. 3, November 2023, pp. 402-417

 Khleel and Nehéz (Detection of code smells using machine learning techniques combined with data-balancing methods)

0.96 on the original datasets and from 0.97 to 1.00 on the balanced datasets. The MCC values range

from 0.78 to 0.94 on the original datasets and from 0.92 to 1.00 on the balanced datasets. The AUC

values range from 0.96 to 0.99 on the original datasets and from 0.97 to 1.00 on the balanced datasets.

Table 9. The results for the method-level dataset: feature envy_ original and balanced datasets

Original datasets
Machine

Learning Models
Performance measurement

Accuracy Precision Recall F- measure MCC AUC

DT 0.92 0.86 0.89 0.87 0.81 0.90

K-NN 0.86 0.83 0.70 0.76 0.66 0.85

SVM 0.90 0.85 0.85 0.85 0.78 0.96

XGB 0.95 0.87 1.00 0.93 0.89 0.99

MLP 0.88 0.87 0.74 0.80 0.72 0.90

Averages 0.90 0.85 0.83 0.84 0.77 0.92
Balanced datasets

Machine
Learning Models

Performance measurement
Accuracy Precision Recall F- measure MCC AUC

DT 0.98 0.97 1.00 0.98 0.96 0.98

K-NN 0.91 0.88 0.97 0.92 0.82 0.93

SVM 0.96 0.94 1.00 0.97 0.92 0.97

XGB 0.98 0.97 1.00 0.98 0.96 0.98

MLP 0.96 0.97 0.97 0.97 0.92 0.98

Averages 0.95 0.94 0.98 0.96 0.91 0.96

Based on the XGB model, it can be observed that the accuracy values range between 0.95 to 1.00 for

the original datasets and between 0.96 to 1.00 for the balanced datasets. In the context of precision, the

values range between 0.87 to 1.00 for the original datasets and between 0.95 to 1.00 for the balanced

datasets. In the context of recall, the values range between 0.97 to 1.00 for the original datasets and

between 0.97 to 1.00 for the balanced datasets. In the context of f-measure, the values range between

0.93 to 1.00 for the original datasets and between 0.96 to 1.00 for the balanced datasets. Additionally,

the MCC values range between 0.89 to 1.00 for the original datasets and between 0.90 to 1.00 for the

balanced datasets, whereas the AUC values range between 0.99 to 1.00 for the original datasets and

between 0.98 to 1.00 for the balanced datasets.

Based on the MLP model, it was observed that the accuracy values ranged from 0.88 to 0.98 on the

original datasets and from 0.96 to 0.98 on the balanced datasets. Furthermore, the precision values

ranged from 0.87 to 0.97 on the original datasets and from 0.96 to 0.97 on the balanced datasets, while

the recall values ranged from 0.74 to 1.00 on the original datasets and from 0.97 to 1.00 on the balanced

datasets. In the context of f-measure, the values ranged from 0.80 to 0.96 on the original datasets and

from 0.97 to 0.98 on the balanced datasets. Furthermore, the MCC values range from 0.72 to 0.94 on

the original datasets and from 0.92 to 0.96 on the balanced datasets. Finally, the AUC values range from

0.90 to 0.99 on the original datasets and from 0.98 to 1.00 on the balanced datasets.

 Concerning each type of code smell, the top-performing models attain the subsequent results: DT

model scores 100% accuracy on data class and long method (balanced datasets). K-NN model achieves

97% accuracy on god class (balanced datasets). The SVM model scores 100% accuracy on the long

method (balanced datasets). XGB model achieves 100% accuracy on data class and long method (original

and balanced datasets). MLP model scores 98% accuracy on data class (original and balanced datasets)

and 98% on the long method (balanced datasets).

Fig. 3 shows the best accuracy values of the models for all considered code smells on the original and

balanced datasets. The best accuracy on the original datasets (god class) is 98% obtained by the XGB

model, while the best accuracy on the balanced datasets (god class) is 98% obtained by the DT model.

The best accuracy on the original datasets (data class) is 100% which the XGB model gets, while the

best accuracy on the balanced datasets (data class) is 100% obtained by the DT and XGB models. The

411 International Journal of Advances in Intelligent Informatics ISSN 2442-6571

 Vol. 9, No. 3, November 2023, pp. 402-417

 Khleel and Nehéz (Detection of code smells using machine learning techniques combined with data-balancing methods)

best accuracy on the original datasets (long method) is 100% which the XGB model gets, while the best

accuracy on the balanced datasets (long method) is 100% which is obtained by the DT, SVM, and XGB

models. The best accuracy on the original datasets (feature envy) is 95% which the XGB model gets.

The best accuracy on the balanced datasets (feature envy) is 98%, obtained by the DT and XGB models.

Fig. 3. The best models' accuracy values on original and balanced data sets.

Fig. 4 exhibits box plots that display the averages of several performance measures, including accuracy,

precision, recall, f-measure, MCC, and AUC based on the original datasets. The overall average

performance of all models is 0.93, 0.96, 0.88, 0.92, 0.86, and 0.96, respectively, for the god class.

Similarly, for the data class, the overall average performance of all models is 0.96, 0.91, 0.95, 0.93, 0.90,

and 0.98, respectively. In the context of the long method, the overall average of all models is 0.96, 0.95,

0.93, 0.94, 0.91, and 0.97, respectively. Lastly, for feature envy, the overall average performance of all

models is 0.90, 0.85, 0.83, 0.84, 0.77, and 0.92, respectively.

Fig. 4. Box Plots represent the models' performance measures on all considered code smells_ original datasets.

Fig. 5 exhibits box plots that display the averages of several performance measures, including accuracy,

precision, recall, f-measure, MCC, and AUC based on the balanced datasets. The overall average

performance of all models is 0.96, 0.96, 0.98, 0.97, 0.93, and 0.98, respectively, for the god class.

Similarly, for the data class, the overall average performance of all models is 0.98, 0.97, 0.99, 0.98, 0.96,

ISSN 2442-6571 International Journal of Advances in Intelligent Informatics 412

 Vol. 9, No. 3, November 2023, pp. 402-417

 Khleel and Nehéz (Detection of code smells using machine learning techniques combined with data-balancing methods)

and 0.99, respectively. In the context of the long method, the overall average of all models is 0.98, 0.97,

0.99, 0.98, 0.97, and 0.99, respectively. Lastly, for feature envy, the overall average performance of all

models is 0.95, 0.94, 0.98, 0.96, 0.91, and 0.96, respectively.

Fig. 5. Box Plots represent the models' performance measures on all considered code smells_ balanced datasets.

Fig. 6 shows the AUC of the models for all considered code smells on the original datasets; the

highest AUC on the original datasets (god class) is 99%, obtained by XGB and MLP models.

Fig. 6. The ROC curves obtained by the models on all considered code smells_ original datasets.

413 International Journal of Advances in Intelligent Informatics ISSN 2442-6571

 Vol. 9, No. 3, November 2023, pp. 402-417

 Khleel and Nehéz (Detection of code smells using machine learning techniques combined with data-balancing methods)

In comparison, the lowest AUC is 94%, obtained by DT and K-NN models. The highest AUC on

the original datasets (data class) is 100% obtained by the XGB model, while the lowest AUC is 95%

obtained by the DT model. The highest AUC on the original datasets (long method) is 100% obtained

by the XGB model, while the lowest AUC is 94% obtained by the K-NN model. The highest AUC on

the original datasets (feature envy) is 99%, obtained by the XGB model, while the lowest AUC is 85%,

obtained by the K-NN model.

 Fig. 7 shows the AUC of the models for all considered code smells on the balanced datasets, the

highest AUC on the balanced datasets (god class) is 99%, obtained by the SVM model, while the lowest

AUC is 97%, and the K-NN model gets. The highest AUC on the balanced datasets (data class) is 100%

obtained by DT and XGB models, while the lowest AUC is 98% obtained by the K-NN model.

The highest AUC on the balanced datasets (long method) is 100% acquired by DT, SVM, XGB, and

MLP models, while the lowest AUC is 97%, which the K-NN model obtains. The highest AUC on the

balanced datasets (feature envy) is 99%, obtained by DT, XGB, and MLP models, while the lowest AUC

is 93% which the K-NN model gets.

Fig. 7. The ROC curves obtained by the models on all considered code smells_ balanced datasets.

The performance of our models was compared with those of previous studies based on accuracy and

AUC. The comparison results are presented in Table 10 and Table 11, where the best values are indicated

in bold, and "- " denotes the missing performance measures for specific methods in certain datasets.

Overall, our method outperforms the other state-of-the-art methods in most cases. A comparison of

machine learning techniques using four datasets of code smells, with a specific emphasis on their Area

Under the Curve (AUC) metrics. The AUC is a fundamental statistic used in binary classification. The

examination focuses on the evaluation of Random Forest, Naive Bayes, SVM, and K-Nearest Neighbors

(KNN) algorithms. Additionally, the study investigates Our models sing Decision Tree (DT), K-NN,

Support Vector Machines (SVM), XGBoost (XGB), and Multilayer Perceptron (MLP). The AUC values

are presented for the software code metrics known as "god class," "data class," "long method," and

"feature envy." Our models section demonstrates excellent performance, particularly when applied to

ISSN 2442-6571 International Journal of Advances in Intelligent Informatics 414

 Vol. 9, No. 3, November 2023, pp. 402-417

 Khleel and Nehéz (Detection of code smells using machine learning techniques combined with data-balancing methods)

datasets that are balanced. The AUC values ranges from 0.97 to 1.00, which signifies a high level of

discriminatory ability. The results presented in this study showcase the potential of Our models in

detecting software development code quality issues, despite the lack of information regarding the datasets

and code quality metrics utilized.

Table 10. Outlines a comparison between the proposed method and other pre-existing methods, with emphasis

on their respective accuracy values

Datasets
Methods god class data class long method feature envy

DT [1] - - - 0.97

RF [1] - 0.99 0.95 -

RF [9] 0.96 0.98 0.99 0.96

NB [9] 0.97 0.97 0.97 0.91

NB [17] 0.96 - 0.97 0.91

MLP [17] 0.97 - 0.99 0.92

DT [17] 0.98 - 0.97 0.95

RF [19] 0.76 0.81 0.60 0.66

NB [19] 0.74 0.66 0.74 0.76

SVM [19] 0.66 0.66 0.66 0.60

K-NN [21] 0.97 0.97 0.97 0.91

NB [21] 0.96 0.84 0.95 0.92

MLP [21] 0.97 0.97 0.96 0.95

DT [21] 0.97 0.98 0.98 0.98

RF [21] 0.97 0.98 0.99 0.97

Logistic Regression [21] 0.97 0.97 0.99 0.97

RF [22] 0.69 0.70 0.68 0.71

NB [22] 0.82 0.75 0.81 0.83

SVM [22] 0.74 0.83 0.81 0.83

K-NN [22] 0.80 0.82 0.81 0.82

Our models (DT, K-NN,

SVM, XGB, MLP) - Original

Datasets

0.95, 0.90, 0.92,

0.98, 0.93

0.98, 0.89,

0.96,1.00, 0.98

0.99, 0.92, 0.98,

1.00, 0.94

0.92, 0.86, 0.90,

0.95, 0.88

Our models (DT, K-NN,

SVM, XGB, MLP) - Balanced

Datasets

0.98, 0.97, 0.96,

0.96, 0.97

1.00, 0.96,

0.97, 1.00, 0.98

1.00, 0.96, 1.00,

1.00, 0.98

0.98, 0.91, 0.96,

0.98, 0.96

Table 11. Outlines a comparison between the proposed method and other pre-existing methods, with emphasis

on their respective AUC values

Datasets
Methods god class data class long method feature envy

RF [22] 0.59 0.65 0.52 0.59

NB [22] 0.88 0.85 0.86 0.86

SVM [22] 0.65 0.88 0.66 0.82

K-NN [22] 0.83 0.86 0.86 0.83

Our models (DT, K-NN,

SVM, XGB, MLP) -

Original Datasets

0.94, 0.94, 0.97,

0.99, 0.99

0.95, 0.97,

0.99, 1.00, 0.99

0.98, 0.94, 0.99,

1.00, 0.98

0.90, 0.85, 0.96,

0.99, 0.90

Our models (DT, K-NN,

SVM, XGB, MLP) -

Balanced Datasets

0.98, 0.97, 0.99,

0.98, 0.98

1.00, 0.98,

0.99, 1.00, 0.99

1.00, 0.97, 1.00,

1.00, 1.00

0.98, 0.93, 0.97,

0.98, 0.98

After analysing the outcomes generated by our presented ML models across all datasets, It is clear

from the results that the models achieved impressive scores on all of the datasets. This suggests that our

415 International Journal of Advances in Intelligent Informatics ISSN 2442-6571

 Vol. 9, No. 3, November 2023, pp. 402-417

 Khleel and Nehéz (Detection of code smells using machine learning techniques combined with data-balancing methods)

proposed models performed well, and the data balancing methods utilized were instrumental in

enhancing the accuracy of ML models for code smells detection.

4. Conclusion
Code smells detection has significant positive effects on software quality. In this study, we presented

a method based on ML techniques combined with a data balancing method (random oversampling

technique) to detect code smells; Our proposed method was evaluated by considering four different types

of code smells. The evaluation involved conducting experiments using five different ML algorithms and

assessing the results using various performance measures. The proposed models' average accuracy on the

original datasets was found to be 93% for god class, 96% for data class, 96% for long method, and 90%

for feature envy. Meanwhile, on the balanced datasets, the proposed models' average accuracy was 96%

for god class, 98% for data class, 98% for long method, and 95% for feature envy. The results indicate

that the proposed models' accuracy improved by 3%, 2%, 2%, and 5% on the balanced datasets

compared to the original datasets. The experimental result showed that combining ML algorithms with

a random oversampling technique can enhance the process of code smells detection and that software

metrics play significant and critical roles in detecting code smells. By analyzing the results, it is clear that

our method gives better results when compared with the other methods previously studied for code

smells detection in performance evaluations using the same datasets. However, the limitation of this

study is that some of the results obtained with our models (K-NN and MLP) are not very high. So, in

our future work, we will try to improve the architecture of these models to get better results. In addition,

we intend to assess the robustness of our method by testing it on various datasets. Furthermore, our

goal is to enhance the accuracy of models in detecting code smells by incorporating additional ML

algorithms, such as neural networks and deep learning, and utilizing random under sampling techniques

for data balancing.

Acknowledgment
The University of Miskolc, Faculty of Mechanical Engineering and Informatics, Institute of

Information Science, provided financial support for this study, which the authors gratefully acknowledge.

Declarations
Author contribution. Both authors collaborated in developing the work, analyzing and interpreting the

results, and making significant contributions to the final manuscript. The authors have also carefully

reviewed and granted their approval for the publication of the final manuscript.

Funding statement. The University of Miskolc provides open Access funding.

Conflict of interest. The authors declare no conflict of interest.

Additional information. No additional information is available for this paper.

Data and Software Availability Statements
The datasets utilized in our current study can be accessed at https://essere.disco.unimib.it/machine-

learning-for-code-smell-detection/.

References
[1] M. Y. Mhawish and M. Gupta, “Predicting Code Smells and Analysis of Predictions: Using Machine

Learning Techniques and Software Metrics,” J. Comput. Sci. Technol., vol. 35, no. 6, pp. 1428–1445, Nov.

2020, doi: 10.1007/S11390-020-0323-7.

[2] F. Pecorelli, D. Di Nucci, C. De Roover, and A. De Lucia, “On the role of data balancing for machine

learning-based code smell detection,” MaLTeSQuE 2019 - Proc. 3rd ACM SIGSOFT Int. Work. Mach.
Learn. Tech. Softw. Qual. Eval. co-located with ESEC/FSE 2019, pp. 19–24, Aug. 2019, doi:

10.1145/3340482.3342744.

[3] N. A. A. Khleel and K. Nehéz, “Deep convolutional neural network model for bad code smells detection

based on oversampling method,” Indones. J. Electr. Eng. Comput. Sci., vol. 26, no. 3, pp. 1725–1735, Jun.

2022, doi: 10.11591/IJEECS.V26.I3.PP1725-1735.

https://doi.org/10.1007/s11390-020-0323-7
https://doi.org/10.1145/3340482.3342744
https://doi.org/10.11591/ijeecs.v26.i3.pp1725-1735

ISSN 2442-6571 International Journal of Advances in Intelligent Informatics 416

 Vol. 9, No. 3, November 2023, pp. 402-417

 Khleel and Nehéz (Detection of code smells using machine learning techniques combined with data-balancing methods)

[4] J. Pereira dos Reis, F. Brito e Abreu, G. de Figueiredo Carneiro, and C. Anslow, “Code Smells Detection

and Visualization: A Systematic Literature Review,” Arch. Comput. Methods Eng., vol. 29, no. 1, pp. 47–94,

Jan. 2022, doi: 10.1007/S11831-021-09566-X.

[5] T. Sharma, V. Efstathiou, P. Louridas, and D. Spinellis, “Code smell detection by deep direct-learning and

transfer-learning,” J. Syst. Softw., vol. 176, p. 110936, Jun. 2021, doi: 10.1016/J.JSS.2021.110936.

[6] A. Kaur, S. Jain, S. Goel, and G. Dhiman, “A Review on Machine-learning Based Code Smell Detection

Techniques in Object-oriented Software System(s),” Recent Adv. Electr. Electron. Eng. (Formerly Recent
Patents Electr. Electron. Eng., vol. 14, no. 3, pp. 290–303, Sep. 2020, doi:

10.2174/2352096513999200922125839.

[7] A. Al-Shaaby, H. Aljamaan, and M. Alshayeb, “Bad Smell Detection Using Machine Learning Techniques:

A Systematic Literature Review,” Arab. J. Sci. Eng., vol. 45, no. 4, pp. 2341–2369, Apr. 2020, doi:

10.1007/S13369-019-04311-W.

[8] P. Kokol, M. Kokol, and S. Zagoranski, “Code smells: A Synthetic Narrative Review,” Libr. Philos. Pract.,
vol. 2020, pp. 1-13, Mar. 2021. [Online]. Available: https://arxiv.org/abs/2103.01088v1

[9] F. Arcelli Fontana, M. V. Mäntylä, M. Zanoni, and A. Marino, “Comparing and experimenting machine

learning techniques for code smell detection,” Empir. Softw. Eng., vol. 21, no. 3, pp. 1143–1191, Jun. 2016,

doi: 10.1007/S10664-015-9378-4.

[10] T. Guggulothu and S. A. Moiz, “Code smell detection using multi-label classification approach,” Softw.
Qual. J., vol. 28, no. 3, pp. 1063–1086, Sep. 2020, doi: 10.1007/S11219-020-09498-Y.

[11] J. Nanda and J. K. Chhabra, “SSHM: SMOTE-stacked hybrid model for improving severity classification of

code smell,” Int. J. Inf. Technol., vol. 14, no. 5, pp. 2701–2707, Aug. 2022, doi: 10.1007/S41870-022-00943-

8.

[12] F. L. Caram, B. R. D. O. Rodrigues, A. S. Campanelli, and F. S. Parreiras, “Machine Learning Techniques

for Code Smells Detection: A Systematic Mapping Study,” International Journal of Software Engineering and
Knowledge Engineering, vol. 29, no. 2, pp. 285–316, Feb. 2019, doi: 10.1142/S021819401950013X.

[13] F. C. Luiz, B. R. De Oliveira, and F. S. Parreiras, “Machine learning techniques for code smells detection:

An empirical experiment on a highly imbalanced setup,” ACM Int. Conf. Proceeding Ser., May 2019, doi:

10.1145/3330204.3330275.

[14] D. Oliveira, W. K. G. Assunção, L. Souza, W. Oizumi, A. Garcia, and B. Fonseca, “Applying Machine

Learning to Customized Smell Detection: A Multi-Project Study,” ACM Int. Conf. Proceeding Ser., pp.

233–242, Oct. 2020, doi: 10.1145/3422392.3422427.

[15] D. Di Nucci, F. Palomba, D. A. Tamburri, A. Serebrenik, and A. De Lucia, “Detecting code smells using

machine learning techniques: Are we there yet?,” 25th IEEE Int. Conf. Softw. Anal. Evol. Reengineering,
SANER 2018 - Proc., vol. 2018-March, pp. 612–621, Apr. 2018, doi: 10.1109/SANER.2018.8330266.

[16] D. Cruz, A. Santana, and E. Figueiredo, “Detecting bad smells with machine learning algorithms: An

empirical study,” Proc. - 2020 IEEE/ACM Int. Conf. Tech. Debt, TechDebt 2020, pp. 31–40, Jun. 2020, doi:

10.1145/3387906.3388618.

[17] A. D. F. Martins, C. Melo, J. M. Monteiro, and J. de Castro Machado, “Empirical study about class change

proneness prediction using software metrics and code smells,” ICEIS 2020 - Proc. 22nd Int. Conf. Enterp.
Inf. Syst., vol. 1, pp. 140–147, 2020, doi: 10.5220/0009410601400147.

[18] M. Hozano, N. Antunes, B. Fonseca, and E. Costa, “Evaluating the accuracy of machine learning algorithms

on detecting code smells for different developers,” ICEIS 2017 - Proc. 19th Int. Conf. Enterp. Inf. Syst., vol.

2, pp. 474–482, 2017, doi: 10.5220/0006338804740482.

[19] T. Sharma, V. Efstathiou, P. Louridas, and D. Spinellis, “On the Feasibility of Transfer-learning Code

Smells using Deep Learning,” ACM Trans. Softw. Eng. Methodol. 1, 1, Artic., vol. 1, pp. 1-34, Apr. 2019,

doi: 10.48550/arXiv.1904.03031.

[20] S. Dewangan, R. S. Rao, A. Mishra, and M. Gupta, “A novel approach for code smell detection: An empirical

study,” IEEE Access, vol. 9, pp. 162869–162883, 2021, doi: 10.1109/ACCESS.2021.3133810.

https://doi.org/10.1007/s11831-021-09566-x
https://doi.org/10.1016/j.jss.2021.110936
https://doi.org/10.2174/2352096513999200922125839
https://doi.org/10.1007/s13369-019-04311-w
https://arxiv.org/abs/2103.01088v1
https://doi.org/10.1007/s10664-015-9378-4
https://doi.org/10.1007/s11219-020-09498-y
https://doi.org/10.1007/s41870-022-00943-8
https://doi.org/10.1007/s41870-022-00943-8
https://doi.org/10.1142/S021819401950013X
https://doi.org/10.1145/3330204.3330275
https://doi.org/10.1145/3422392.3422427
https://doi.org/10.1109/SANER.2018.8330266
https://doi.org/10.1145/3387906.3388618
https://doi.org/10.5220/0009410601400147
https://doi.org/10.5220/0006338804740482
https://doi.org/10.48550/arXiv.1904.03031
https://doi.org/10.1109/ACCESS.2021.3133810

417 International Journal of Advances in Intelligent Informatics ISSN 2442-6571

 Vol. 9, No. 3, November 2023, pp. 402-417

 Khleel and Nehéz (Detection of code smells using machine learning techniques combined with data-balancing methods)

[21] S. Jain and A. Saha, “Rank-based univariate feature selection methods on machine learning classifiers for

code smell detection,” Evol. Intell., vol. 15, no. 1, pp. 609–638, Mar. 2022, doi: 10.1007/S12065-020-00536-

Z.

[22] F. Pecorelli, D. Di Nucci, C. De Roover, and A. De Lucia, “A large empirical assessment of the role of data

balancing in machine-learning-based code smell detection,” J. Syst. Softw., vol. 169, p. 110693, Nov. 2020,

doi: 10.1016/J.JSS.2020.110693.

[23] E. Tempero et al., “The Qualitas Corpus: A curated collection of Java code for empirical studies,” Proc. -
Asia-Pacific Softw. Eng. Conf. APSEC, pp. 336–345, 2010, doi: 10.1109/APSEC.2010.46.

[24] G. Saranya, H. Khanna Nehemiah, A. Kannan, and V. Nithya, “Model level code smell detection using

EGAPSO based on similarity measures,” Alexandria Eng. J., vol. 57, no. 3, pp. 1631–1642, Sep. 2018, doi:

10.1016/J.AEJ.2017.07.006.

[25] W. Xu and X. Zhang, “Multi-granularity code smell detection using deep learning method based on abstract

syntax tree,” Proc. Int. Conf. Softw. Eng. Knowl. Eng. SEKE, vol. 2021-July, pp. 503–509, 2021, doi:

10.18293/SEKE2021-014.

[26] F. Pecorelli, F. Palomba, D. Di Nucci, and A. De Lucia, “Comparing heuristic and machine learning

approaches for metric-based code smell detection,” IEEE Int. Conf. Progr. Compr., vol. 2019-May, pp. 93–

104, May 2019, doi: 10.1109/ICPC.2019.00023.

[27] M. Hadj-Kacem and N. Bouassida, “A hybrid approach to detect code smells using deep learning,” ENASE
2018 - Proc. 13th Int. Conf. Eval. Nov. Approaches to Softw. Eng., vol. 2018-March, pp. 137–146, 2018, doi:

10.5220/0006709801370146.

[28] N. A. A. Khleel and K. Nehez, “Comprehensive Study on Machine Learning Techniques for Software Bug

Prediction,” Int. J. Adv. Comput. Sci. Appl., vol. 12, no. 8, pp. 726–735, 2021, doi:

10.14569/IJACSA.2021.0120884.

[29] S. Jain and A. Saha, “Improving performance with hybrid feature selection and ensemble machine learning

techniques for code smell detection,” Sci. Comput. Program., vol. 212, p. 102713, Dec. 2021, doi:

10.1016/J.SCICO.2021.102713.

[30] Z. Agusta, Z. P. Agusta, and A. Adiwijaya, “Modified balanced random forest for improving imbalanced

data prediction,” Int. J. Adv. Intell. Informatics, vol. 5, no. 1, pp. 58–65, Mar. 2019, doi:

10.26555/ijain.v5i1.255.

[31] Z. M. Zain et al., “Predicting breast cancer recurrence using principal component analysis as feature

extraction: an unbiased comparative analysis,” Int. J. Adv. Intell. Informatics, vol. 6, no. 3, pp. 313–327, Nov.

2020, doi: 10.26555/ijain.v6i3.462.

https://doi.org/10.1007/s12065-020-00536-z
https://doi.org/10.1007/s12065-020-00536-z
https://doi.org/10.1016/j.jss.2020.110693
https://doi.org/10.1109/APSEC.2010.46
https://doi.org/10.1016/j.aej.2017.07.006
https://doi.org/10.18293/SEKE2021-014
https://doi.org/10.1109/ICPC.2019.00023
https://doi.org/10.5220/0006709801370146
https://doi.org/10.14569/IJACSA.2021.0120884
https://doi.org/10.1016/j.scico.2021.102713
https://doi.org/10.26555/ijain.v5i1.255
https://doi.org/10.26555/ijain.v6i3.462

	1. Introduction
	2. Method
	2.1. Dataset Description
	2.2. Data Pre-processing and Features Selection
	2.3. Class Imbalance and Sampling Techniques
	2.4. Classification Algorithms
	2.4.1. DT
	2.4.2. K-NN
	2.4.3. SVM
	2.4.4. XGB
	2.4.5. MLP
	2.5. Models Building and Evaluation

	3. Results and Discussion
	4. Conclusion
	Acknowledgment
	Declarations
	Data and Software Availability Statements
	References

