Bootstrap-based model selection in subset polynomial regression

(1) * Suparman Suparman Mail (Universitas Ahmad Dahlan, Indonesia)
(2) Mohd Saifullah Rusiman Mail (Universiti Tun Hussein Onn Malaysia, Malaysia)
*corresponding author

Abstract


The subset polynomial regression model is wider than the polynomial regression model. This study proposes an estimate of the parameters of the subset polynomial regression model with unknown error and distribution. The Bootstrap method is used to estimate the parameters of the subset polynomial regression model. Simulated data is used to test the performance of the Bootstrap method. The test results show that the bootstrap method can estimate well the parameters of the subset polynomial regression model.

Keywords


Bootstrap algorithm; Subset polynomial; Regression; Model selection

   

DOI

https://doi.org/10.26555/ijain.v4i2.173
      

Article metrics

Abstract views : 99 | PDF views : 11

   

Cite

   

Full Text

Download

References


[1] G. Jekabsons and J. Lavendels, “A Comparison of Subset Selection and Adaptive Basis Function Construction for Polynomial Regression Model Building,” Computer Sciences, vol. 38, no. 38, pp. 187-197, 2009, doi: https://doi.org/10.2478/v10143-009-0017-7.

[2] T. O’Neill, J.Penm and J.S. Penm, “A Subset Polynomial Neural Networks Approach for Breast Cancer Diagnosis,” International Journal of Electronic Healtheare, vol. 3, no. 3, pp. 293-302. 2007, doi: https://doi.org/10.1504/IJEH.2007.014549.

[3] C.H. Xie, Y.J. Liu and J.Y. Chang, “Medical Image Segmentation Using Rough Set and Local Polynomial Regression,” Multimedia Tools and Applications, vol. 74, no. 6, pp. 1885-1914, 2015, doi: https://doi.org/
10.1007/s11042-013-1723-2
.

[4] Suparman, “Selection in Subset Polynomial Regression by Using Reversible Jump MCMC,” Journal of Environmetal Science, Computer Science and Engineering & Technology, vol. 5, no. 3, pp. 214-219, 2016, available at: http://eprints.uad.ac.id/3374/1/JecetVol5No3Thn2016.pdf.

[5] B. Efron and R. Tibshirani, An Introduction to the Bootstrap. Chapman & Hall : New York, 1993, doi: https://doi.org/10.1007/978-1-4899-4541-9.

[6] D. Warton, L. Thibaut and Y.A. Wang, “The PIT-trap-A “model-tree” Bootstrap Procedure for Inference about Regression Models with Discrete,” Multivariate Responses, PloS ONE, vol. 12, no. 7, pp. 1-18, 2017, doi: https://doi.org/10.1371/journal.pone.0181790.

[7] P. Carcia-Soidan, R. Menezes and O. Rubinos, “Bootstrap Approaches for Spatial Data,” Stochastic Environmental Research & Risk Assessment, vol. 28, no. 5, pp. 1207-1219, 2014, doi: https://doi.org/
10.1007/s00477-013-0808-9
.

[8] C. Yazici, I. Batnaz and F. Yerlikaya-Ozkurt, “A Computational Approach to Nonparametric Regression : Bootstrapping CMARS Method,” Machine Learning, vol. 101, no. 1, pp. 211-230, 2015, doi: https://doi.org/10.1007/s10994-015-5502-3.

[9] A. Beda, D.M. Simpson and L. Faes, “Estimation of Confidence Limits for Descriptive Indexes Derived from Autoregressive Analysis of Time Series : Methods and Application to Heart Rate Variability,” PLoS ONE, vol. 12, no. 10, pp. 1-22, 2017, doi: https://doi.org/10.1371/journal.pone.0183230.

[10] P. Hall and T. Maiti, “On Parametric Bootstrap Methods for Small Area Prediction,” Journal of the Royal Statistical Society : Series B, vol. 68, no. 2, pp. 221-238, 2006, doi: https://doi.org/10.1111/j.1467-9868.2006.00541.x.

[11] F.A.B Colugnati, F. Louzada-Neto and J.A. Taddei, “An Application of Bootstrap Resampling Method to Obtain Confidence Interval for Percentile Fatness Cutoff Points in Childhood and Adolescence Overweight Diagnoses,” International Journal of Obesity, vol. 29, no. 3, pp. 340-347, 2005, doi: https://doi.org/
10.1038/sj.ijo.0802866
.

[12] A. Kant, P.K. Suman, B.K. Giri, M.K. Tiwari, C. Chatterjee, P.C. Nayak and S. Kumar, “Comparison of Multi-Objective Evolutionary Neural Network, Adaptive Neuro-Fuzzy Inference System and Bootstrap-Based Neural Network for Flood Forecasting,” Neural Comput & Applic, vol. 23, no. 1, pp. 231-246, 2013, doi: https://doi.org/10.1007/s00521-013-1344-8.

[13] Y. Ren, N. Yu, X. Wang, L. Li and J. Wan, “Nonparametric Bootstrap-Based Multihop Localization Algorithm for Large-Scale Wireless Sensor Networks in Complex Environments,” International Journal of Distributed Sensor Networks, pp. 1-9, 2013, doi: https://doi.org/10.1155/2013/923426.

[14] A. Kleiner, A. Talwalkar, P. Sarkar and M.I. Jordan, “A Scalable Bootstrap for Massive Data,” J.R. Statist. Soc. B, vol. 76, no. 4, pp. 795-816, 2014, doi: https://doi.org/10.1111/rssb.12050.

[15] P. Jacek, R. Norbert, S. Malgorzata, G. Andrii and K. Maciej, “Bootstrap Identification of Confidence Intervals for the Non-Linear DoE Model,” Applied Mechanics and Materials, vol. 712, pp. 11-16, 2015, doi: https://doi.org/10.4028/www.scientific.net/AMM.712.11.

[16] M. Chen, C, Liao, S. Chen, Q. Ding, D. Zhu, H. Liu X. Yan and J. Zhong, “Uncertainty Assessment of Gamma-Aminobutyric Acid Concentration of Different Brain Regions in Individual and Group Using Residual Bootstrap Analysis,” Med Biol Eng Comput, vol. 55, pp. 1051-1059, 2017, doi: https://doi.org/10.1007/s11517-016-1579-5.

[17] L. Dongping, “Failure Prognosis with Uncertain Estimation Based on Recursive Models Re-Sampling Bootstrap and ANFIS,” IAENG International Journal of Computer Science, vol. 43, no. 2, pp. 253-262, 2016, available at: http://www.iaeng.org/IJCS/issues_v43/issue_2/IJCS_43_2_15.pdf.

[18] F. Liang, J. Kim and Q. Song, “A Bootstrap Metropolis-Hastings Algorithm for Bayesian Analysis of Big Data,” Technometrics, vol. 58, no. 3, pp. 304-318, 2016, doi: https://doi.org/10.1080/00401706.2016.1142905.

[19] C-L Mei, M. Xu and N. Wang, “A Bootstrap Test for Constant Coefficients in Geographically Weighted Regression Models,” International Journal of Geographical Information Science, vol. 30, no. 8, pp. 1622-1643, 2016, doi: https://doi.org/10.1080/13658816.2016.1149181.

[20] A.A. Mikshowsky, D. Gianola and K.A. Weigel, “Improving Reliability of Genomic Predictions for Jersey Sires Using Bootstrap Aggregation Sampling,” J. Dairy Sci., vol. 99, pp. 3632-3645, 2016, doi: https://doi.org/10.3168/jds.2015-10715.

[21] O.R. Olaniran, S.F. Olaniran, W.B. Yahya, A.W. Banjoko, M.K. Garba, L.B. Amusa and N.F Gatta, “Improved Bayesian Feature Selection and Classification Methods Using Bootstrap Prior Techniques,” Anale. Seria Informatica., vol. 14, no. 2, pp. 46-52, 2016, available at: http://anale-informatica.tibiscus.ro/download/
lucrari/14-2-07-Olaniran.pdf
.

[22] J. Zhen, “Detection of Wideband Signal Number Based on Bootstrap Resampling,” International Journal of Antennas and Propagation, pp. 1-8, 2016, doi: https://doi.org/10.1155/2016/3856727.

[23] T. Boukaba, M.N.E. Korso, A.M. Zoubir and D. Berkani, “Bootstrap Based Sequential Detection in Non-Gaussian Correlated Clutter,” Progress in Electromagnetics Research, vol. 81, pp. 125-140, 2018, doi: https://doi.org/10.2528/PIERC17111608.




Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

___________________________________________________________
International Journal of Advances in Intelligent Informatics
ISSN 2442-6571  (print) | 2548-3161 (online)
Organized by Informatics Department - Universitas Ahmad Dahlan , and UTM Big Data Centre - Universiti Teknologi Malaysia
Published by Universitas Ahmad Dahlan
W : http://ijain.org
E : info@ijain.org, andri.pranolo@tif.uad.ac.id (paper handling issues)
     ijain@uad.ac.id, andri.pranolo.id@ieee.org (publication issues)

View IJAIN Stats

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0