(2) I Ketut Eddy Purnama (Institut Teknologi Sepuluh Nopember, Indonesia)
(3) Supeno Mardi Susiki Nugroho (Institut Teknologi Sepuluh Nopember, Indonesia)
*corresponding author
AbstractPerson re-identification is one of the problems in the computer vision field that aims to retrieve similar human images in some image collections (or galleries). It is very useful for people searching or tracking in a closed environment (like a mall or building). One of the highlighted things on person re-identification problems is that the model is usually designed only for performance instead of performance and computing power consideration, which is applicable for devices with limited computing power. In this paper, we proposed a lightweight residual network with pyramid attention for person re-identification problems. The lightweight residual network adopted from the residual network (ResNet) model used for CIFAR dataset experiments consists of not more than two million parameters. An additional pyramid features extraction network and attention module are added to the network to improve the classifier's performance. We use CPFE (Context-aware Pyramid Features Extraction) network that utilizes atrous convolution with different dilation rates to extract the pyramid features. In addition, two different attention networks are used for the classifier: channel-wise and spatial-based attention networks. The proposed classifier is tested using widely use Market-1501 and DukeMTMC-reID person re-identification datasets. Experiments on Market-1501 and DukeMTMC-reID datasets show that our proposed classifier can perform well and outperform the classifier without CPFE and attention networks. Further investigation and ablation study shows that our proposed classifier has higher information density compared with other person re-identification methods.
KeywordsLightweight Residual Network, Pyramid Attention Network, Person Re-identification
|
DOIhttps://doi.org/10.26555/ijain.v9i1.702 |
Article metricsAbstract views : 810 | PDF views : 368 |
Cite |
Full TextDownload |
References
[1] M. Burchi and V. Vielzeuf, “Efficient Conformer: Progressive Downsampling and Grouped Attention for Automatic Speech Recognition,” 2021 IEEE Autom. Speech Recognit. Underst. Work. ASRU 2021 - Proc., pp. 8–15, 2021, doi: 10.1109/ASRU51503.2021.9687874.
[2] M. Burchi and R. Timofte, “Audio-Visual Efficient Conformer for Robust Speech Recognition,” Proc. - 2023 IEEE Winter Conf. Appl. Comput. Vision, WACV 2023, pp. 2257–2266, 2023, doi: 10.1109/WACV56688.2023.00229.
[3] Z. Liu et al., “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows,” Proc. IEEE Int. Conf. Comput. Vis., pp. 9992–10002, 2021, doi: 10.1109/ICCV48922.2021.00986.
[4] X. Huang, M. Dong, J. Li, and X. Guo, “A 3-D-Swin Transformer-Based Hierarchical Contrastive Learning Method for Hyperspectral Image Classification,” IEEE Trans. Geosci. Remote Sens., vol. 60, 2022, doi: 10.1109/TGRS.2022.3202036.
[5] Z. Liu et al., “Video Swin Transformer,” Proc. 2022 IEEE/CVF Conf. on Comput. Vision Pattern Recog. (CVPR), pp. 3192–3201, Sep. 2022, doi: 10.1109/CVPR52688.2022.00320.
[6] Y. C. Wei, Y. X. Lai, and M. E. Wu, “An evaluation of deep learning models for chargeback Fraud detection in online games,” Cluster Comput., pp. 1–17, Jul. 2022, doi: 10.1007/S10586-022-03674-4.
[7] Y. Zakaria, M. Hadhoud, and M. Fayek, “Procedural Level Generation for Sokoban via Deep Learning: An Experimental Study,” TechRxiv, Preprint, Oct. 2021, doi: 10.36227/TECHRXIV.16640095.V3.
[8] H. H. Jebamikyous and R. Kashef, “Autonomous Vehicles Perception (AVP) Using Deep Learning: Modeling, Assessment, and Challenges,” IEEE Access, vol. 10, pp. 10523–10535, 2022, doi: 10.1109/ACCESS.2022.3144407.
[9] Z. Zhu, Z. Hu, W. Dai, H. Chen, and Z. Lv, “Deep learning for autonomous vehicle and pedestrian interaction safety,” Saf. Sci., vol. 145, p. 105479, Jan. 2022, doi: 10.1016/J.SSCI.2021.105479.
[10] Y. Cao, Y. Shao, and H. Zhang, “Study on early warning of E-commerce enterprise financial risk based on deep learning algorithm,” Electron. Commer. Res., vol. 22, no. 1, pp. 21–36, Mar. 2022, doi: 10.1007/S10660-020-09454-9.
[11] W. Li, R. Zhao, T. Xiao, and X. Wang, “DeepReID: Deep filter pairing neural network for person re-identification,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., pp. 152–159, Sep. 2014, doi: 10.1109/CVPR.2014.27.
[12] L. Zheng, L. Shen, L. Tian, S. Wang, J. Wang, and Q. Tian, “Scalable Person Re-identification: A Benchmark,” in 2015 IEEE International Conference on Computer Vision (ICCV), Dec. 2015, pp. 1116–1124. doi: 10.1109/ICCV.2015.133.
[13] E. Ristani, F. Solera, R. Zou, R. Cucchiara, and C. Tomasi, “Performance measures and a data set for multi-target, multi-camera tracking,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 9914 LNCS, pp. 17–35, 2016, doi: 10.1007/978-3-319-48881-3_2.
[14] Z. Zheng, L. Zheng, and Y. Yang, “Unlabeled Samples Generated by GAN Improve the Person Re-identification Baseline in Vitro,” Proc. IEEE Int. Conf. Comput. Vis., vol. 2017-October, pp. 3774–3782, Dec. 2017, doi: 10.1109/ICCV.2017.405.
[15] E. Ustinova, Y. Ganin, and V. Lempitsky, “Multi-Region bilinear convolutional neural networks for person re-identification,” 2017 14th IEEE Int. Conf. Adv. Video Signal Based Surveillance, AVSS 2017, Oct. 2017, doi: 10.1109/AVSS.2017.8078460.
[16] Y. Sun, L. Zheng, Y. Yang, Q. Tian, and S. Wang, “Beyond Part Models: Person Retrieval with Refined Part Pooling (and A Strong Convolutional Baseline),” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 11208 LNCS, pp. 501–518, 2018, doi: 10.1007/978-3-030-01225-0_30.
[17] Z. Zheng, X. Yang, Z. Yu, L. Zheng, Y. Yang, and J. Kautz, “Joint discriminative and generative learning for person re-identification,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. 2019-June, pp. 2133–2142, Jun. 2019, doi: 10.1109/CVPR.2019.00224.
[18] Y. Fu et al., “Self-similarity grouping: A simple unsupervised cross domain adaptation approach for person re-identification,” Proc. IEEE Int. Conf. Comput. Vis., vol. 2019-October, pp. 6111–6120, Oct. 2019, doi: 10.1109/ICCV.2019.00621.
[19] X. Zhang, J. Cao, C. Shen, and M. You, “Self-training with progressive augmentation for unsupervised cross-domain person re-identification,” Proc. IEEE Int. Conf. Comput. Vis., vol. 2019-October, pp. 8221–8230, Oct. 2019, doi: 10.1109/ICCV.2019.00831.
[20] Z. Zhu et al., “Viewpoint-Aware Loss with Angular Regularization for Person Re-Identification,” AAAI 2020 - 34th AAAI Conf. Artif. Intell., pp. 13114–13121, Dec. 2019, doi: 10.48550/arxiv.1912.01300.
[21] T. Zhao and X. Wu, “Pyramid feature attention network for saliency detection,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. 2019-June, pp. 3080–3089, Jun. 2019, doi: 10.1109/CVPR.2019.00320.
[22] H. Zhao, J. Jia, and V. Koltun, “Exploring Self-attention for Image Recognition,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., pp. 10073–10082, 2020, doi: 10.1109/CVPR42600.2020.01009.
[23] R. F. Rachmadi, K. Uchimura, G. Koutaki, and K. Ogata, “Hierarchical Spatial Pyramid Pooling for Fine-Grained Vehicle Classification,” 2018 Int. Work. Big Data Inf. Secur. IWBIS 2018, pp. 19–24, Sep. 2018, doi: 10.1109/IWBIS.2018.8471695.
[24] D. Zhang, H. Zhang, J. Tang, M. Wang, X. Hua, and Q. Sun, “Feature Pyramid Transformer,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 12373 LNCS, pp. 323–339, 2020, doi: 10.1007/978-3-030-58604-1_20.
[25] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. 2016-December, pp. 770–778, Dec. 2016, doi: 10.1109/CVPR.2016.90.
[26] Y. Dong, H. Liu -, R. Fuad Rachmadi, S. Mardi Susiki Nugroho, and I. Ketut Eddy Purnama, “Lightweight Residual Network for Person Re-identification,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1077, no. 1, p. 012046, Feb. 2021, doi: 10.1088/1757-899X/1077/1/012046.
[27] Z. Zhong, L. Zheng, G. Kang, S. Li, and Y. Yang, “Random Erasing Data Augmentation,” AAAI 2020 - 34th AAAI Conf. Artif. Intell., pp. 13001–13008, Aug. 2017, doi: 10.48550/arxiv.1708.04896.
[28] Z. Zhong, L. Zheng, D. Cao, and S. Li, “Re-ranking person re-identification with k-reciprocal encoding,” Proc. - 30th IEEE Conf. Comput. Vis. Pattern Recognition, CVPR 2017, vol. 2017-January, pp. 3652–3661, Nov. 2017, doi: 10.1109/CVPR.2017.389.
[29] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan, “Object detection with discriminatively trained part-based models,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no. 9, pp. 1627–1645, 2010, doi: 10.1109/TPAMI.2009.167.
[30] M. Kümmerer, T. S. A. Wallis, and M. Bethge, “Saliency Benchmarking Made Easy: Separating Models, Maps and Metrics,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 11220 LNCS, pp. 798–814, 2018, doi: 10.1007/978-3-030-01270-0_47.
[31] Z. Bylinskii, T. Judd, A. Oliva, A. Torralba, and F. Durand, “What Do Different Evaluation Metrics Tell Us about Saliency Models?,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 41, no. 3, pp. 740–757, Mar. 2019, doi: 10.1109/TPAMI.2018.2815601.
[32] T. Judd, F. Durand, and A. Torralba, “A Benchmark of Computational Models of Saliency to Predict Human Fixations,” CSAIL Technical Reports, Jan. 2012, Accessed: Feb. 05, 2023. Available at: http://hdl.handle.net/1721.1/68590.
[33] G. Wang, J. Lai, P. Huang, and X. Xie, “Spatial-Temporal Person Re-Identification,” Proc. AAAI Conf. Artif. Intell., vol. 33, no. 01, pp. 8933–8940, Jul. 2019, doi: 10.1609/AAAI.V33I01.33018933.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
___________________________________________________________
International Journal of Advances in Intelligent Informatics
ISSN 2442-6571 (print) | 2548-3161 (online)
Organized by UAD and ASCEE Computer Society
Published by Universitas Ahmad Dahlan
W: http://ijain.org
E: info@ijain.org (paper handling issues)
andri.pranolo.id@ieee.org (publication issues)
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0