Optimized biometric system based iris-signature for human identification

(1) * Muthana Hachim Hamd Mail (Computer Engineering Department, Al-Mustansiriyah University, Iraq)
*corresponding author


This research aimed at comparing iris-signature techniques, namely the Sequential Technique (ST) and the Standard Deviation Technique (SDT). Both techniques were measured by Backpropagation (BP), Probabilistic, Radial basis function (RBF), and Euclidian distance (ED) classifiers. A biometric system-based iris is developed to identify 30 of CASIA-v1 and 10 subjects from the Real-iris datasets. Then, the proposed unimodal system uses Fourier descriptors to extract the iris features and represent them as an iris-signature graph. The 150 values of input machine vector were optimized to include only high-frequency coefficients of the iris-signature, then the two optimization techniques are applied and compared. The first optimization (ST) selects sequentially new feature values with different lengths from the enrichment graph region that has rapid frequency changes. The second technique (SDT) chooses the high variance coefficients as a new feature of vectors based on the standard deviation formula. The results show that SDT achieved better recognition performance with the lowest vector-lengths, while Probabilistic and BP have the best accuracy.


Iris recognition; Fourier descriptors; Iris-Signature; Neural network; Optimization techniques




Article metrics

Abstract views : 1213 | PDF views : 216




Full Text



[1] A. K. Jain, A. A. Ross, and K. Nandakumar, Introduction to Biometrics, 2011, doi: 10.1007/978-0-387-77326-1.

[2] R. M. Bodade and S. N. Talbar, Iris Analysis for Biometric Recognition Systems, 2014, doi: 10.1007/978-81-322-1853-1.

[3] M. H. Hamd and S. K. Ahmed, “Biometric System Design for Iris Recognition Using Intelligent Algorithms,” Int. J. Mod. Educ. Comput. Sci., vol. 10, no. 3, pp. 9–16, Mar. 2018, doi: 10.5815/ijmecs.2018.03.02.

[4] P. R. Nalla and A. Kumar, “Toward More Accurate Iris Recognition Using Cross-Spectral Matching,” IEEE Trans. Image Process., vol. 26, no. 1, pp. 208–221, Jan. 2017, doi: 10.1109/TIP.2016.2616281.

[5] M. H. Hamd and M. Y. Mohammed, “Multimodal Biometric System based Face-Iris Feature Level Fusion,” Int. J. Mod. Educ. Comput. Sci., vol. 11, no. 5, pp. 1–9, May 2019, doi: 10.5815/ijmecs.2019.05.01.

[6] R. W. Ives, “Use of one-dimensional iris signatures to rank iris pattern similarities,” Opt. Eng., vol. 45, no. 3, p. 037201, Mar. 2006, doi: 10.1117/1.2181140.

[7] R. M. da Costa and A. Gonzaga, “Dynamic Features for Iris Recognition,” IEEE Trans. Syst. Man, Cybern. Part B, vol. 42, no. 4, pp. 1072–1082, Aug. 2012, doi: 10.1109/TSMCB.2012.2186125.

[8] J. G. Daugman, “High confidence visual recognition of persons by a test of statistical independence,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 15, no. 11, pp. 1148–1161, 1993, doi: 10.1109/34.244676.

[9] J. Daugman, “How Iris Recognition Works,” IEEE Trans. Circuits Syst. Video Technol., vol. 14, no. 1, pp. 21–30, Jan. 2004, doi: 10.1109/TCSVT.2003.818350.

[10] R. Y. F. Ng, Yong Haur Tay, and Kai Ming Mok, “An effective segmentation method for iris recognition system,” in 5th International Conference on Visual Information Engineering (VIE 2008), 2008, pp. 548–553, doi: 10.1049/cp:20080375.

[11] J. Koh, V. Govindaraju, and V. Chaudhary, “A Robust Iris Localization Method Using an Active Contour Model and Hough Transform,” in 2010 20th International Conference on Pattern Recognition, 2010, pp. 2852–2856, doi: 10.1109/ICPR.2010.699.

[12] A. Das, “Recognition of Human Iris Patterns,” National Institute of Technology, Rourkela, 2012, available at: http://ethesis.nitrkl.ac.in/3635/.

[13] G. Kaur, D. Kaur, and D. Singh, “Study of Two Different Methods for Iris Recognition Support Vector Machine and Phase Based Method,” Int. J. Comput. Eng. Res., vol. 3, no. 4, pp. 88–94, 2013, available at : Google Scholar.

[14] S. Jayalakshmi and M. Sundaresan, “A Study of Iris Segmentation Methods using Fuzzy C-Means and K-Means Clustering Algorithm,” Int. J. Comput. Appl., vol. 85, no. 11, pp. 1–5, Jan. 2014, doi: 10.5120/14882-3316.

[15] A. Kumar, A. Potnis, and A. Singh, “Iris recognition and feature extraction in iris recognition system by employing 2D DCT,” IRJET Int. Res. Comput. Sci. Softw. Eng. Technol., vol. 3, no. 12, pp. 503–510, 2016, available at : Google Scholar.

[16] M. Hamd, and Samah Ahmed, “Fourier Descriptors for Iris Recognition,” Int. J. Comput. Digit. Syst., vol. 6, no. 5, pp. 285–291, Sep. 2017, doi: 10.12785/IJCDS/060507.

[17] A. T. and M. M., “Iris Feature Extraction and Matching by using Wavelet Decomposition and Hamming Distance,” Int. J. Comput. Appl., vol. 158, no. 4, pp. 43–47, Jan. 2017, doi: 10.5120/ijca2017912793.

[18] D. Zhang, G. Lu, and others, “A comparative study on shape retrieval using Fourier descriptors with different shape signatures,” in Proc. of international conference on intelligent multimedia and distance education (ICIMADE01), 2001, pp. 1–9, available at : Google Scholar.

[19] S. Viriri and J. R. Tapamo, “Integrating Iris and Signature Traits for Personal Authentication Using User-SpecificWeighting,” Sensors, vol. 12, no. 4, pp. 4324–4338, Mar. 2012, doi: 10.3390/s120404324.

[20] P. De and D. Ghoshal, “Recognition of Non Circular Iris Pattern of the Goat by Structural, Statistical and Fourier Descriptors,” Procedia Comput. Sci., vol. 89, pp. 845–849, 2016, doi: 10.1016/j.procs.2016.06.070.

[21] A. S. Falohun, E. O. Omidiora, A. O. Akanni, and A. S. Awofadeju, “Remote Access Control System using Iris Signature,” in Proceedings of the World Congress on Engineering and Computer Science, 2013, vol. 1, available at : Google Scholar.

[22] G. Zhang, Z. Ma, L. Niu, and C. Zhang, “Modified Fourier descriptor for shape feature extraction,” J. Cent. South Univ., vol. 19, no. 2, pp. 488–495, Feb. 2012, doi: 10.1007/s11771-012-1030-5.

[23] K. Misztal, E. Saeed, J. Tabor, and K. Saeed, “Iris Pattern Recognition with a New Mathematical Model to Its Rotation Detection,” 2012, pp. 43–65, doi: 10.1007/978-1-4614-5608-7_3.

[24] H. Mehrotra, P. K. Sa, and B. Majhi, “Fast segmentation and adaptive SURF descriptor for iris recognition,” Math. Comput. Model., vol. 58, no. 1–2, pp. 132–146, Jul. 2013, doi: 10.1016/j.mcm.2012.06.034.

[25] F. N. Sibai, H. I. Hosani, R. M. Naqbi, S. Dhanhani, and S. Shehhi, “Iris recognition using artificial neural networks,” Expert Syst. Appl., 2011, doi: 10.1016/j.eswa.2010.11.029.

[26] A. Amanatiadis, V. G. Kaburlasos, A. Gasteratos, and S. E. Papadakis, “Evaluation of shape descriptors for shape-based image retrieval,” IET Image Process., vol. 5, no. 5, p. 493, 2011, doi: 10.1049/iet-ipr.2009.0246.

[27] B. Esmael, A. Arnaout, R. K. Fruhwirth, and G. Thonhauser, “A statistical feature-based approach for operations recognition in drilling time series,” Int. J. Comput. Inf. Syst. Ind. Manag. Appl., vol. 5, pp. 454–461, 2015, available at : Google Scholar.

[28] M. LEI, “Medical Image Enhancement Using Fourier Descriptors and Hybrid Filters,” 2009, pp. 59–69, doi: 10.1016/B978-012373904-9.50011-8.

[29] Z. He, T. Tan, and Z. Sun, “Iris localization via pulling and pushing,” in Proceedings - International Conference on Pattern Recognition, 2006, doi: 10.1109/ICPR.2006.724.

[30] I. G. P. S. Wijaya, I. B. K. Widiartha, K. Uchimura, M. S. Iqbal, and A. Y. Husodo, “Fast pornographic image recognition using compact holistic features and multi-layer neural network,” Int. J. Adv. Intell. Informatics, vol. 5, no. 2, p. 89, May 2019, doi: 10.26555/ijain.v5i2.268.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Advances in Intelligent Informatics
ISSN 2442-6571  (print) | 2548-3161 (online)
Organized by UAD and ASCEE Computer Society
Published by Universitas Ahmad Dahlan
W: http://ijain.org
E: info@ijain.org (paper handling issues)
   andri.pranolo.id@ieee.org (publication issues)

View IJAIN Stats

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0