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1. Introduction 
Feature selection (FS) is important for exploratory analysis of high-dimensional data (e.g., microarray 

datasets) and is an effective method of unearthing previously untapped knowledge obtained from 

classification [1]. However, FS ignores the potential for feature correlation. Thus, the generated subsets 

may not be optimal for the particular task. Furthermore, FS relies on certain mathematical concepts 

without guaranteeing that these concepts are universally valid for all data [2]. 

Feature selection methods are classified into three main groups based on their relationship with the 

learning model: filter, wrapper, and hybrid approaches [3]. The filter method requires no learning 

algorithms for evaluation, and it is based on statistical feature information. Therefore, it is fast in 

computation and efficient [4]. Wrapper methods utilize a learning algorithm in selecting feature subset 

and, generally, the learning efficiency is increased at the cost of higher computational complexity. The 

hybrid methods make use of the benefits from wrapper and filter methods to achieve a balance, 

combining the efficiency of learning and the execution time. The solutions of the filter-based methods 
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 The popular modified graph clustering ant colony optimization (ACO) 

algorithm (MGCACO) performs feature selection (FS) by grouping highly 

correlated features. However, the MGCACO has problems in local search, 

thus limiting the search for optimal feature subset. Hence, an enhanced 

feature clustering with ant colony optimization (ECACO) algorithm is 

proposed. The improvement constructs an ACO feature clustering method 

to obtain clusters of highly correlated features. The ACO feature clustering 

method utilizes the ability of various mechanisms, such as local and global 

search to provide highly correlated features. The performance of ECACO 

was evaluated on six benchmark datasets from the University California 

Irvine (UCI) repository and two deoxyribonucleic acid microarray datasets, 

and its performance was compared against that of five benchmark 

metaheuristic algorithms. The classifiers used are random forest, k-nearest 

neighbors, decision tree, and support vector machine. Experimental results 

on the UCI dataset show the superior performance of ECACO compared 

with other algorithms in all classifiers in terms of classification accuracy. 

Experiments on the microarray datasets, in general, showed that the 

ECACO algorithm outperforms other algorithms in terms of average 

classification accuracy. ECACO can be utilized for FS in classification tasks 

for high-dimensionality datasets in various application domains such as 

medical diagnosis, biological classification, and health care systems.   
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are worth indicating, where its use of the evaluation criteria with the class label, leads to enhanced 

correlation among features and reduced similarity among features [5]. 

One of the important evaluation criteria in the correlation between features is relevance and 

redundancy analysis. The classical evaluation criterion that is based on the analysis of relevance and 

redundancy is max-relevance and min-redundancy [6]. In the processing of selection features, several 

mechanisms are able to reduce both relevance and redundancy. Redundancy occurs when one feature 

provides information similar to another feature in the dataset. Therefore, choosing the redundant feature 

to represent the final subset negatively affects model accuracy. Irrelevant features play a meaningless role 

and do not supply information to the clustering or classification of a set of data instances. In high-

dimensional data, the correlation between the increasing numbers of features becomes more complicated. 

Consequently, redundant and irrelevant features should be analyzed more accurately. Several FS 

methods, such as max-relevance and min-redundancy, random subspace [7], fast correlation-based filter 

[8], and relevance-redundancy feature selection [9], partly consider this issue, leading to unsatisfactory 

results for the correlation between features and the elimination of redundant features [10]. Feature 

redundancy is one of the major challenges of these methods even though they take into account the 

correlation among features. These methods often have high computational complexity that is not 

effective for FS of high-dimensionality data. 

Investigations on FS methods have focused on the diversification between features. Such a method 

can express max relevance and max diversity as two optimization problems. The basic process for these 

methods consists of three stages. In the first stage, the correct distance measure is selected to form the 

feature space, while the second stage focuses on clustering of features. In the third stage, representative 

features from each cluster are selected to form the desired subset of features. The FS method becomes 

more efficient with the utilization of cluster information [10]. However, the selection of features from 

each cluster presents some challenges, as with many of these works, because the clustering approach is 

overly sensitive in the FS algorithm models [10]. 

One of the most effective FS algorithms to select subsets of candidate features is based on a search 

technique. The search technique breaks down FS methods into heuristic search, complete, and 

randomized. Complete search algorithms involve searching the total search space for the best feature 

subset. The complete search aims to select the best subset of features in a dataset with high 

dimensionality, which is practically impossible within a plausible time [10]. A randomized search strategy 

investigates an entire search space through a finite space, and the subspace scale is based on stopping 

criteria, such as the maximum number of iterations and the subset size. The randomized search algorithm 

still appears to become stuck in a local optimum, even when it uses the setting parameters to trade 

between the optimality of the result and convergence speed. Such algorithms have lower computational 

complexity than complete search algorithms [10]. In heuristic search-based FS algorithms, one feature 

is removed or added from the selected feature set in each iteration. Moreover, the computational 

complexity of the heuristic search-based algorithm is much less than that of complete search algorithms. 

Most algorithms have been constructed based on heuristic searches. 

Techniques based on swarm intelligence as a search technique for FS include ant colony optimization 

(ACO) [11], grey wolf optimizer algorithm [12], artificial bee colony  [13], and whale optimization 

algorithm [14] . Metaheuristic swarm search algorithms are highly beneficial due to their global search 

capabilities in high-dimensional data. [15]. For example, ACO as a metaheuristic swarm search 

technique for FS is commonly utilized [1]. It has various advantages over other artificial intelligence 

techniques, including the ability to long-term distributed memory, perform local and global searches, 

and learn reinforcement mechanisms [11]. Thus, ACO is suitable for dealing with high-dimensional, 

noisy, irrelevant, and redundant datasets when it comes to FS. 

Many real problems can be modeled into a graph form, such as the traveling salesman problem [16], 

graph coloring problem [17], and FS for microarray [18]. In FS for microarray, the graph-based step 
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creates multiple views, each containing a specific number of automatically obtained genes. This is natural 

in genomic data where gene groups are important in deciding alternate definitions of the microarray data 

with regard to diversity, thereby facilitating the collection of gene subsets that are informative genes 

with regard to different views. 

One powerful FS method that considers the correlation between features to enhance the search for 

optimal feature subset is  feature clustering. This method can minimize the dimensionality in high-

dimensional data by grouping the most highly associated features together. One of the most effective 

method for clustering features is modified graph clustering-based ACO (MGCACO), which is a variation 

of the graph clustering-based ACO algorithm (GCACO) [19].  In comparison to well-known FS 

methods, the GCACO results are better for high-dimensional datasets because each iteration of the ant 

search process includes selecting at least one feature from each cluster. The selection process drives the 

injection of relatively less correlated features in a significant percentage compared with features in the 

following iteration that are highly correlated. 

The Louvain community detection method [20] is used for both the GCACO and MGCACO 

methods and determines the local maximum by maximizing a modularity function and identifying the 

communities with the most correlated features. When determining the communities in large networks, 

the greedy search method integrated into GCACO and MGCACO uses modularity maximization as an 

objective to obtain the superior community. These algorithms are straightforward and simple to apply 

[21]. Thus, MGCACO outperforms other well-known FS methods. Notwithstanding, several 

disadvantages exist, such as the lack of clustering highly correlated features that could reduce the finding 

of the optimal subset, therefore decreasing the performance of the MGCACO algorithm. Therefore, this 

study replaced the Louvain community detection method with an ACO-based feature clustering 

algorithm that utilizes the ability of various mechanisms, such as intensification and diversification for 

local and global optimization, to enhance the performance of the MGCACO algorithm [22].  

In summary, this research's contribution is as follows: 

• To propose an ACO-based feature clustering method that can be used to enhance the grouping 

of the highly correlated features into the same cluster. Through the use of the ACO-based feature 

clustering approach, the possibility of falling into the local optima is reduced because many ants 

search for the best solution concurrently and stochastically. Each ant will gradually form its own 

cluster centers for calculating heuristic values at an iteration level. Ants consider not only the 

pheromone levels but also the heuristic values of candidate nodes when selecting the next feature, 

thus enabling them to find better solutions (i.e., groups of features). 

• To investigate whether the suggested method has better classification accuracy via experiments 

and measurements utilizing four classifiers. 

This paper is structured as follows: Section 1 presents the introduction. Section 2 explains the method. 

Section 3 describes the results of the experiments, and Section 4 is the conclusion 

2. Method 
This study proposes an algorithm based on MGCACO, which is a variant of the GCACO algorithm. 

The MGCACO algorithm is easily trapped into the local optimum during the feature clustering stage, 

thus losing the diversification in the search (global search) and producing a low-quality subset of features. 

To guarantee the precision of the feature's subset, a metaheuristic algorithm is utilized to provide 

intensification and diversification in the search process. Fig. 1 shows the enhanced feature clustering 

with the ECACO algorithm. 
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Fig. 1.  ECACO algorithm 

Section 2.1 presents the ECACO algorithm. Section 2.2 introduces the FS process to construct the 

appropriate subset of features. Section 4.3 lists in detail the different benchmark datasets classification 

problems. Finally, Section 2.4 illustrates the classifier and evaluation criteria. 

2.1. Enhanced Feature Clustering with ACO 
The ACO-based features clustering reports the application of the ant algorithm concept that aims to 

achieve the optimal distribution of N features into one of the K clusters, thus grouping highly correlated 

features into the same group. The objective is to minimize the sum of squared Euclidean distances 

between each feature and the cluster center by achieving the optimal distribution of N features into one 

of the K clusters. The ants' concept starts with strings that represent an empty solution S and the length 

N (number of dataset features), where each string element corresponds to a test feature. The pheromone 

matrix's components are all initialized to the exact quantities before the first iteration. On the basis of 

the quality of the generated solutions, the pheromone matrix's components are adjusted as iterations 

progress. For each feature of string S, the ant selects a cluster number in one of the following ways to 

construct solution S: 

The cluster with the highest pheromone concentration is selected using probability 𝑞𝑞0, where 𝑞𝑞0is a 

predefined constant number in the range [0 1] and/or one of the K clusters using a probability of (1 −
 𝑞𝑞0) and distribution of stochastic, indicated as 𝑝𝑝𝑖𝑖𝑖𝑖. 

The latter is referred to as biased exploration, while the first process is referred to as exploitation. 

The clusters with the highest pheromone concentration will be chosen in the first procedure if the 

random numbers q is less than 𝑞𝑞0 (i.e., q is equal to the solution string's length and is randomly selected 

from a uniform distribution in the range [0 1] corresponding to these features, which are less than 𝑞𝑞0). 

If the random numbers corresponding to the features q exceed 𝑞𝑞0, then the second procedure will 

distribute the features to one of the clusters with a normalized pheromone probability to 1 given as in 

Equation (1) . 

𝑝𝑝𝑖𝑖𝑖𝑖 =  
𝜏𝜏𝑖𝑖𝑖𝑖

∑ 𝜏𝜏𝑖𝑖𝑖𝑖𝑘𝑘
𝑘𝑘=1

, 𝑗𝑗 = 1, … , 𝑘𝑘    (1)  
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where 𝑝𝑝𝑖𝑖𝑖𝑖denotes the normalized pheromone probability for feature i within cluster j. The value of 

the objective function for a given feature clustering is used to measure the quality of the solution 

constructed. This objective function is calculated using the sum of squared Euclidean distances between 

each feature and the center of the corresponding cluster. In ℜ𝑛𝑛
dimensional space, assume N features of 

a particular dataset {x_1,x_2,...,x_n} that should be divided into K clusters or groups. The definition of 

Equation (2) is the mathematical formulation of feature clustering  

𝑀𝑀𝑀𝑀𝑛𝑛 𝐹𝐹(𝑤𝑤,𝑚𝑚) =  ∑ ∑ ∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝑛𝑛
𝑣𝑣=1

𝑁𝑁
𝑖𝑖=1

𝑘𝑘
𝑗𝑗=1 �𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑚𝑚𝑗𝑗𝑗𝑗�

2
   (2) 

in such a manner that 

∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝑘𝑘
𝑗𝑗=1 = 1, 𝑖𝑖 = 1, … ,𝑁𝑁  (3) 

∑ 𝑤𝑤𝑖𝑖𝑖𝑖
𝑁𝑁
𝑖𝑖=1 ≥ 1, 𝑗𝑗 = 1, … ,𝐾𝐾   (4) 

where 𝑀𝑀𝑀𝑀𝑀𝑀 𝐹𝐹(𝑤𝑤,𝑚𝑚)indicates the minimum value among the w as the size N × K of a weight matrix, 

and m as the center of cluster matrix of size K × n, 𝑥𝑥𝑖𝑖𝑖𝑖denotes the value of vth attribute of ith feature. 

Within cluster j, 𝑚𝑚𝑗𝑗𝑗𝑗denotes the mean of all feature values for the vth attribute values, and 𝑤𝑤𝑖𝑖𝑖𝑖denotes 

the correlated weight of feature 𝑥𝑥𝑖𝑖with cluster j, which may be calculated as follows: 

𝑤𝑤𝑖𝑖𝑖𝑖 = �
1 𝑖𝑖𝑖𝑖 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 𝑖𝑖𝑖𝑖 𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑗𝑗 

 
0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 

 

𝑖𝑖 = 1, … ,𝑁𝑁, 𝑗𝑗 = 1, … ,𝐾𝐾 

After 𝑤𝑤𝑖𝑖𝑖𝑖is obtained, each cluster center 𝑚𝑚𝑗𝑗can be obtained by Equation (5)  

𝑚𝑚𝑗𝑗𝑗𝑗 =  
∑ 𝑤𝑤𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖𝑖𝑖
𝑁𝑁
𝑖𝑖=1
∑ 𝑤𝑤𝑖𝑖𝑖𝑖 𝑁𝑁
𝑖𝑖=1

, 𝑗𝑗 = 1, … ,𝐾𝐾, 𝑣𝑣 = 1, … ,𝑛𝑛   (5) 

Thus, Equation (2) can be used to calculate the fitness value (objective function) of a given solution 

string S, with the center of the cluster matrix m and weight matrix w being known. Fig. 2 shows S1 

constructed for N = 10 for and K = 3  as a representative of a solution string.  

 

Fig. 2.  Solution representation 

String cluster number 2 is assigned to the first feature, cluster number 1 is assigned to the second 

feature, and so on. The heuristic information of the features is not available. Thus, the local search 

method will enhance some of the obtained solutions. For this purpose, a local search procedure is utilized 

on a small percentage of L solutions (the best 20% of all solutions). To conduct local search, ascending 

order is used to sort the fitness values of the population's selected subset. Then, a fundamental local 

search procedure is employed on the highest L solutions in terms of the objective function (i.e., the 

minimum in terms of fitness values). Each feature in the solution string has its cluster number adjusted 

during the local search operation with a particular threshold probability between (0,1). Thus, a random 

number is generated between (0,1) for each feature. Then, if the random number corresponding to the 

feature is less than the threshold probability, then the feature is assigned a different cluster number with 

a similar probability to the rest of the clusters by generating a random number. This process is illustrated 

in Fig. 2. For the threshold p = 0.01 and using the topmost solution string, the generated random value 

that corresponds to the sixth feature should be less than the threshold that indicates the number of 

cluster 2. Consequently, it must be randomly assigned to either cluster number 1 or 3 with an equal 
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probability. After the local search is completed, Equation (2) is used to determine the fitness values for 

the newly created solutions, where only certain solutions that have improved fitness will be accepted and 

replaced. Fig. 3 displays the procedure of the local search method for ACO-based feature clustering. 

 

Fig. 3.  Pseudocode of the local search for ACO-based feature clustering method 

After the local search process is finished, the matrix of the pheromone is updated. This pheromone 

update rule reflects the value of the dynamic information produced by the ant's search process. Therefore, 

the pheromone updating rule is an adaptive memory, storing information obtained by previously 

discovered superior solutions and updating it at the end of each iteration. Thus, at iteration level t, the 

best L solutions among all the solutions obtained by the ants employ the pheromone updating rule 

based on the specified criteria (Equation [2]). These L ants simulate the pheromone trail deposition of 

real ants by assigning some real numbers 𝜏𝜏𝑖𝑖𝑖𝑖that are connected with solution attributes. The pheromone 

trail, 𝜏𝜏𝑖𝑖𝑖𝑖(𝑡𝑡 + 1),  is updated utilizing the rule in Equation (6)  

𝜏𝜏𝑖𝑖𝑖𝑖(𝑡𝑡 + 1) = (1 − 𝜌𝜌)𝜏𝜏𝑖𝑖𝑖𝑖(𝑡𝑡) + ∑ ∆𝜏𝜏𝑖𝑖𝑖𝑖𝑙𝑙𝐿𝐿
𝑙𝑙=1    (6) 

𝑖𝑖 = 1, … ,𝑁𝑁, 𝑗𝑗 = 1, … ,𝐾𝐾    

where the ρ value is between [0 1], (1 − ρ) reflects the parameter of pheromone decay to prevent the 

buildup of a specific parameter value permanently. ∆𝝉𝝉𝒊𝒊𝒊𝒊𝒍𝒍 is the additional pheromone boost and is equal 

to 1/F_l, if cluster j is allocated to the ith feature of the solution produced by ant 1 and zero otherwise. 

An optimal solution is one that minimizes the value of the objective function. In each iteration, if the 

solution produced as the current iteration's best solution has a lower objective function value than the 

best solution in memory, then the best solution's value is updated in memory. Consequently, the 

algorithm executes three steps at every iteration stage. (1) The information of the updated pheromone 

trail from the previous iteration is utilized to construct new solutions by ants, (2) enhancing the newly 

constructed solutions are enhanced via a local search, and (3) the pheromone updating rule is applied. 

These three steps are performed repeatedly up to a specified number of iterations. Then, the solution 

with the highest fitness value (lowest objective function value) takes the place of the optimal separation 

of features in a particular dataset into various clusters. The pseudocode depicted in Fig. 4 is the ACO-

based feature clustering method.  

With the probability threshold of the local search 𝑝𝑝𝑙𝑙𝑙𝑙 in [0 1], a neighbor of 𝑆𝑆𝑘𝑘, 

𝑘𝑘 =  1, . . . , 𝐿𝐿 is produced as: 

1  k =1 

2  Generate temporary solution 𝑆𝑆𝑡𝑡, 𝑆𝑆𝑡𝑡(𝑖𝑖) = 𝑆𝑆𝑘𝑘(𝑖𝑖), 𝑖𝑖 =  1, . . . ,𝑁𝑁.  

3    For each feature i of 𝑆𝑆𝑡𝑡 

4      if 𝑟𝑟 ≤ 𝑝𝑝𝑙𝑙𝑙𝑙 // 𝑟𝑟 a random number in (0, 1) 

5      Randomly select j in the range (1, number of clusters), 𝑆𝑆𝑘𝑘(𝑖𝑖) ≠ 𝑗𝑗, 𝑆𝑆𝑡𝑡(𝑖𝑖) =  𝑗𝑗  

6      Calculate cluster centres of 𝑆𝑆𝑡𝑡(𝑖𝑖), Equation(5)  

7    Calculate Fitness of 𝑺𝑺𝒕𝒕(𝒊𝒊), Eq. (13) as 𝑭𝑭𝒕𝒕 

8    If 𝑭𝑭𝒕𝒕  <  𝑭𝑭𝒌𝒌  

9        𝑺𝑺𝒌𝒌(𝒊𝒊) = 𝑺𝑺𝒕𝒕(𝒊𝒊) and 𝑭𝑭𝒌𝒌  <  𝑭𝑭𝒕𝒕 

10   𝒌𝒌 =  𝒌𝒌 +  𝟏𝟏; If k ≤ L go to step (2), else stop 

11    If 𝒌𝒌 ≤  𝑳𝑳 go to step (2), else stop 

12 End For 
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In this pseudocode, the number of clusters, , 𝐾𝐾𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,, is fixed and assigned to 3, and the size of 

the population, 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒, is 50 

 

Fig. 4.  Pseudocode of ACO-based feature clustering method 

2.2. Feature Selection Process 
To establish the FS process, the pheromone initialization requires a vector to implement the amount 

of quality allocated to each feature represented as τ_n  = { τ_1,τ_2,τ_3,...,τ_n}. The relevance of features 

to classes is utilized to calculate the pheromone initialization at time t=0. More relevant features are 

given more priority. Therefore, the classes and the mutual information, MI, between any feature,  𝑓𝑓𝑑𝑑,  ,  
are calculated for this purpose as in Equation (7) [19]. 

𝑀𝑀𝑀𝑀 (𝑑𝑑) =  ∑ ∑ 𝑝𝑝(𝐹𝐹𝑑𝑑 [𝑚𝑚]. 𝑘𝑘) 𝑙𝑙𝑙𝑙𝑙𝑙 𝑝𝑝(𝐹𝐹𝑑𝑑[𝑚𝑚].𝑝𝑝(𝑘𝑘)
𝑝𝑝(𝐹𝐹𝑑𝑑 [𝑚𝑚].𝑘𝑘)

𝑐𝑐
𝑘𝑘=1𝑚𝑚    (7) 

where 𝐹𝐹𝑑𝑑[𝑚𝑚] is a value of discretizing feature dth for bin m=[1,2,….,M], M (bins number) in the 

MGCACO algorithm is set to 10. K is the class number, and p(k) is the probability of the kth class. 

Starting with a set of clusters produced based on the ECACO, each ant in the ACO algorithm starts 

constructing the feature subset. As a result, in each iteration of a completely connected undirected graph, 

the jth ant picks at random at least one attribute from the cluster in its route. Then, the ant chooses the 

next feature from a unique cluster by employing probabilistic decision rules that depend on a specified 

parameter's value ε in the range [0 1], using greedy and probability processes as basis in making a decision. 

Otherwise, the ant stays in the present cluster. If 𝑞𝑞0 is smaller than q, then, using the greedy strategy as 

in Equation (8), the 𝑗𝑗𝑗𝑗ℎ ant chooses the next feature [19]. 

𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚𝐹𝐹𝑑𝑑∈𝑈𝑈𝑈𝑈𝑚𝑚𝑗𝑗  �𝜏𝜏𝑖𝑖(𝐹𝐹𝑑𝑑))𝛼𝛼 .𝜋𝜋(𝐹𝐹𝑑𝑑 ,𝑉𝑉𝑉𝑉𝑗𝑗)𝛽𝛽 �  𝑞𝑞 >  𝑞𝑞0   (8) 

where q is a predefined parameter in the range [0 1], 𝑞𝑞0, is a random number between [0 1], 𝑈𝑈𝑈𝑈𝑚𝑚
𝑗𝑗
_is 

the collection of features in the current cluster (𝑚𝑚𝑚𝑚ℎ cluster) that have not yet been accessed by the jth 

ant, 𝜏𝜏𝑖𝑖is the value of the pheromone quantity associated with the feature  (𝐹𝐹𝑑𝑑), 𝑉𝑉𝑉𝑉𝑗𝑗 denotes the 

previously chosen features (visited features), and  𝜋𝜋(𝐹𝐹𝑑𝑑 ,𝑉𝑉𝑉𝑉𝑗𝑗) denotes the heuristic information function, 

which is defined as in Equation (9) [19]. 

𝜋𝜋�𝐹𝐹𝑑𝑑,𝑉𝑉𝑉𝑉𝑗𝑗� =  𝐹𝐹 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝐹𝐹𝑑𝑑) − 1
𝑁𝑁𝑉𝑉𝑉𝑉𝑗𝑗

 ∑ 𝑤𝑤(𝐹𝐹𝑑𝑑,𝐹𝐹𝑚𝑚)
𝑁𝑁𝑉𝑉𝑉𝑉𝑗𝑗
𝑚𝑚=1    (9) 

where 𝑁𝑁𝑉𝑉𝑉𝑉𝑗𝑗 is the size of 𝑉𝑉𝑉𝑉, and 𝑤𝑤(𝐹𝐹𝑑𝑑 ,𝐹𝐹𝑚𝑚) denotes the Pearson correlation values [23] between feature 

𝐹𝐹𝑑𝑑 and  𝐹𝐹𝑚𝑚 that were obtained from the visited features (𝑉𝑉𝑉𝑉𝑗𝑗) through all previous clusters by the jth ant 

computed as in Equation (10). 

1  Input: 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 , 𝐾𝐾𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 
2  Output: SbestClustering 

3  Initialize Population, Pheromone matrix 

4  While ≠StopCondition ( ) do 

5    For 𝑖𝑖 =  1 𝑡𝑡𝑡𝑡 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 
6     Construct solution using pheromone trail 

7     Compute weights of all test features, and cluster centres 

8     Compute clustering metric and assign it as objective function value of solution 

9    End For 

10   Select best solution out of all solutions using objective function values 

11   Compute the local search on the selected best solutions //(Fig .3) 

12   Use the best solution to update the pheromone trail matrix. 

13  End While 
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𝑤𝑤(𝐹𝐹𝑑𝑑,𝐹𝐹𝑚𝑚)  = � (𝐹𝐹𝑑𝑑−𝐹𝐹�𝑚𝑚)−(𝐹𝐹𝑑𝑑−𝐹𝐹�𝑚𝑚)
�(𝐹𝐹𝑑𝑑−𝐹𝐹�𝑑𝑑)2(𝐹𝐹𝑚𝑚−𝐹𝐹�𝑚𝑚)2

�   (10) 

where 𝐹𝐹�𝑑𝑑 and 𝐹𝐹�𝑚𝑚 denote the vectors of features, and 𝐹𝐹𝑑𝑑 and 𝐹𝐹𝑚𝑚 are completely uncorrelated if 𝑤𝑤(𝐹𝐹𝑑𝑑 ,𝐹𝐹𝑚𝑚) 

has a value equal to 0 or correlated if 𝑤𝑤(𝐹𝐹𝑑𝑑 ,𝐹𝐹𝑚𝑚) has a value equal to 1. The similarity values among 

features are identical to each other in most cases. Thus, the influence of outliers is reduced without 

excluding them from the distribution of weights by using a nonlinear normalization method called 

softmax scaling to scale the weight 𝑤𝑤(𝐹𝐹𝑑𝑑 ,𝐹𝐹𝑚𝑚) of the edge to the range [0 1] as in Equation (11) [19] 

𝑤𝑤�𝑑𝑑𝑑𝑑 = 1

1+𝑒𝑒𝑒𝑒𝑒𝑒�
𝑤𝑤𝑑𝑑𝑑𝑑−𝑤𝑤�

𝜎𝜎 �
   (11) 

where 𝑤𝑤�𝑑𝑑𝑑𝑑 denotes the normalized value of 𝑤𝑤𝑑𝑑𝑑𝑑 between 𝐹𝐹𝑑𝑑 and 𝐹𝐹𝑚𝑚 features, and 𝑤𝑤�  and σ are the 

mean and variance, respectively, of all 𝑤𝑤𝑑𝑑𝑑𝑑 values.  
In addition, 𝐹𝐹 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝐹𝐹𝑑𝑑) in Equation (9) indicates the feature score 𝐹𝐹𝑑𝑑 based on the class 

relevance [19], calculated as in Equation (12). 

F − Score(𝐹𝐹𝑑𝑑) =  ∑ 𝑛𝑛𝑘𝑘
𝐾𝐾
𝑘𝑘=1 .(𝜇𝜇𝑘𝑘

𝑑𝑑−𝜇𝜇𝑑𝑑)2

∑ 𝑛𝑛𝑘𝑘 .(𝜎𝜎𝑘𝑘
𝑑𝑑)2𝐾𝐾

𝑘𝑘=1
   (12) 

where K indicates the classes number of the dataset; 𝜇𝜇𝑘𝑘𝑑𝑑 and 𝜎𝜎𝑘𝑘𝑑𝑑  are the variance and the mean of the 

kth class with 𝜎𝜎𝑘𝑘𝑑𝑑  samples (𝑛𝑛𝑘𝑘 is the samples number in class k), respectively; and 𝜇𝜇𝑑𝑑 denotes the mean 

of the patterns in the dth feature vector. The F-score values are normalized by the softmax scaling in 

ranges 0 and 1 as in Equation (11). Features with a larger F-score have a greater discrimination power. 

 As a result, in the greedy method, the ants select features that have the maximum dependency and 

the minimum parity to the features that were previously selected for the target class. If 𝑞𝑞0 is greater than 

q, then a probabilistic method for every feature in the current cluster that has not yet been visited 

�𝐹𝐹𝑑𝑑 ∈  𝑈𝑈𝑈𝑈𝑚𝑚
𝑗𝑗� is defined as in Equation (13) [19] 

𝑃𝑃(𝐹𝐹𝑑𝑑) =  
�𝜏𝜏𝑖𝑖(𝐹𝐹𝑑𝑑)�

𝛼𝛼
 �𝜋𝜋�𝐹𝐹𝑑𝑑,𝑉𝑉𝑉𝑉𝑗𝑗��

𝛽𝛽

∑ �𝜏𝜏𝑖𝑖(𝐹𝐹𝑑𝑑)�
𝛼𝛼

 �𝜋𝜋�𝐹𝐹𝑑𝑑,𝑉𝑉𝑉𝑉𝑗𝑗��
𝛽𝛽

𝐹𝐹𝑑𝑑∈ 𝑈𝑈𝑚𝑚
𝑗𝑗

 𝐹𝐹𝐹𝐹𝐹𝐹 𝐹𝐹𝑑𝑑  ∈  𝑈𝑈𝑈𝑈𝑚𝑚
𝑗𝑗     𝑞𝑞 <  𝑞𝑞0    (13) 

where β and α denote the value of important fixed parameter between (0,1) for the heuristic information 

and the pheromone, respectively. 𝜏𝜏𝜏𝜏𝑖𝑖(𝐹𝐹𝑑𝑑) is the quantity or quality attached with each feature 𝐹𝐹𝑑𝑑, while 

𝜋𝜋�𝐹𝐹𝑑𝑑 ,𝑉𝑉𝐹𝐹𝑗𝑗�denotes the heuristic information obtained by Equation (9). As a result, the following feature 

would be chosen according to the roulette wheel rule. Fig. 5 shows the search for the best feature subset 

from the clusters using ACO. 

 

Fig. 5.  Ant selection process 
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Once all the ants have finished traveling routes in the graph, the quantity of pheromones for per 

selected feature (𝑖𝑖. 𝑒𝑒. , 𝜏𝜏𝑖𝑖(𝑓𝑓𝑑𝑑))  is updated. This step is performed before each iteration i ends. Applying 

the updating rule as in Equation (14) allows the quantity of pheromones for per feature to be updated 

[19] 

𝜏𝜏𝑖𝑖+1(𝐹𝐹𝑑𝑑) = (1 − 𝜌𝜌). 𝜏𝜏𝑖𝑖(𝐹𝐹𝑑𝑑) + ∑ ∆𝑗𝑗𝑖𝑖(𝐹𝐹𝑑𝑑)𝐴𝐴
𝑗𝑗=1    (14) 

where the value of ρ is a certain parameter of pheromone decay to prevent limitless accumulation, and 

𝜏𝜏𝑖𝑖(𝐹𝐹𝑑𝑑) and 𝜏𝜏𝑖𝑖+1(𝐹𝐹𝑑𝑑) indicate the amounts of pheromone on feature 𝐹𝐹𝑖𝑖 at times (𝑡𝑡)and (𝑡𝑡 + 1), 

respectively.  A is the ant number, the additional pheromone boost to feature 𝐹𝐹𝑖𝑖 via ant j is j is ∆𝑗𝑗𝑖𝑖(𝐹𝐹𝑑𝑑)), 

which is calculated from the use of MDA [19] as in Equation (15) 

∆𝑗𝑗𝑖𝑖(𝐹𝐹𝑑𝑑) = �
𝛾𝛾𝑗𝑗𝑖𝑖,𝐹𝐹𝑑𝑑 ∈ 𝐹𝐹𝐹𝐹𝑗𝑗𝑖𝑖

0,𝐹𝐹𝑑𝑑 ∉ 𝐹𝐹𝐹𝐹𝑗𝑗𝑖𝑖
    (15) 

where 𝐹𝐹𝐹𝐹𝑗𝑗𝑖𝑖 is the feature that the 𝑗𝑗𝑗𝑗ℎ ant selected in the 𝑖𝑖𝑖𝑖ℎ iteration, 𝛾𝛾𝑗𝑗𝑖𝑖  is indicated as MDA [19] 

corresponding in the ith iteration to the jth selected subset assuming that 𝑁𝑁𝑓𝑓𝑓𝑓 features are to be chosen. 

All the features are sorted at each iteration by using Equation (16) [19]. 𝑁𝑁𝑓𝑓𝑓𝑓  features are selected and 

the values of MDA identical to these features are calculated using Equation (17) [19]. The pheromone 

values are adjusted only if the MDA values have improved from the previous iteration; otherwise, no 

change is applied. 

𝑆𝑆𝑆𝑆(𝑑𝑑) =  𝜏𝜏𝜏𝜏(𝑑𝑑).𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑓𝑓𝑑𝑑) 𝑑𝑑 = 1,2, … ,𝐷𝐷   (16) 

𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑀𝑀𝑀𝑀𝑀𝑀(𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(1, … ,𝑁𝑁𝑓𝑓𝑓𝑓))   (17) 

The procedures are performed repeatedly until the iterations are finished. Lastly, the final subset is 

identified by sorting the features in descending order according to their pheromone values. The feature 

number that will be selected is calculated by multiplying a fixed feature number, 𝜔𝜔, with the cluster 

number, K. Fig. 6 provides a low-level description of the FS process. 

 

Fig. 6. Pseudocode of ACO-based feature selection 

2.3. Datasets 
Experiments are conducted on different benchmark classification problems (i.e., UCI and microarray 

datasets) to demonstrate the efficacy of the proposed method. Table 1 summarizes the characteristics of 

the datasets. The UCI machine learning repository has comprehensive descriptions available in [24], 

while the microarray datasets are accessible in [25]. Missing values for each attribute are replaced with 

the mean of the available data. Softmax scaling is a nonlinear normalization method [19] that was utilized 

to scale the datasets into the range [0 1]. Each dataset was partitioned into two sets, with one-third for 

testing and two-thirds for training. The testing set was used to identify the accuracy of the chosen 

features, while the training set was used to specify the feature subset. 

Initialize Pheromone 

Initialize the parameters value 

1 While stopping criterion not satisfied do 

2  Position each ant in a random feature  

3   For each ant do  

4    Calculate the probability of each feature  

5    Select feature by applying the state transition rule 

6    Feature subset construction by using the ε value 

7    Collect the fitness by evaluating the quality of the feature subset  

8    Update pheromone for the selected feature 

9   Until every ant has built a solution  

10 End while 
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Table 1.  Characteristics of the datasets 

Dataset 
Name 

Dataset Type 
 

Features 
Values No. of 

Patterns 

No. of 
Features 

 

No. of 
Classes 

 Categorical Numerical 

Wine Physical - √ 178 13 3 

Hepatitis Biological √ √ 155 19 2 

Ionosphere Physical - √ 351 34 2 

Spambase Computer - √ 4601 57 2 

Arrhythmia Biological √ √ 452 279 16 

Madelon Artificial - √ 4400 500 2 

Colon Biological - √ 62 2000 2 

Leukemia Biological - √ 72 7129 2 

 

The listed datasets vary in instance numbers (from 60–4601), attribute numbers (from 13–7129), and 

class labels (from 2–16). The datasets are chosen from five application domains to effectively solve several 

challenging issues in different application domains. The biggest size (50%) belongs to the biological 

domain, where (25%) of these datasets are related to the microarray application domains. 

The size of the dataset can be divided into four categories based on the number of attributes: small, 

medium, high, and very high. The least number of datasets (13%) are classified as having a high number 

of attributes (between 50 and 100). 25% of the datasets are categorized as small, with the number of 

attributes ranging from 0 to 20, and 13% of the datasets have a medium number of attributes (in the 

range of 20–50). The remaining datasets with the highest percentage (50%) are datasets that have 100 

and more attributes 

2.4. Classifier and Evaluation Criteria 
Several well-known benchmark classifiers are utilized in the evaluation process to demonstrate the 

generality of the proposed method. The classifiers used in evaluating the proposed algorithms are random 

forest, k-NN, decision tree, and support vector machine.  

Accuracy is an effective way of validating FS methods by using each classifier's performance. 

Therefore, it is utilized to evaluate the generated feature subsets and is computed using Equation (18). 

𝐴𝐴𝐴𝐴 = 𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹+𝐹𝐹𝐹𝐹

   (18) 

where TN, TP, FN, and FP are the confusion matrices describing the classification results (true or false). 

TN, where the model predicted a negative value and the actual value is negative, FN for the model 

predicted a negative and the result is false, TP indicates the model predicted a positive value and the 

actual value is positive, and FP for the model predicted a positive, and result is false. Table 2 shows the 

possible cases based on predictive values and actual values.  

Table 2.  Confusion Matrix 

Predicted 
Values 

 Actual Values  
 Positive Negative  

Positive TP FP  

Negative FN TN  

3. Results and Discussion 
The implementation of the proposed ACO-based features clustering method in the MGCACO 

algorithm is called ECACO. The initialization parameters that are used to evaluate the ACO-based 

features clustering and ACO-based FS parameters are listed in Table 3. 
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Table 3.  ACO-based features clustering experimental parameters 

Model  Parameter Description Value 

ACO-based 

clustering 

 A Ant number 50 

 I Iterations number  1000 

 𝑞𝑞0 Exploration/exploitation 0.98 

 ρ Evaporation rate 0.01 

 𝑃𝑃𝑙𝑙𝑙𝑙 Local search probability 0.01 

ACO-based FS 

 A Ant number 100 

 I Iterations number  50 

 𝛼𝛼 Importance of pheromone  1 

 β Importance of heuristic 1 

 𝑞𝑞0 Exploration/exploitation 0.7 

 ρ Evaporation rate 0.9 

 ε Threshold to remain in current cluster 0.4 

 Run Number of runs 10 

 

Well-known ACO-based FS algorithms were compared with the proposed algorithm, namely, 

GCACO, MGCACO, microarray gene selection based on ACO (MGSACO), unsupervised FS-based 

ACO (UFSACO), and FS method for modified binary ant system and clustering combination 

(FSCBAS). 

3.1. Experiment on the UCI Datasets 
Tables 4–7 illustrate the experimental results, which include the standard deviation (Std) average and 

classification accuracy (Acc) of five FS algorithms and ECACO when four classifiers were employed, 

namely, random forest, support vector machine, decision tree, and k-NN. The highest result is 

highlighted, and the figures in parentheses show the rank of the algorithms.  

Table 4 illustrates that for the case of the support vector machine classifier, except for the lonosphere 

dataset, which ranks third, the proposed ECACO achieves the highest classification accuracy across all 

datasets. This result may be due to a threshold set on the estimated class probability value. In Table 5, 

the proposed ECACO obtains the best classification accuracy results in four out of six datasets when the 

k-NN classifier is employed. The k-NN classifier is known to work well with numerical data. This is the 

case for the Hepatitis and Madelon datasets, where the proposed ECACO ranks second. Despite this, 

ECACO can also select significant features in the Hepatitis dataset, which contains both types of data 

(numerical and categorical). 

Table 4.  Average classification accuracy using support vector machine classifier on UCI datasets 

Dataset 

# 

Selected 

features 

 ECACO FSCBAS MGCACO GCACO MGSACO UFACO 

Wine 6 

Acc. 

Std. 

98.03 (1) 
± 1.22 

 

97.2 (3) 

± 0 
 

98 (2) 

± 1.72 
 

95.1 (5) 

± 2.6 
 

94.61 (6) 

± 2.52 
 

96.02 (4) 

± 2.04 
 

Hepatitis 6 

Acc. 

Std. 

83.86 (1) 
± 1.59 

 

81.55 (4) 

± 3.74 
 

83.85 (2) 

± 4.82  
83.64 (3) 

± 2.83 
 

81.1 (5) 

± 1.13 
 

80.78 (6) 

± 0.4 
 

lonosphere 15 

Acc. 

Std. 

85.79 (3) 

± 2.32 
 

85.62 (4) 

± 3.57 
 

86.24 (2) 

± 2.83 
 

86.79 (1) 
± 2.41 

 

81.6 (6) 

± 2.09 
 

84.96 (5) 

± 2.12 
 

SpamBase 24 

Acc. 

Std. 

91.78 (1) 
± 0.80 

 

85.78 (3) 

± 0.22 
 

90.98 (2) 

± 0.90  
84.51 (4) 

± 2.12 
 

81.86 (6) 

± 2.67 
 

83 (5) 

± 2.67 
 

Arrhythmia 20 

Acc. 

Std. 

86.03 (1) 
± 1.31  

68 (3) 

± 3.63 
 

70. 84 (2) 

± 3.83 
 

62 (4) 

± 5.2 
 

56.55 (5) 

± 1.4 
 

54.39 (6) 

± 0.29 
 

Madelon 40 

Acc. 

Std. 

66.51 (1) 
± 0.27 

 

61.2 (3) 

± 2.07 
 

58.98 (6) 

± 2.83 
 

64.61 (2) 

± 5.58 

60.98 (4) 

± 0.27 
 

60.75 (5) 

± 0.24 
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Table 5.  Average classification accuracy using k-NN classifier on UCI datasets 

Dataset 

# 

Selected 

features 

 ECACO FSCBAS MGCACO GCACO MGSACO UFACO 

Wine 6 

Acc. 

Std. 

98.36 (1) 
± 1.63 

 

97.2 (3) 

± 0 
 

98 (2) 

± 2.02 
 

95.68 (5) 

± 2.78 
 

94.61 (6) 

± 2.52 
 

96.02 (4) 

± 2.04 
 

Hepatitis 6 

Acc. 

Std. 

81.73 (2) 

± 1.01 
 

79.36 (6) 

± 3.74 
 

82.12 (1) 
± 6.97 

 

81.36 (3) 

± 1.33 
 

81.1 (4) 

± 1.13 
 

80.78 (5) 

± 0.41 
 

Lonosphere 15 

Acc. 

Std. 
86.89 (1) 

± 2.31 
 

85.62 (3) 

± 3.75 
 

86.5 (2) 

± 2.24 
 

85.36 (4) 

± 4.14 
 

81.6 (6) 

± 2.1 
 

84.96 (5) 

± 2.12 
 

SpamBase 24 

Acc. 

Std. 

90.29 (1) 
± 0.76 

 

85.78 (5) 

± 0.22 
 

89.6 (2) 

± 1.26 
 

87.04 (4) 

± 1.32 
 

81.86 (6) 

± 2.68 
 

88.33 (3) 

± 0.68 
 

Arrhythmia 20 

Acc. 

Std. 
86.03 (1) 

± 0.43  
57.31 (3) 

± 1.33 
 

64.07 (2) 

± 3.14 
 

53.75 (5) 

± 5.38 
 

55.25 (4) 

± 1.84 
 

50.87 (6) 

± 1.2 
 

Madelon 40 

Acc. 

Std. 

75.45 (3) 

± 1.04 
 

59.8 (6) 

± 1.34 
 

60.94 (5) 

± 2.56 
 

76.21 (1) 
± 1.74  

75.85 (2) 

± 0.87 
 

75.13 (4) 

± 0.4 
 

 

 Table 6 shows the decision tree classifier's classification accuracy for the algorithms. The best 

classification accuracy was obtained in all six datasets using the proposed ECACO algorithm. The 

proposed algorithm could select important features to provide high classification accuracy, including all 

types of feature values (numerical and categorical).  

Table 6.  Average classification accuracy using decision tree classifier on UCI datasets 

Dataset 

# 

Selected 

features 

 ECACO FSCBAS MGCACO GCACO MGSACO UFACO 

Wine 6 

Acc. 

Std. 

96.22 (1) 
± 1.84 

93.83 (2) 

± 0 

93.17 (4) 

± 3.37 

93.57 (3) 

± 2.98 

92.93 (6) 

± 3.47 

93.09 (5) 

± 3.02 

Hepatiti

s 

6 

Acc. 

Std. 

80.79 (1) 
± 0.74 

79.36 (4) 

± 0 

78.08 (5) 

± 6.71 

80.31 (2) 

± 1.14 

80.26 (3) 

± 0.92 

77.04 (6) 

± 1.22 

Lonosph

ere 

15 

Acc. 

Std. 

91.42 (1) 
± 1.62 

88.32 (5) 

± 1.41 

90.86 (2) 

± 4.21 

90.54 (3) 

± 1.98 

86.7 (6) 

± 2.14 

89.06 (4) 

± 1.51 

SpamBas

e 

24 

Acc. 

Std. 

91.64 (1) 
± 0.65 

89.68 (4) 

± 0.22 

90.88 (2) 

± 0.66 

89.12 (5) 

± 1.12 

89.83 (3) 

± 1.52 

89.08 (6) 

± 0.51 

Arrhyth

mia 

20 

Acc. 

Std. 

86.10 (1) 
± 0.97 

59.76 (3) 

± 1.37 

66.71 (2) 

± 3.22 

56.62 (4) 

± 4.13 

49.94 (6) 

± 2.05 

50.89 (5) 

± 2.32 

Madelon 40 

Acc. 

Std. 

84.17 (1) 
± 1.11 

67.4 (6) 

± 1.25 

71.42 (5) 

± 3.50 

81.77 (2) 

± 2.38 

80.12 (3) 

± 0.57 

79.49 (4) 

± 0.67 

 

The results in Table 7 show that for the random forest classifier, the proposed ECACO obtains the 

best results in four out of six datasets, where the algorithm ranks second rank with very small differences 

from the best algorithms in the SpamBase and Madelon datasets. The random forest classifier is known 

to perform well with categorical datasets. Nonetheless, the proposed algorithm can choose meaningful 

features for classification even for datasets with categorical and numerical data types. 
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Table 7.  Average classification accuracy using random forest classifier on UCI datasets 

Dataset 

# 

Selected 

features 

 ECACO FSCBAS MGCACO GCACO MGSACO UFACO 

Wine 6 

Acc. 

Std. 

98.19 (1) 
± 1.71 

97.2 (3) 

 ± 0 

97.5 (2) 

 ± 2.53 

96.11 (4) 

 ± 2.32 

94.61 (6) 

± 2.53 

96.02 (5) 

 ± 2.04 

Hepatiti

s 

6 

Acc. 

Std. 

85.29 (1) 
 ± 0.16 

81.39 (3) 

± 0  

84.43 (2) 

± 4.30 

81.3 (4) 

± 1.76 

81.1 (5) 

± 1.14 

80.78 (6) 

± 0.41 

Lonosph

ere 

15 

Acc. 

Std. 

94.62 (1) 
± 1.43 

85.77 (3) 

 ± 3.57 

93.59 (2) 

± 1.77 

85.1 (4) 

± 2.41 

81.6 (6) 

± 2.1 

84.95 (5) 

± 2.12 

SpamBas

e 

24 

Acc. 

Std. 

94.16 (2) 

 ± 0.62 

85.78 (5) 

± 0.23 

94.17 (1) 
± 0.75 

89.02 (4) 

± 1.98 

81.86 (6) 

 ± 2.68 

89.96 (3) 

 ± 0.54 

Arrhyth

mia 

20 

Acc. 

Std. 

84.21 (1) 
 ± 0.42 

66.38 (3) 

 ± 1.33 

75.36 (2) 

 ± 2.24 

61.18 (4) 

 ± 2.22 

57.22 (5) 

 ± 1.6 

50.05 (6) 

 ± 2.91 

Madelon 40 

Acc. 

Std. 

83.26 (2) 

± 0.85 

61.19 (6) 

± 1.63 

76.51 (4) 

 ± 2.75 

72.27 (5) 

 ± 1.72 

83.29 (1) 
 ± 0.48 

83.24 (3) 

 ± 0.49 

 

Table 8 depicts the summary of the averages for the classification accuracy (Acc) and standard 

deviation (Std) algorithms concerning the classifiers. The best result for each algorithm is highlighted. 

Overall, ECACO performs better than other algorithms in all classifiers regarding classification accuracy. 

FSCBAS has the best standard deviation for the decision tree classifier because of the parallel process of 

the FSCBAS algorithm, which may decrease the randomization of the solution. However, the proposed 

ECACO shows small competitive values compared to the other algorithms, indicating its stable 

performance. The accuracy results listed in Table 8 are displayed in Fig. 7. 

Table 8.  Results summary on UCI datasets 

Classifiers  ECACO FSCBAS MGCACO GCACO MGSACO UFACO 

SVM 

Acc. 85.33 79.89 69.67 79.44 76.11 76.65 

Std. 1.22 2.20 2.82 3.45 1.68 1.29 

k-NN 

Acc. 86.46 77.51 80.20 79.90 78.37 79.34 

Std. 1.19 1.64 1.73 3.03 1.85 1.14 

DT 

Acc. 88.39 79.72 81.85 81.98 79.96 79.77 

Std. 1.15 0.70 3.61 2.28 1.77 1.54 

RF 

Acc. 89.95 79.61 86.92 80.83 79.94 80.83 

Std. 0.86 1.15 2.39 2.06 1.75 1.14 

 

In summary, the ECACO has the best classification accuracy. This good performance is due to the 

effectiveness of the enhancement on the clustering method, which is based on the ACO algorithm 

concept, wherein the proposed ACO intensification and diversification are changed iteratively through 

pheromone update, enabling the successful implementation of both global and local search. Thus, the 

method has managed to escape from the local optima in grouping the highly correlated features during 

the exploration process, thus improving the classification accuracy of the highlighted datasets shown in 

Tables 4–7. 

 

Fig. 7. Average classification accuracy for UCI datasets 
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3.2. Experiment on the Microarray Dataset 
Tables 9 and 12 show the experimental results, which include the standard deviation (Std) and average 

classification accuracy (Acc) of five FS algorithms and the proposed ECACO. The classifiers used for FS 

were random forest, support vector machine, k-NN, and decision tree classifiers. The Colon and 

Leukemia datasets are classified as microarray datasets. For each dataset, the highest result is highlighted, 

and the figures in parentheses show the rank of the algorithms. Tables 9, 10, 11, and 12 show that the 

proposed ECACO achieves the best average classification accuracy in all cases, except for the case of the 

k-NN classifier, where the FSCBAS has the best result on the Colon dataset. 

Table 9.  Average classification accuracy using support vector machine classifier on microarray datasets 

Dataset 

# 

Selected 

features 

 ECACO FSCBAS MGCACO GCACO MGSACO UFACO 

Colon 40 

Acc. 

Std. 

90.00 (1) 
± 1.51  

87.59 (2) 

± 1.31 
 

84.76 (3) 

± 6.31 
 

81.99 (6) 

± 2.23 
 

83.88 (4) 

± 2.94 
 

82.1 (5) 

± 3.26 
 

Leukemia 40 

Acc. 

Std. 

98.33 (1) 
± 0.90 

 

95.42 (3) 

± 0.67 
 

95.83 (2) 

± 3.22 
 

93.67 (4) 

± 2.35 
 

90.14 (5) 

± 5.17 
 

89.45 (6) 

± 3.28 
 

 

Table 10.  Average classification accuracy using k-NN classifier on microarray datasets 

Dataset 

# 

Selected 

features 

 ECACO FSCBAS MGCACO GCACO MGSACO UFACO 

Colon 40 

Acc. 

Std. 
87.14 (2) 

± 2.04 
 

87.59 (1) 
± 2.52 

 

81.43 (4) 

± 5.01 
 

81.13 (5) 

± 4.32 
 

82.1 (3) 

 ± 2.79 
 

80.65 (6) 

 ± 2.28 
 

Leukemia 40 

Acc. 

Std. 
98.75 (1) 

± 1.66 
 

95.42 (2) 

± 1.64 
 

93.75 (3) 

 ± 9.63 
 

88.02 (5) 

 ± 3.11 
 

88.06 (4) 

± 2.27 
 

87.92 (6) 

 ± 1.45 
 

Table 11.  Average classification accuracy using decision tree classifier on microarray datasets 

Dataset 

# 

Selected 

features 

 ECACO FSCBAS MGCACO GCACO MGSACO UFACO 

Colon 40 

Acc. 

Std. 

87.61 (1) 
 ± 2.80 

86.13 (2) 

 ± 0.83 

78.09 (6) 

 ± 7.73 

84.23 (4) 

± 2.39 

85.17 (3) 

± 2.82 

82.91 (5) 

± 4.18 

Leukemia 40 

Acc. 

Std. 

93.75 (1) 
± 0.08 

93.62 (2) 

 ± 0 

90.83 (3) 

± 3.63 

85.74 (5) 

± 1.52 

90.28 (4) 

± 4.29 

77.92 (6) 

 ± 2.96 

Table 12.  Average classification accuracy using random forest classifier on microarray datasets 

Dataset 

# 

Selected 

features 

 ECACO FSCBAS MGCACO GCACO MGSACO UFACO 

Colon 40 

Acc. 

Std. 

88.57 (1) 
± 2.33 

87.59 (2) 

± 2.53 

84.29 (3) 

± 4.28 

81.22 (6) 

± 3.95 

82.91 (4) 

± 2.18 

81.78 (5) 

 ± 4.93 

Leukemia 40 

Acc. 

Std. 

99.76 (1) 
 ± 0.46 

95.42 (3) 

 ± 0.67 

98.75 (2) 

± 1.90 

89.69 (4) 

± 3.61 

89.36 (5) 

 ± 5.16 

86.12 (6) 

± 3.53 

 

Table 13 summarizes the results presented in Tables 9–12, where the best result for each classifier is 

highlighted. Overall, the ECACO algorithm outperforms the other algorithms regarding average 

classification accuracy. Compared with the other algorithms, the proposed ECACO shows small 

competitive values in terms of standard deviation, indicating its stable performance. Fig. 8 shows the 

average classification accuracy for all classifiers. In general, the proposed algorithm outperforms the other 

algorithms in all classifiers. 



ISSN 2442-6571 International Journal of Advances in Intelligent Informatics 93 

 Vol. 9, No. 1, March 2023, pp. 79-95 

 

 Almazini et al. (Enhanced feature clustering method based on ant colony optimization for feature selection) 

Table 13.  Average classification accuracy, standard deviation, and performance rank on microarray datasets 

Classifiers  ECACO FSCBAS MGCACO GCACO MGSACO UFACO 

SVM 

Acc. 94.16 91.50 90.29 87.83 87.01 85.77 

Std. 1.20 0.99 4.765 2.29 4.05 3.27 

k-NN 

Acc. 92.94 91.50 87.58 84.57 85.08 84.28 

Std. 1.85 2.08 7.23 3.71 2.53 1.86 

DT 

Acc. 90.68 89.87 84.46 84.98 85.20 78.70 

Std. 1.44 0.41 5.68 3.91 3.55 3.57 

RF 

Acc. 94.16 91.50 91.51 85.45 86.13 83.95 

Std. 1.39 1.6 3.09 6.78 3.67 4.23 

 

 

Fig. 8. Average classification accuracy of microarray data 

4. Conclusion 
The experimental findings demonstrate that the proposed ECACO surpasses other FS algorithms in 

terms of classification performance in both benchmark and microarray datasets. With the ACO-based 

feature clustering method integrated with the proposed ECACO, the number of selected features was 

reduced significantly without losing important information, resulting in high classification accuracy in 

handling the problem of high-dimensionality datasets. Experimental results show that the enhanced 

feature clustering method can effectively perform well in space, successfully escape from the local optima 

while grouping the highly correlated features during exploration, and improve classification accuracy. In 

summary, the proposed ECACO algorithm can minimize high-dimensionality datasets while 

maintaining acceptable classification accuracy. However, ACO-based feature clustering did not obtain 

the best result in some datasets (i.e., Lonosphere, Madelon, and Hepatitis), especially when the support 

vector machine and k-NN classifiers were used. Thus, the appropriate number of clusters should be 

specified to overcome this limitation. A more adaptive version should be developed, where the 

appropriate number of clusters is adapted automatically rather than being predefined. 
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