## Appendices

## APPENDIX A

## The Results Of Experiments

## A. 1 The Results Experiment Scenario 1

This experiment uses five combinations of proportioned data: $90 \%-10 \%, 80 \%-20 \%, 70 \%$ $-30 \%, 60 \%-40 \%, 50 \%-50 \%$ where the data is divided randomly and performed in five experiments.

Table A.1: The results of experiment 1

| Exp | Proporsi Dataset | Proportion Data Train |  |  | Proportion Data Test |  |  | AUC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Churn | Not Churn | Churn | Not Churn |  |  |  |
| 1.1 | Train90\%, Test10\% | $4.16 \%$ | $95.84 \%$ | $0.05 \%$ | $99.95 \%$ | $76.00 \%$ |  |  |
| 1.2 | Train90\%, Test10\% | $0.29 \%$ | $99.71 \%$ | $34.90 \%$ | $65.10 \%$ | $74.50 \%$ |  |  |
| 1.3 | Train90\%, Test10\% | $4.17 \%$ | $95.83 \%$ | $0.00 \%$ | $100.00 \%$ | $76.10 \%$ |  |  |
| 1.4 | Train90\%, Test10\% | $4.17 \%$ | $95.83 \%$ | $0.00 \%$ | $100.00 \%$ | $72.90 \%$ |  |  |
| 1.5 | Train90\%, Test10\% | $3.86 \%$ | $96.14 \%$ | $2.75 \%$ | $97.25 \%$ | $78.20 \%$ |  |  |
| 2.1 | Train80\%, Test20\% | $0.13 \%$ | $99.87 \%$ | $18.20 \%$ | $81.80 \%$ | $69.00 \%$ |  |  |
| 2.2 | Train80\%, Test20\% | $4.66 \%$ | $95.34 \%$ | $0.09 \%$ | $99.91 \%$ | $62.10 \%$ |  |  |
| 2.3 | Train80\%, Test20\% | $4.68 \%$ | $95.32 \%$ | $0.02 \%$ | $99.98 \%$ | $65.20 \%$ |  |  |
| 2.4 | Train80\%, Test20\% | $4.61 \%$ | $95.39 \%$ | $0.30 \%$ | $99.70 \%$ | $60.90 \%$ |  |  |
| 2.5 | Train80\%, Test20\% | $4.43 \%$ | $95.57 \%$ | $1.02 \%$ | $98.98 \%$ | $64.20 \%$ |  |  |
| 3.1 | Train70\%, Test30\% | $0.01 \%$ | $99.99 \%$ | $12.49 \%$ | $87.51 \%$ | $80.64 \%$ |  |  |
| 3.2 | Train70\%, Test30\% | $0.01 \%$ | $100.00 \%$ | $12.50 \%$ | $87.50 \%$ | $81.64 \%$ |  |  |
| 3.3 | Train70\%, Test30\% | $0.05 \%$ | $99.95 \%$ | $12.38 \%$ | $87.62 \%$ | $81.84 \%$ |  |  |
| 3.4 | Train70\%, Test30\% | $0.42 \%$ | $99.58 \%$ | $11.51 \%$ | $88.49 \%$ | $80.14 \%$ |  |  |
| 3.5 | Train70\%, Test30\% | $0.15 \%$ | $99.85 \%$ | $12.16 \%$ | $87.84 \%$ | $82.10 \%$ |  |  |
| 4.1 | Train60\%, Test40\% | $1.76 \%$ | $98.24 \%$ | $6.74 \%$ | $93.26 \%$ | $80.70 \%$ |  |  |
| 4.2 | Train60\%, Test40\% | $1.03 \%$ | $98.97 \%$ | $7.83 \%$ | $92.17 \%$ | $79.70 \%$ |  |  |
| 4.3 | Train60\%, Test40\% | $2.67 \%$ | $97.33 \%$ | $5.37 \%$ | $94.63 \%$ | $79.20 \%$ |  |  |
| 4.4 | Train60\%, Test40\% | $0.78 \%$ | $99.22 \%$ | $8.21 \%$ | $91.79 \%$ | $79.00 \%$ |  |  |
| 4.5 | Train60\%, Test40\% | $4.67 \%$ | $95.33 \%$ | $2.37 \%$ | $97.63 \%$ | $80.30 \%$ |  |  |
| 5.1 | Train50\%, Test50\% | $3.81 \%$ | $96.19 \%$ | $3.70 \%$ | $96.30 \%$ | $85.64 \%$ |  |  |
| 5.2 | Train50\%, Test50\% | $3.69 \%$ | $96.31 \%$ | $3.71 \%$ | $96.29 \%$ | $86.10 \%$ |  |  |
| 5.3 | Train50\%, Test50\% | $3.75 \%$ | $96.25 \%$ | $3.75 \%$ | $96.25 \%$ | $88.64 \%$ |  |  |
| 5.4 | Train50\%, Test50\% | $3.53 \%$ | $96.47 \%$ | $3.69 \%$ | $96.31 \%$ | $87.40 \%$ |  |  |
| 5.5 | Train50\%, Test50\% | $3.76 \%$ | $96.24 \%$ | $3.80 \%$ | $96.20 \%$ | $84.30 \%$ |  |  |
|  |  |  |  |  |  |  |  |  |

## A. 2 The Results Experiment Scenario 3

In order to know the optimal number of trees, then tested the number of trees $(10,15,20$, $25,30,35,40,45,50,60,70,80,90,100,200,400,500,600,700,800,900)$. in addition to AUC, also calculated another evaluation measure

Table A.2: The results of experiment 3

| N tree | Run Time (s) | TP | TN | FP | FN | TPR | TNR | FPR | Recall | AUC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 | 322 | 661 | 18210 | 1078 | 90 | $88.02 \%$ | $94.41 \%$ | $5.59 \%$ | $88.02 \%$ | $91.16 \%$ |
| 15 | 347 | 671 | 18132 | 1156 | 80 | $89.35 \%$ | $94.01 \%$ | $5.99 \%$ | $89.35 \%$ | $91.65 \%$ |
| 20 | 332 | 647 | 18305 | 983 | 104 | $86.15 \%$ | $94.90 \%$ | $5.10 \%$ | $86.15 \%$ | $90.42 \%$ |
| 25 | 313 | 665 | 18144 | 1144 | 86 | $88.55 \%$ | $94.07 \%$ | $5.93 \%$ | $88.55 \%$ | $91.27 \%$ |
| 30 | 290 | 648 | 18187 | 1101 | 103 | $86.28 \%$ | $94.29 \%$ | $5.71 \%$ | $86.28 \%$ | $90.20 \%$ |
| 35 | 196 | 655 | 18077 | 1211 | 96 | $87.22 \%$ | $93.72 \%$ | $6.28 \%$ | $87.22 \%$ | $90.41 \%$ |
| 40 | 179 | 652 | 18158 | 1130 | 99 | $86.82 \%$ | $94.14 \%$ | $5.86 \%$ | $86.82 \%$ | $90.41 \%$ |
| 45 | 181 | 643 | 18067 | 1221 | 108 | $85.62 \%$ | $93.67 \%$ | $6.33 \%$ | $85.62 \%$ | $89.55 \%$ |
| 50 | 175 | 644 | 18084 | 1204 | 107 | $85.75 \%$ | $93.76 \%$ | $6.24 \%$ | $85.75 \%$ | $89.67 \%$ |
| 60 | 202 | 643 | 18033 | 1255 | 108 | $85.62 \%$ | $93.49 \%$ | $6.51 \%$ | $85.62 \%$ | $89.47 \%$ |
| 70 | 177 | 640 | 18140 | 1148 | 111 | $85.22 \%$ | $94.05 \%$ | $5.95 \%$ | $85.22 \%$ | $89.53 \%$ |
| 80 | 169 | 633 | 18017 | 1271 | 118 | $84.29 \%$ | $93.41 \%$ | $6.59 \%$ | $84.29 \%$ | $88.73 \%$ |
| 90 | 167 | 633 | 17941 | 1347 | 118 | $84.29 \%$ | $93.02 \%$ | $6.98 \%$ | $84.29 \%$ | $88.54 \%$ |
| 100 | 163 | 625 | 17903 | 1385 | 126 | $83.22 \%$ | $92.82 \%$ | $7.18 \%$ | $83.22 \%$ | $87.89 \%$ |
| 200 | 169 | 625 | 17756 | 1532 | 126 | $83.22 \%$ | $92.06 \%$ | $7.94 \%$ | $83.22 \%$ | $87.53 \%$ |
| 400 | 188 | 626 | 17549 | 1739 | 125 | $83.36 \%$ | $90.98 \%$ | $9.02 \%$ | $83.36 \%$ | $87.09 \%$ |
| 500 | 199 | 626 | 17579 | 1709 | 125 | $83.36 \%$ | $91.14 \%$ | $8.86 \%$ | $83.36 \%$ | $87.16 \%$ |
| 600 | 212 | 630 | 17395 | 1893 | 121 | $83.89 \%$ | $90.19 \%$ | $9.81 \%$ | $83.89 \%$ | $86.98 \%$ |
| 700 | 222 | 627 | 17381 | 1907 | 124 | $83.49 \%$ | $90.11 \%$ | $9.89 \%$ | $83.49 \%$ | $86.74 \%$ |
| 800 | 239 | 626 | 17482 | 1806 | 125 | $83.36 \%$ | $90.64 \%$ | $9.36 \%$ | $83.36 \%$ | $86.92 \%$ |
| 900 | 255 | 624 | 17535 | 1753 | 127 | $83.09 \%$ | $90.91 \%$ | $9.09 \%$ | $83.09 \%$ | $86.91 \%$ |

## A. 3 Performance Measurement

Base on experiment design in thesis, performance measurement is calculated for the three methods : Random Forest, Balance Random Forest, and Modified Balanced Random Forest

Table A.3: The Results of comparison performance measurement

| Algoritma | N-Tree | Sensitifity | Specificity | G-Means | AUC |
| :--- | :---: | :---: | :---: | :---: | :---: |
|  | 10 | $14.44 \%$ | $83.77 \%$ | $34.78 \%$ | $49.10 \%$ |
| RF | 15 | $16.21 \%$ | $89.14 \%$ | $38.01 \%$ | $52.67 \%$ |
|  | 25 | $11.67 \%$ | $88.72 \%$ | $32.18 \%$ | $50.19 \%$ |
|  | 10 | $71.40 \%$ | $91.87 \%$ | $80.99 \%$ | $81.63 \%$ |
| BRF | 15 | $74.44 \%$ | $93.42 \%$ | $83.39 \%$ | $83.93 \%$ |
|  | 25 | $75.46 \%$ | $93.64 \%$ | $84.06 \%$ | $84.55 \%$ |
|  | 10 | $88.02 \%$ | $94.41 \%$ | $91.16 \%$ | $91.16 \%$ |
| MBRF | 15 | $89.35 \%$ | $94.01 \%$ | $91.65 \%$ | $91.65 \%$ |
|  | 25 | $88.55 \%$ | $94.07 \%$ | $91.27 \%$ | $91.27 \%$ |

