Multilevel thresholding hyperspectral image segmentation based on independent component analysis and swarm optimization methods

(1) * Murinto Murinto Mail (Informatics Department, Universitas Ahmad Dahlan, Indonesia)
(2) Nur Rochmah Dyah Puji Astuti Mail (Informatics Department, Universitas Ahmad Dahlan, Indonesia)
(3) Murein Miksa Mardhia Mail (Informatics Department, Universitas Ahmad Dahlan, Indonesia)
*corresponding author

Abstract


High dimensional problems are often encountered in studies related to hyperspectral data. One of the challenges that arise is how to find representations that are accurate so that important structures can be clearly easily. This study aims to process segmentation of hyperspectral image by using swarm optimization techniques. This experiments use Aviris Indian Pines hyperspectral image dataset that consist of 103 bands. The method used for segmentation image is particle swarm optimization (PSO), Darwinian particle swarm optimization (DPSO) and fractional order Darwinian particle swarm optimization (FODPSO). Before process segmentation image, the dimension of the hyperspectral image data set are first reduced by using independent component analysis (ICA) technique to get first independent component. The experimental show that FODPSO method is better than PSO and DPSO, in terms of the average CPU processing time and best fitness value. The PSNR and SSIM values when using FODPSO are better than the other two swarm optimization method. It can be concluded that FODPSO method is better in order to obtain better segmentation results compared to the previous method.

Keywords


Darwinian Particle Swarm Optimization; FODPSO ;Hypersectral Image ;Multilevel Thresholding; Particle Swarm Optimiziation

   

DOI

https://doi.org/10.26555/ijain.v5i1.311
      

Article metrics

Abstract views : 325 | PDF views : 115

   

Cite

   

Full Text

Download

References


[1] J. A. Richards, “Analysis of remotely sensed data: the formative decades and the future,” IEEE Trans. Geosci. Remote Sens., vol. 43, no. 3, pp. 422–432, Mar. 2005, doi: 10.1109/TGRS.2004.837326.

[2] C. M. Bishop, Pattern recognition and machine learning. springer, 2006, available at: Google Scholar.

[3] Murinto and N. R. Dyah, “Feature reduction using the minimum noise fraction and principal component analysis transforms for improving the classification of hyperspectral images,” Asia-Pacific J. Sci. Technol., vol. 22, no. 1, 2017, doi: 10.14456/apst.2017.5.

[4] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern classification. John Wiley & Sons, 2012, available at: Google Scholar.

[5] A. Hyvärinen, J. Karhunen, and E. Oja, Independent Component Analysis, 2001, doi: 10.1002/0471221317.

[6] Murinto and A. Harjoko, “Dataset feature reduction using independent component analysis with contrast function of particle swarm optimization on hyperspectral image classification,” in 2016 2nd International Conference on Science in Information Technology (ICSITech), 2016, pp. 285–290, doi: 10.1109/ICSITech.2016.7852649.

[7] N. Falco, L. Bruzzone, and J. A. Benediktsson, “An ICA based approach to hyperspectral image feature reduction,” in 2014 IEEE Geoscience and Remote Sensing Symposium, 2014, pp. 3470–3473, doi: 10.1109/IGARSS.2014.6947229.

[8] C. S. Dhir, J. Lee, and S.-Y. Lee, “Extraction of independent discriminant features for data with asymmetric distribution,” Knowl. Inf. Syst., vol. 30, no. 2, pp. 359–375, Feb. 2012, doi: 10.1007/s10115-011-0381-9.

[9] D. D. Lee and H. S. Seung, “Algorithms for Non-negative Matrix Factorization,” in Advances in Neural Information Processing Systems 13, T. K. Leen, T. G. Dietterich, and V. Tresp, Eds. MIT Press, 2001, pp. 556–562, available at: http://papers.nips.cc/paper/1861-algorithms-for-non-negative-matrix-factorization.
pdf
.

[10] P. Deepa and K. Thilagavathi, “Feature extraction of hyperspectral image using principal component analysis and folded-principal component analysis,” in 2015 2nd International Conference on Electronics and Communication Systems (ICECS), 2015, pp. 656–660, doi: 10.1109/ECS.2015.7124989.

[11] K. Zhang and L.-W. Chan, “Dimension reduction as a deflation method in ICA,” IEEE Signal Process. Lett., vol. 13, no. 1, pp. 45–48, Jan. 2006, doi: 10.1109/LSP.2005.860541.

[12] U. Sakarya, “Thermal infrared hyperspectral dimension reduction experiment results for global and local information based linear discriminant analysis,” in 2015 23nd Signal Processing and Communications Applications Conference (SIU), 2015, pp. 268–271, doi: 10.1109/SIU.2015.7129811.

[13] J. Li and Y. Qian, “Dimension reduction of hyperspectral images with sparse linear discriminant analysis,” in 2011 IEEE International Geoscience and Remote Sensing Symposium, 2011, pp. 2927–2930, doi: 10.1109/IGARSS.2011.6049828.

[14] P. Ghamisi, M. S. Couceiro, N. M. F. Ferreira, and L. Kumar, “Use of Darwinian Particle Swarm Optimization technique for the segmentation of Remote Sensing images,” in 2012 IEEE International Geoscience and Remote Sensing Symposium, 2012, pp. 4295–4298, doi: 10.1109/IGARSS.2012.6351718.

[15] P. Ghamisi, M. S. Couceiro, F. M. L. Martins, and J. A. Benediktsson, “Multilevel Image Segmentation Based on Fractional-Order Darwinian Particle Swarm Optimization,” IEEE Trans. Geosci. Remote Sens., vol. 52, no. 5, pp. 2382–2394, May 2014, doi: 10.1109/TGRS.2013.2260552.

[16] Y. Tarabalka, J. A. Benediktsson, and J. Chanussot, “Spectral–Spatial Classification of Hyperspectral Imagery Based on Partitional Clustering Techniques,” IEEE Trans. Geosci. Remote Sens., vol. 47, no. 8, pp. 2973–2987, Aug. 2009, doi: 10.1109/TGRS.2009.2016214.

[17] R. V. Kulkarni and G. K. Venayagamoorthy, “Bio-inspired Algorithms for Autonomous Deployment and Localization of Sensor Nodes,” IEEE Trans. Syst. Man, Cybern. Part C (Applications Rev., vol. 40, no. 6, pp. 663–675, Nov. 2010, doi: 10.1109/TSMCC.2010.2049649.

[18] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of ICNN’95 - International Conference on Neural Networks, vol. 4, pp. 1942–1948, doi: 10.1109/ICNN.1995.488968.

[19] J. Kennedy and R. C. Eberhart, “A discrete binary version of the particle swarm algorithm,” in 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation, vol. 5, pp. 4104–4108, doi: 10.1109/ICSMC.1997.637339.

[20] J. Tillett, T. Rao, F. Sahin, and R. Rao, “Darwinian particle swarm optimization,” Proc. 2nd Indian Int. Conf. Artif. Intell., pp. 1474–1487, 2005, available at : https://scholarworks.rit.edu/other/574/.

[21] E. J. Solteiro Pires, J. A. Tenreiro Machado, P. B. de Moura Oliveira, J. Boaventura Cunha, and L. Mendes, “Particle swarm optimization with fractional-order velocity,” Nonlinear Dyn., vol. 61, no. 1–2, pp. 295–301, Jul. 2010, doi: 10.1007/s11071-009-9649-y.

[22] M. S. Couceiro, R. P. Rocha, N. M. F. Ferreira, and J. A. T. Machado, “Introducing the fractional-order Darwinian PSO,” Signal, Image Video Process., vol. 6, no. 3, pp. 343–350, Sep. 2012, doi: 10.1007/s11760-012-0316-2.

[23] K. S. Fu and J. K. Mui, “A survey on image segmentation,” Pattern Recognit., vol. 13, no. 1, pp. 3–16, Jan. 1981, doi: 10.1016/0031-3203(81)90028-5.

[24] R. H. Turi, Clustering-based colour image segmentation. Monash University PhD thesis, 2001, available at: http://users.monash.edu/~roset/thesis/thesis.pdf.

[25] N. Otsu, “A Threshold Selection Method from Gray-Level Histograms,” IEEE Trans. Syst. Man. Cybern., vol. 9, no. 1, pp. 62–66, Jan. 1979, doi: 10.1109/TSMC.1979.4310076.

[26] T. Pun, “A new method for grey-level picture thresholding using the entropy of the histogram,” Signal Processing, vol. 2, no. 3, pp. 223–237, Jul. 1980, doi: 10.1016/0165-1684(80)90020-1.

[27] M. S. Couceiro, R. P. Rocha, and N. M. F. Ferreira, “Ensuring ad hoc connectivity in distributed search with Robotic Darwinian Particle Swarms,” in 2011 IEEE International Symposium on Safety, Security, and Rescue Robotics, 2011, pp. 284–289, doi: 10.1109/SSRR.2011.6106752.

[28] C. Ece and M. M. U. Mullana, “Image quality assessment techniques pn spatial domain,” IJCST, vol. 2, no. 3, 2011, available at : http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.219.5535&rep=rep1&type=pdf.

[29] A. Darwish, K. Leukert, and W. Reinhardt, “Image segmentation for the purpose of object-based classification,” in IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No. 03CH37477), 2003, vol. 3, pp. 2039–2041, doi: 10.1109/IGARSS.2003.1294332.

[30] Murinto, S. Winiarti, D. P. Ismi, and A. Prahara, “Image enhancement using piecewise linear contrast stretch methods based on unsharp masking algorithms for leather image processing,” in 2017 3rd International conference on science in information technology (ICSITech), 2017, pp. 669–673, doi: 10.1109/ICSITech.2017.8257197.

[31] A. M. Eskicioglu and P. S. Fisher, “Image quality measures and their performance,” IEEE Trans. Commun., vol. 43, no. 12, pp. 2959–2965, 1995, doi: 10.1109/26.477498.

[32] B. Akay, “A study on particle swarm optimization and artificial bee colony algorithms for multilevel thresholding,” Appl. Soft Comput., vol. 13, no. 6, pp. 3066–3091, Jun. 2013, doi: 10.1016/j.asoc.2012.03.072.




Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

___________________________________________________________
International Journal of Advances in Intelligent Informatics
ISSN 2442-6571  (print) | 2548-3161 (online)
Organized by Informatics Department - Universitas Ahmad Dahlan , and UTM Big Data Centre - Universiti Teknologi Malaysia
Published by Universitas Ahmad Dahlan
W : http://ijain.org
E : info@ijain.org, andri.pranolo@tif.uad.ac.id (paper handling issues)
     ijain@uad.ac.id, andri.pranolo.id@ieee.org (publication issues)

View IJAIN Stats

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0