A comparison of machine learning methods for knowledge extraction model in A LoRa-Based waste bin monitoring system

(1) * Aa Zezen Zaenal Abidin Mail (Informatics Departement, Universitas Mandiri & Universiti Teknikal Malaysia Melaka, Malaysia)
(2) Mohd Fairuz Iskandar Othman Mail (Universiti Teknikal Malaysia Melaka, Malaysia)
(3) Aslinda Hassan Mail (Universiti Teknikal Malaysia Melaka, Malaysia)
(4) Yuli Murdianingsih Mail (Informatics Departement, Universitas Mandiri, Indonesia)
(5) Usep Tatang Suryadi Mail (Informatics Departement, Universitas Mandiri, Indonesia)
(6) Timbo Faritchan Siallagan Mail (Informatics Departement, Universitas Mandiri, Indonesia)
*corresponding author

Abstract


Knowledge Extraction Model (KEM) is a system that extracts knowledge through an IoT-based smart waste bin emptying scheduling classification. Classification is a difficult problem and requires an efficient classification method. This research contributes in the form of the KEM system in the classification of scheduling for emptying waste bins with the best performance of the Machine Learning method. The research aims to compare the performance of Machine Learning methods in the form of Decision Tree, Naïve Bayes, K-Nearest Neighbor, Support Vector Machine, and Multi-Layer Perceptron, which will be recommended in the KEM system. Performance testing was performed on accuracy, recall, precision, F-Measure, and ROCS curves using the cross-validation method with ten observations. The experimental results show that the Decision Tree performs best for accuracy, recall, precision, and ROCS curve. In contrast, the K-NN method obtains the highest F-measure performance. KEM can be implemented to extract knowledge from data sets created in various other IoT-based systems.

Keywords


IoT; Knowledge extraction model; LoRa; Machine Learning; Waste management

   

DOI

https://doi.org/10.26555/ijain.v10i1.1026
      

Article metrics

Abstract views : 928 | PDF views : 345

   

Cite

   

Full Text

Download

References


[1] H. M. K. K. M. B. Herath and M. Mittal, “Adoption of artificial intelligence in smart cities: A comprehensive review,” Int. J. Inf. Manag. Data Insights, vol. 2, no. 1, p. 100076, 2022, doi: 10.1016/j.jjimei.2022.100076.

[2] G. Sanathkumar, K. J. Nagesh, G. Hadimani, Laxman, B. R. Charanraj, and P. B. Honnavalli, “Smart Waste Segregation,” IEEE Reg. 10 Humanit. Technol. Conf. R10-HTC, vol. 2021-Septe, pp. 1–6, 2021, doi: 10.1109/R10-HTC53172.2021.9641526.

[3] M. A. Ramírez-Moreno et al., “Sensors for sustainable smart cities: A review,” Appl. Sci., vol. 11, no. 17, pp. 1–29, 2021, doi: 10.3390/app11178198.

[4] P. Marques et al., “An IoT-based smart cities infrastructure architecture applied to a waste management scenario,” Ad Hoc Networks, vol. 87, pp. 200–208, 2019, doi: 10.1016/j.adhoc.2018.12.009.

[5] A. Z. Zaenal Abidin, M. F. I. Othman, A. Hassan, Y. Murdianingsih, U. T. Suryadi, and Z. Muslim, “Verifying Waste Disposal Practice Problems of Rural Areas in Indonesia Using the Apriori Algorithm,” 2021 6th Int. Conf. Informatics Comput. ICIC 2021, 2021, doi: 10.1109/ICIC54025.2021.9632987.

[6] A. Z. Z. Abidin, M. F. I. Othman, A. Hassan, Y. Murdianingsih, U. T. Suryadi, and M. Faizal, “LoRa-Based Smart Waste Bins Placement using Clustering Method in Rural Areas of Indonesia,” Int. J. Adv. Soft Comput. its Appl., vol. 14, no. 3, pp. 105–123, 2022, doi: 10.15849/IJASCA.221128.08.

[7] G. Vinti and M. Vaccari, “Solid Waste Management in Rural Communities of Developing Countries: An Overview of Challenges and Opportunities,” Clean Technol., vol. 4, no. 4, pp. 1138–1151, 2022, doi: 10.3390/cleantechnol4040069.

[8] R. Hajovsky et al., “Design of an IoT-Based Monitoring System as a Part of Prevention of Thermal Events in Mining and Landfill Waste Disposal Sites: A Pilot Case Study,” IEEE Trans. Instrum. Meas., vol. 72, pp. 1–14, 2023, doi: 10.1109/TIM.2022.3225046.

[9] P. Jiang, Y. Van Fan, J. Zhou, M. Zheng, X. Liu, and J. J. Klemeš, “Data-driven analytical framework for waste-dumping behaviour analysis to facilitate policy regulations,” Waste Manag., vol. 103, pp. 285–295, 2020, doi: 10.1016/j.wasman.2019.12.041.

[10] T. Anagnostopoulos et al., “A stochastic multi-agent system for Internet of Things-enabled waste management in smart cities,” Waste Manag. Res., vol. 36, no. 11, pp. 1113–1121, 2018, doi: 10.1177/0734242X18783843.

[11] D. Alwis, P. Munasinghe, S. Rajapaksha, B. Ranawaka, J. Krishara, and W. Tissera, “A Smart Waste Disposal System: To Encourage Proper Waste Disposal,” 4th Int. Conf. Adv. Comput. ICAC 2022 - Proceeding, pp. 441–446, 2022, doi: 10.1109/ICAC57685.2022.10025307.

[12] B. Khatiwada, R. Jariyaboon, and K. Techato, “E-waste management in Nepal: A case study overcoming challenges and opportunities,” e-Prime - Adv. Electr. Eng. Electron. Energy, vol. 4, no. April, p. 100155, 2023, doi: 10.1016/j.prime.2023.100155.

[13] P. Jiraamphorn and E. Pacharawongsakda, DB2SM: An Efficient Resampling Technique for Imbalanced Data Classification Pharnuphon, vol. 251, no. Ic2it. pp. 1-12, 2021, doi: 10.1007/978-3-030-79757-7_1.

[14] A. Binbusayyis, H. Alaskar, T. Vaiyapuri, and M. Dinesh, “An investigation and comparison of machine learning approaches for intrusion detection in IoMT network,” J. Supercomput., vol. 78, no. 15, pp. 17403–17422, 2022, doi: 10.1007/s11227-022-04568-3.

[15] A. Parvathy, G. L. Kasyap, D. V. Abhinav, A. N. V. S. Sai, R. Sriranjani, and N. Hemavathi, “Hybrid Machine Learning based False Data Injection Attack Detection and Mitigation Model for Waste Water Treatment Plant,” Int. Conf. Autom. Comput. Renew. Syst. ICACRS 2022 - Proc., no. Icacrs, pp. 674–680, 2022, doi: 10.1109/ICACRS55517.2022.10029198.

[16] C. E. Kontokosta, B. Hong, N. E. Johnson, and D. Starobin, “Using machine learning and small area estimation to predict building-level municipal solid waste generation in cities,” Comput. Environ. Urban Syst., vol. 70, no. March, pp. 151–162, 2018, doi: 10.1016/j.compenvurbsys.2018.03.004.

[17] M. A. Valencia Diaz et al., “Machine Learning Techniques to the Prediction of Variables of the Urban Solid Waste Collection Process,” 2022 IEEE Colomb. Conf. Appl. Comput. Intell. ColCACI 2022 - Proc., pp. 1–6, 2022, doi: 10.1109/ColCACI56938.2022.9905363.

[18] T. A. Khoa et al., “Waste Management System Using IoT-Based Machine Learning in University,” Wirel. Commun. Mob. Comput., vol. 2020, Arti, p. 13, 2020, doi: 10.1155/2020/6138637.

[19] S. H. Yusoff, U. N. K. A. Din, H. Mansor, N. S. Midi, and S. A. Zaini, “Design of smart waste bin and prediction algorithm for waste management in household area,” Indones. J. Electr. Eng. Comput. Sci., vol. 12, no. 2, pp. 748–758, 2018, doi: 10.11591/ijeecs.v12.i2.pp748-758.

[20] C. J. Baby, H. Singh, A. Srivastava, R. Dhawan, and P. Mahalakshmi, “Smart bin: An intelligent waste alert and prediction system using machine learning approach,” Proc. 2017 Int. Conf. Wirel. Commun. Signal Process. Networking, WiSPNET 2017, vol. 2018-Janua, pp. 771–774, 2018, doi: 10.1109/WiSPNET.2017.8299865.

[21] G. Lahcen, E. Mohamed, G. Mohammed, H. Hanaa, and A. Abdelmoula, “Waste solid management using Machine learning approch,” in 2022 8th Int. Conf. Optimiz. App. (ICOA), pp. 1–5, 2022, doi: 10.1109/icoa55659.2022.9934356.

[22] J. C. Rodríguez López, M. I. Rodríguez-García, J. A. Moscoso Lopez, J. J. Ruíz Aguilar, J. M. Alcántara Pérez, and I. J. Turias Domínguez, “Prediction of container filling for the selective waste collection in Algeciras (Spain),” Transp. Res. Procedia, vol. 58, pp. 583–590, 2021, doi: 10.1016/j.trpro.2021.11.077.

[23] M. A. Al Mamun, M. A. Hannan, A. Hussain, and H. Basri, “Theoretical model and implementation of a real time intelligent bin status monitoring system using rule based decision algorithms,” Expert Syst. Appl., vol. 48, pp. 76–88, 2016, doi: 10.1016/j.eswa.2015.11.025.

[24] S. Squire, S. Ur Rehman, and M. A. Khan, “Investigating Efficient Municipal Solid Waste Collection Through Technology,” Proc. 2021 IEEE Work. Microw. Theory Tech. Wirel. Commun. MTTW 2021, pp. 211–216, 2021, doi: 10.1109/MTTW53539.2021.9607088.

[25] A. Zhandos and J. Guo, “An approach based on decision tree for analysis of behavior with combined cycle power plant,” Proc. 2017 Int. Conf. Prog. Informatics Comput. PIC 2017, pp. 415–419, 2017, doi: 10.1109/PIC.2017.8359583.

[26] Z. Gustiana and A. N. Sari, “Combination of C 4.5 Algorithm and Profile Matching for Determining University Students Graduation,” in 2021 International Conference on Computer Science and Engineering (IC2SE), IEEE, pp. 1–6, 2022, doi: 10.1109/ic2se52832.2021.9791954.

[27] T. Bakhshi and M. Ahmed, “IoT-Enabled Smart City Waste Management using Machine Learning Analytics,” ICECE 2018 - 2018 2nd Int. Conf. Energy Conserv. Effic. Proc., vol. 7, pp. 66–71, 2018, doi: 10.1109/ECE.2018.8554985.

[28] M. Gao et al., “Identification Method of Electrical Load for Electrical Appliances Based on K-Means ++ and GCN,” IEEE Access, vol. 9, pp. 27026–27037, 2021, doi: 10.1109/ACCESS.2021.3057722.

[29] F. M. Kamau, K. O. Ogada, and C. W. Kipruto, “Analysis of Machine-Based Learning Algorithm used in Named Entity Recognition,” Informing Sci. Int. J. an Emerg. Transdiscipl., vol. 26, pp. 69–84, 2023, doi: 10.28945/5073.

[30] R. Ramly, A. Abu, B. Sajak, and M. Rashid, “IoT recycle management system to support green city initiatives,” Indones. J. Electr. Eng. Comput. Sci., vol. 15, no. 2, pp. 1037–1045, 2020, doi: 10.11591/ijeecs.v15.i2.pp1037-1045.

[31] G. Pattnaik and K. Parvathi, “Machine learning-based approaches for tomato pest classification,” Telkomnika (Telecommunication Comput. Electron. Control., vol. 20, no. 2, pp. 321–328, 2022, doi: 10.12928/TELKOMNIKA.v20i2.19740https://doi.org/10.1016/j.jbi.2021.103834.

[32] T. Qi et al., “KeMRE: Knowledge-enhanced medical relation extraction for Chinese medicine instructions,” J. Biomed. Inform., vol. 120, p. 103834, 2021, doi: 10.1016/j.jbi.2021.103834.

[33] O. A. Ebrahim and G. Derbew, “Application of supervised machine learning algorithms for classification and prediction of type-2 diabetes disease status in Afar regional state, Northeastern Ethiopia 2021,” Sci. Rep., vol. 13, no. 1, pp. 1–12, 2023, doi: 10.1038/s41598-023-34906-1.




Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

___________________________________________________________
International Journal of Advances in Intelligent Informatics
ISSN 2442-6571  (print) | 2548-3161 (online)
Organized by UAD and ASCEE Computer Society
Published by Universitas Ahmad Dahlan
W: http://ijain.org
E: info@ijain.org (paper handling issues)
   andri.pranolo.id@ieee.org (publication issues)

View IJAIN Stats

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0