(2) Ronny Mardiyanto (Institut Teknologi Sepuluh Nopember, Indonesia)
*corresponding author
AbstractThe paper proposes a Marker Detection Method for Estimating the Angle and Distance of Underwater Remotely Operated Vehicle (ROV) to Buoyant Boat. To keep the ROV aligned with the boat, a marker and visual recognition system are designed. The marker is placed facing down under the boat and a method is developed to recognize the angle and distance of the marker from a facing up camera on the ROV. By considering space, payload, heat dissipation, and buoyancy in a micro class ROV, there are limited options for computing power that can be utilized. This challenge demands a lightweight visual recognition technique for small computers. The proposed method consists of two steps. The marker designing step explains how the marker is constructed of simple components. The marker recognizing step is based on image processing that uses threshold and blob filtering. They are blob size and blob circularity filters which are used to eliminate unwanted information. The real-time orientation and distance estimation by using one camera are the superiority of this method. The proposed method has been tested by using an 11x11 cm2 marker size. The detection rate of the marker is 90% and can be detected up to 120 cm from the camera. The marker can be tilted up to 50° and still has an 80% detection rate. The method can estimate marker rotation angle accurately with a 1.75° average error. The method can estimate the distance between the marker and camera with a -0.62 cm average error. The blob filter is also proven to be superior to a regular dilating and eroding method.
KeywordsROV; Distance estimatiom; Angle estimation; Underwater marker detection; Marker shape filter
|
DOIhttps://doi.org/10.26555/ijain.v7i3.455 |
Article metricsAbstract views : 11141 | PDF views : 166 |
Cite |
Full TextDownload |
References
style='font-family:Junicode;mso-fareast-font-family:"MS Mincho"'>
style='mso-element:field-begin'>
style='mso-spacerun:yes'> ADDIN ZOTERO_BIBL
{"uncited":[],"omitted":[],"custom":[]}
CSL_BIBLIOGRAPHY [1] N. Miskovic, D. Nad, and I. Rendulic, “Tracking Divers: An Autonomous Marine Surface Vehicle to Increase Diver Safety,” IEEE Robot. Autom. Mag., vol. 22, no. 3, pp. 72–84, Sep. 2015, doi: 10.1109/MRA.2015.2448851.
[2] N. Stilinovic, D. Nad, and N. Miskovic, “AUV for diver assistance and safety 2014; Design and implementation,” in OCEANS 2015 - Genova, Genova, Italy, May 2015, pp. 1–4. doi: 10.1109/OCEANS-Genova.2015.7271670.
[3] N. Miskovic, E. Nad, N. Stilinovic, and Z. Vukic, “Guidance and control of an overactuated autonomous surface platform for diver tracking,” in 21st Mediterranean Conference on Control and Automation, Platanias, Chania - Crete, Greece, Jun. 2013, pp. 1280–1285. doi: 10.1109/MED.2013.6608884.
[4] J. H. Tarnecki and W. F. Patterson, “A mini ROV-based method for recovering marine instruments at depth,” PLOS ONE, vol. 15, no. 7, p. e0235321, Jul. 2020, doi: 10.1371/journal.pone.0235321.
[5] M.-M. Naddaf-Sh, H. Myler, and H. Zargarzadeh, “Design and Implementation of an Assistive Real-Time Red Lionfish Detection System for AUV/ROVs,” Complexity, vol. 2018, pp. 1–10, Nov. 2018, doi: 10.1155/2018/5298294.
[6] Đ. Nađ, F. Mandić, and N. Mišković, “Using Autonomous Underwater Vehicles for Diver Tracking and Navigation Aiding,” J. Mar. Sci. Eng., vol. 8, no. 6, p. 413, Jun. 2020, doi: 10.3390/jmse8060413.
[7] R. J. Smolowitz, S. H. Patel, H. L. Haas, and S. A. Miller, “Using a remotely operated vehicle (ROV) to observe loggerhead sea turtle (Caretta caretta) behavior on foraging grounds off the mid-Atlantic United States,” J. Exp. Mar. Biol. Ecol., vol. 471, pp. 84–91, Oct. 2015, doi: 10.1016/j.jembe.2015.05.016.
[8] S. A. Fattah, F. Abedin, M. N. Ansary, M. A. Rokib, N. Saha, and C. Shahnaz, “R3Diver: Remote robotic rescue diver for rapid underwater search and rescue operation,” in 2016 IEEE Region 10 Conference (TENCON), Singapore, Nov. 2016, pp. 3280–3283. doi: 10.1109/TENCON.2016.7848658.
[9] N. Sakagami, F. Takemura, R. Ono, C. Katagiri, Y. Nakanishi, and Y. Yamamoto, “Observation support system of an ROV for underwater archaeology,” in 2015 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS), Okinawa, Japan, Nov. 2015, pp. 192–196. doi: 10.1109/ICIIBMS.2015.7439498.
[10] Ottar L. Osen, Rolf-Inge Sandvik, Jørgen Berge Trygstad, Vegard Rogne, and Houxiang Zhang, “A Novel Low Cost ROV for Aquaculture,” Anchorage, AK, USA, USA, Sep. 2017. Available: Google Scholar.
[11] Zainah Md. Zain, Maziyah Mat Noh, and Khairul Ashraff Ab Rahim, “Design and development of an X4-ROV,” Penang, Malaysia, 2016. doi: 10.1109/USYS.2016.7893910.
[12] Hyeung-sik Choi, Hanil Park, and Sanki Chung, “Design and control of a convertible ROV,” presented at the OCEANS, 2012 - Yeosu, Yeosu, South Korea, May 2012. doi: 10.1109/OCEANS-Yeosu.2012.6263424.
[13] G. Kumaravelu, C. Soni, and S. R. Pandian, “Design of a compact and economical remotely operated vehicle for aquatic monitoring,” in 2016 IEEE Region 10 Conference (TENCON), Singapore, Nov. 2016, pp. 1834–1838. doi: 10.1109/TENCON.2016.7848338.
[14] Liam Paull, Sajad Saeedi, and Mae Seto, “AUV Navigation and Localization: A Review,” IEEE J. Ocean. Eng., vol. 39, no. 1, pp. 131–149, Dec. 2013, doi: 10.1109/JOE.2013.2278891.
[15] R. Lin, F. Zhang, D. Li, M. Lin, G. Zhou, and C. Yang, “An Improved Localization Method for the Transition between Autonomous Underwater Vehicle Homing and Docking,” Sensors, vol. 21, no. 7, p. 2468, Apr. 2021, doi: 10.3390/s21072468.
[16] Z. Zhou, Y. Jiang, Y. Li, C. Jian, and Y. Sun, “A single acoustic beacon-based positioning method for underwater mobile recovery of an AUV,” Int. J. Adv. Robot. Syst., vol. 15, no. 5, p. 172988141880173, Sep. 2018, doi: 10.1177/1729881418801739.
[17] J. R. Keane, A. L. Forrest, H. Johannsson, and D. Battle, “Autonomous Underwater Vehicle Homing With a Single Range-Only Beacon,” IEEE J. Ocean. Eng., vol. 45, no. 2, pp. 395–403, Apr. 2020, doi: 10.1109/JOE.2018.2877535.
[18] S. Fan, C. Liu, B. Li, Y. Xu, and W. Xu, “AUV docking based on USBL navigation and vision guidance,” J. Mar. Sci. Technol., vol. 24, no. 3, pp. 673–685, Sep. 2019, doi: 10.1007/s00773-018-0577-8.
[19] Jin-YeongPark, Bong-huanJun, Pan-mook Lee, and Junho Oh, “Experiments on vision guided docking of an autonomous underwater vehicle using one camera,” Ocean Eng., vol. 36, no. 1, pp. 48–61, Jan. 2009, doi: 10.1016/j.oceaneng.2008.10.001.
[20] M. F. Yahya and M. R. Arshad, “Tracking of multiple markers based on color for visual servo control in underwater docking,” George Town, Malaysia, Jun. 2016. doi: 10.1109/ICCSCE.2015.7482233.
[21] A. Bianchi Figueiredo and A. Coimbra Matos, “MViDO: A High Performance Monocular Vision-Based System for Docking A Hovering AUV,” Appl. Sci., vol. 10, no. 9, p. 2991, Apr. 2020, doi: 10.3390/app10092991.
[22] T. Susanto, R. Mardiyanto, and D. Purwanto, “Development of Underwater Object Detection Method Base on Color Feature,” in 2018 International Conference on Computer Engineering, Network and Intelligent Multimedia (CENIM), Surabaya, Indonesia, Nov. 2018, pp. 254–259. doi: 10.1109/CENIM.2018.8711290.
[23] E. A. Saputra and R. Mardiyanto, “Development of Object Tracking System Using Remotely Operated Vehicle Based on Visual sensor,” in 2018 5th International Conference on Information Technology, Computer, and Electrical Engineering (ICITACEE), Semarang, Indonesia, Sep. 2018, pp. 197–202. doi: 10.1109/ICITACEE.2018.8576951.
[24] G.-J. Hou, X. Luan, D.-L. Song, and X.-Y. Ma, “Underwater Man-Made Object Recognition on the Basis of Color and Shape Features,” J. Coast. Res., vol. 321, pp. 1135–1141, Sep. 2016, doi: 10.2112/JCOASTRES-D-14-00249.1.
[25] Z. Chen, Z. Zhang, F. Dai, Y. Bu, and H. Wang, “Monocular Vision-Based Underwater Object Detection,” Sensors, vol. 17, no. 8, p. 1784, Aug. 2017, doi: 10.3390/s17081784.
[26] Myo Myint, Kenta Yonemori, and Akira Yanou, “Dual-eyes visual-based sea docking for sea bottom battery recharging,” Monterey, CA, USA, Dec. 2016. doi: 10.1109/OCEANS.2016.7761319.
[27] M. Rossi, P. Trslić, S. Sivčev, J. Riordan, D. Toal, and G. Dooly, “Real-Time Underwater StereoFusion,” Sensors, vol. 18, no. 11, p. 3936, Nov. 2018, doi: 10.3390/s18113936.
[28] L. Zhong, D. Li, M. Lin, R. Lin, and C. Yang, “A Fast Binocular Localisation Method for AUV Docking,” Sensors, vol. 19, no. 7, p. 1735, Apr. 2019, doi: 10.3390/s19071735.
[29] T. Łuczyński, P. Łuczyński, L. Pehle, M. Wirsum, and A. Birk, “Model based design of a stereo vision system for intelligent deep-sea operations,” Measurement, vol. 144, pp. 298–310, Oct. 2019, doi: 10.1016/j.measurement.2019.05.004.
[30] S. Hong, D. Chung, J. Kim, Y. Kim, A. Kim, and H. K. Yoon, “In‐water visual ship hull inspection using a hover‐capable underwater vehicle with stereo vision,” J. Field Robot., vol. 36, no. 3, pp. 531–546, May 2019, doi: 10.1002/rob.21841.
[31] R. Mardiyanto, B. Tamam, and H. Suryoatmojo, “Development of Navigation Method of Buoyant Boat for Maintaining Position of The Boat and Underwater Remotely Operated Vehicle,” in 2018 5th International Conference on Information Technology, Computer, and Electrical Engineering (ICITACEE), Semarang, Sep. 2018, pp. 219–224. doi: 10.1109/ICITACEE.2018.8576938.
font-family:Junicode;mso-fareast-font-family:"MS Mincho";mso-bidi-font-family:
"Times New Roman";mso-ansi-language:EN-US;mso-fareast-language:EN-US;
mso-bidi-language:AR-SA'>
style='mso-fareast-font-family:"MS Mincho"'>
style='mso-spacerun:yes'> ADDIN ZOTERO_BIBL
{"uncited":[],"omitted":[],"custom":[]}
CSL_BIBLIOGRAPHY [1] N. Miskovic, D. Nad, and I. Rendulic, “Tracking Divers: An Autonomous Marine Surface Vehicle to Increase Diver Safety,” IEEE Robot. Autom. Mag., vol. 22, no. 3, pp. 72–84, Sep. 2015, doi: 10.1109/MRA.2015.2448851.
[2] N. Stilinovic, D. Nad, and N. Miskovic, “AUV for diver assistance and safety 2014; Design and implementation,” in OCEANS 2015 - Genova, Genova, Italy, May 2015, pp. 1–4. doi: 10.1109/OCEANS-Genova.2015.7271670.
[3] N. Miskovic, E. Nad, N. Stilinovic, and Z. Vukic, “Guidance and control of an overactuated autonomous surface platform for diver tracking,” in 21st Mediterranean Conference on Control and Automation, Platanias, Chania - Crete, Greece, Jun. 2013, pp. 1280–1285. doi: 10.1109/MED.2013.6608884.
[4] J. H. Tarnecki and W. F. Patterson, “A mini ROV-based method for recovering marine instruments at depth,” PLOS ONE, vol. 15, no. 7, p. e0235321, Jul. 2020, doi: 10.1371/journal.pone.0235321.
[5] M.-M. Naddaf-Sh, H. Myler, and H. Zargarzadeh, “Design and Implementation of an Assistive Real-Time Red Lionfish Detection System for AUV/ROVs,” Complexity, vol. 2018, pp. 1–10, Nov. 2018, doi: 10.1155/2018/5298294.
[6] Đ. Nađ, F. Mandić, and N. Mišković, “Using Autonomous Underwater Vehicles for Diver Tracking and Navigation Aiding,” J. Mar. Sci. Eng., vol. 8, no. 6, p. 413, Jun. 2020, doi: 10.3390/jmse8060413.
[7] R. J. Smolowitz, S. H. Patel, H. L. Haas, and S. A. Miller, “Using a remotely operated vehicle (ROV) to observe loggerhead sea turtle (Caretta caretta) behavior on foraging grounds off the mid-Atlantic United States,” J. Exp. Mar. Biol. Ecol., vol. 471, pp. 84–91, Oct. 2015, doi: 10.1016/j.jembe.2015.05.016.
[8] S. A. Fattah, F. Abedin, M. N. Ansary, M. A. Rokib, N. Saha, and C. Shahnaz, “R3Diver: Remote robotic rescue diver for rapid underwater search and rescue operation,” in 2016 IEEE Region 10 Conference (TENCON), Singapore, Nov. 2016, pp. 3280–3283. doi: 10.1109/TENCON.2016.7848658.
[9] N. Sakagami, F. Takemura, R. Ono, C. Katagiri, Y. Nakanishi, and Y. Yamamoto, “Observation support system of an ROV for underwater archaeology,” in 2015 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS), Okinawa, Japan, Nov. 2015, pp. 192–196. doi: 10.1109/ICIIBMS.2015.7439498.
[10] Ottar L. Osen, Rolf-Inge Sandvik, Jørgen Berge Trygstad, Vegard Rogne, and Houxiang Zhang, “A Novel Low Cost ROV for Aquaculture,” Anchorage, AK, USA, USA, Sep. 2017. Available: Google Scholar.
[11] Zainah Md. Zain, Maziyah Mat Noh, and Khairul Ashraff Ab Rahim, “Design and development of an X4-ROV,” Penang, Malaysia, 2016. doi: 10.1109/USYS.2016.7893910.
[12] Hyeung-sik Choi, Hanil Park, and Sanki Chung, “Design and control of a convertible ROV,” presented at the OCEANS, 2012 - Yeosu, Yeosu, South Korea, May 2012. doi: 10.1109/OCEANS-Yeosu.2012.6263424.
[13] G. Kumaravelu, C. Soni, and S. R. Pandian, “Design of a compact and economical remotely operated vehicle for aquatic monitoring,” in 2016 IEEE Region 10 Conference (TENCON), Singapore, Nov. 2016, pp. 1834–1838. doi: 10.1109/TENCON.2016.7848338.
[14] Liam Paull, Sajad Saeedi, and Mae Seto, “AUV Navigation and Localization: A Review,” IEEE J. Ocean. Eng., vol. 39, no. 1, pp. 131–149, Dec. 2013, doi: 10.1109/JOE.2013.2278891.
[15] R. Lin, F. Zhang, D. Li, M. Lin, G. Zhou, and C. Yang, “An Improved Localization Method for the Transition between Autonomous Underwater Vehicle Homing and Docking,” Sensors, vol. 21, no. 7, p. 2468, Apr. 2021, doi: 10.3390/s21072468.
[16] Z. Zhou, Y. Jiang, Y. Li, C. Jian, and Y. Sun, “A single acoustic beacon-based positioning method for underwater mobile recovery of an AUV,” Int. J. Adv. Robot. Syst., vol. 15, no. 5, p. 172988141880173, Sep. 2018, doi: 10.1177/1729881418801739.
[17] J. R. Keane, A. L. Forrest, H. Johannsson, and D. Battle, “Autonomous Underwater Vehicle Homing With a Single Range-Only Beacon,” IEEE J. Ocean. Eng., vol. 45, no. 2, pp. 395–403, Apr. 2020, doi: 10.1109/JOE.2018.2877535.
[18] S. Fan, C. Liu, B. Li, Y. Xu, and W. Xu, “AUV docking based on USBL navigation and vision guidance,” J. Mar. Sci. Technol., vol. 24, no. 3, pp. 673–685, Sep. 2019, doi: 10.1007/s00773-018-0577-8.
[19] Jin-YeongPark, Bong-huanJun, Pan-mook Lee, and Junho Oh, “Experiments on vision guided docking of an autonomous underwater vehicle using one camera,” Ocean Eng., vol. 36, no. 1, pp. 48–61, Jan. 2009, doi: 10.1016/j.oceaneng.2008.10.001.
[20] M. F. Yahya and M. R. Arshad, “Tracking of multiple markers based on color for visual servo control in underwater docking,” George Town, Malaysia, Jun. 2016. doi: 10.1109/ICCSCE.2015.7482233.
[21] A. Bianchi Figueiredo and A. Coimbra Matos, “MViDO: A High Performance Monocular Vision-Based System for Docking A Hovering AUV,” Appl. Sci., vol. 10, no. 9, p. 2991, Apr. 2020, doi: 10.3390/app10092991.
[22] T. Susanto, R. Mardiyanto, and D. Purwanto, “Development of Underwater Object Detection Method Base on Color Feature,” in 2018 International Conference on Computer Engineering, Network and Intelligent Multimedia (CENIM), Surabaya, Indonesia, Nov. 2018, pp. 254–259. doi: 10.1109/CENIM.2018.8711290.
[23] E. A. Saputra and R. Mardiyanto, “Development of Object Tracking System Using Remotely Operated Vehicle Based on Visual sensor,” in 2018 5th International Conference on Information Technology, Computer, and Electrical Engineering (ICITACEE), Semarang, Indonesia, Sep. 2018, pp. 197–202. doi: 10.1109/ICITACEE.2018.8576951.
[24] G.-J. Hou, X. Luan, D.-L. Song, and X.-Y. Ma, “Underwater Man-Made Object Recognition on the Basis of Color and Shape Features,” J. Coast. Res., vol. 321, pp. 1135–1141, Sep. 2016, doi: 10.2112/JCOASTRES-D-14-00249.1.
[25] Z. Chen, Z. Zhang, F. Dai, Y. Bu, and H. Wang, “Monocular Vision-Based Underwater Object Detection,” Sensors, vol. 17, no. 8, p. 1784, Aug. 2017, doi: 10.3390/s17081784.
[26] Myo Myint, Kenta Yonemori, and Akira Yanou, “Dual-eyes visual-based sea docking for sea bottom battery recharging,” Monterey, CA, USA, Dec. 2016. doi: 10.1109/OCEANS.2016.7761319.
[27] M. Rossi, P. Trslić, S. Sivčev, J. Riordan, D. Toal, and G. Dooly, “Real-Time Underwater StereoFusion,” Sensors, vol. 18, no. 11, p. 3936, Nov. 2018, doi: 10.3390/s18113936.
[28] L. Zhong, D. Li, M. Lin, R. Lin, and C. Yang, “A Fast Binocular Localisation Method for AUV Docking,” Sensors, vol. 19, no. 7, p. 1735, Apr. 2019, doi: 10.3390/s19071735.
[29] T. Łuczyński, P. Łuczyński, L. Pehle, M. Wirsum, and A. Birk, “Model based design of a stereo vision system for intelligent deep-sea operations,” Measurement, vol. 144, pp. 298–310, Oct. 2019, doi: 10.1016/j.measurement.2019.05.004.
[30] S. Hong, D. Chung, J. Kim, Y. Kim, A. Kim, and H. K. Yoon, “In‐water visual ship hull inspection using a hover‐capable underwater vehicle with stereo vision,” J. Field Robot., vol. 36, no. 3, pp. 531–546, May 2019, doi: 10.1002/rob.21841.
[31] R. Mardiyanto, B. Tamam, and H. Suryoatmojo, “Development of Navigation Method of Buoyant Boat for Maintaining Position of The Boat and Underwater Remotely Operated Vehicle,” in 2018 5th International Conference on Information Technology, Computer, and Electrical Engineering (ICITACEE), Semarang, Sep. 2018, pp. 219–224. doi: 10.1109/ICITACEE.2018.8576938.
font-family:"Calibri",sans-serif;mso-fareast-font-family:"MS Mincho";
mso-bidi-font-family:"Times New Roman";mso-ansi-language:EN-US;mso-fareast-language:
EN-US;mso-bidi-language:AR-SA'>
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
___________________________________________________________
International Journal of Advances in Intelligent Informatics
ISSN 2442-6571 (print) | 2548-3161 (online)
Organized by UAD and ASCEE Computer Society
Published by Universitas Ahmad Dahlan
W: http://ijain.org
E: info@ijain.org (paper handling issues)
andri.pranolo.id@ieee.org (publication issues)
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0