Korean popular culture analytics in social media streaming: evidence from YouTube channels in Thailand

(1) * Wirapong Chansanam Mail (Department of Information Science, Khon Kaen University, Thailand)
(2) Kulthida Tuamsuk Mail (Department of Information Science, Khon Kaen University, Thailand)
(3) Kanyarat Kwiecien Mail (Department of Information Science, Khon Kaen University, Thailand)
(4) Sam Oh Mail (Faculty of Library and Information Science, Sungkyunkwan University, Korea, Democratic People's Republic of)
*corresponding author


This research aimed to study and analyze the influence and impact of Korean popular culture (K-pop) on Thai society. In this study, we used Social Network Analysis (SNA) to analyze streaming data obtained from a variety of YouTube channels belonging to YouTubers across the world, text analytics to analyze demographic characteristics, YouTuber's presentation techniques, as well as subscriber behavior, and multiple correlations analysis to analyze the relationship between factors affecting YouTube Channels in Thailand. The findings revealed that five Thai YouTube Channels were influencing Thai society. Furthermore, there were robust positive correlations between the number of dislikes and the number of comments (0.79), and the number of likes and comments (0.65). Additionally, there was a positive correlation between the number of views and the number of dislikes and one between the number of likes and dislikes. Future research can supplement the present findings with other social media sources to yield an even more diverse and comprehensive analysis. These analytics can be applied to various situations, including corporate marketing strategies, political campaigns, or disease/symptom analysis in medicine. This research extends to social computing by revealing intelligent trends in social networks.


Social network analysis; Korean popular culture; YouTube channels; Social media streaming; Text analytics




Article metrics

Abstract views : 1117 | PDF views : 178




Full Text



Z. Xu, Y. Li, and L. Hao, “An empirical examination of UTAUT model and social network analysis,” Libr. Hi Tech, vol. ahead-of-p, no. ahead-of-print, Dec. 2019, doi: 10.1108/LHT-11-2018-0175.

A. S. Aribowo, H. Basiron, N. S. Herman, and S. Khomsah, “An Evaluation of Preprocessing Steps and Tree-based Ensemble Machine Learning for Analysing Sentiment on Indonesian YouTube Comments,” Int. J. Adv. Trends Comput. Sci. Eng., vol. 9, no. 5, pp. 7078–7086, Oct. 2020, doi: 10.30534/ijatcse/2020/29952020.

H. H and M. Rafi, “BlogNewsRank: Finding and Ranking Frequent News Topics Using Social Media Factors,” JOIV Int. J. Informatics Vis., vol. 2, no. 3, p. 166, May 2018, doi: 10.30630/joiv.2.3.134.

J. Savigny and A. Purwarianti, “Emotion classification on youtube comments using word embedding,” in 2017 International Conference on Advanced Informatics, Concepts, Theory, and Applications (ICAICTA), 2017, pp. 1–5, doi: 10.1109/ICAICTA.2017.8090986.

R. Novendri, A. S. Callista, D. N. Pratama, and C. E. Puspita, “Sentiment Analysis of YouTube Movie Trailer Comments Using Naïve Bayes,” Bull. Comput. Sci. Electr. Eng., vol. 1, no. 1, pp. 26–32, Jun. 2020, doi: 10.25008/bcsee.v1i1.5.

A. S. Aribowo, H. Basiron, N. F. A. Yusof, and S. Khomsah, “Cross-domain sentiment analysis model on Indonesian YouTube comment,” Int. J. Adv. Intell. Informatics, vol. 7, no. 1, p. 12, Mar. 2021, doi: 10.26555/ijain.v7i1.554.

F. I. Tanesab, I. Sembiring, and H. D. Purnomo, “Sentiment Analysis Model Based On Youtube Comment Using Support Vector Machine,” Int. J. Comput. Sci. Softw. Eng., vol. 6, no. 8, pp. 180–185, 2017, available at : http://ijcsse.org/published/volume6/issue8/p2-V6I8.pdf.

A. K. Mohamad, “Employ Twitter Data to Perform Sentiment Analysis in the Malay Language,” Int. J. Adv. Trends Comput. Sci. Eng., vol. 9, no. 2, pp. 1404–1412, Apr. 2020, doi: 10.30534/ijatcse/2020/76922020.

I. M. Nadhiroh, R. Hardiyati, M. Amelia, and T. Handayani, “Mathematics and statistics related studies in Indonesia using co-authorship network analysis,” Int. J. Adv. Intell. Informatics, vol. 4, no. 2, p. 142, Jul. 2018, doi: 10.26555/ijain.v4i2.120.

C. Murendo, M. Wollni, A. De Brauw, and N. Mugabi, “Social Network Effects on Mobile Money Adoption in Uganda,” J. Dev. Stud., vol. 54, no. 2, pp. 327–342, Feb. 2018, doi: 10.1080/00220388.2017.1296569.

A. Martı́nez, Y. Dimitriadis, B. Rubia, E. Gómez, and P. de la Fuente, “Combining qualitative evaluation and social network analysis for the study of classroom social interactions,” Comput. Educ., vol. 41, no. 4, pp. 353–368, Dec. 2003, doi: 10.1016/j.compedu.2003.06.001.

K. J. Patel and H. J. Patel, “Adoption of internet banking services in Gujarat,” Int. J. Bank Mark., vol. 36, no. 1, pp. 147–169, Feb. 2018, doi: 10.1108/IJBM-08-2016-0104.

G. Yi, N. M. M. Zainuddin, and N. A. B. A. Bakar, “Conceptual Model on Internet Banking Acceptance in China with Social Network Influence,” JOIV Int. J. Informatics Vis., vol. 5, no. 2, May 2021, doi: 10.30630/joiv.5.2.403.

M. Clark, “Converting purchase commitments into purchase fulfillments: An examination of salesperson characteristics and influence tactics,” Ind. Mark. Manag., vol. 85, pp. 97–109, Feb. 2020, doi: 10.1016/j.indmarman.2019.09.002.

R. Safeena, A. Kammani, and H. Date, “Exploratory Study of Internet Banking Technology Adoption,” 2018, pp. 333–355, doi: 10.4018/978-1-5225-5201-7.ch015.

D. I. Calibo and J. D. Niguidula, “Metadata Extraction Analysis: A Review of Video Data in Effect to Social Media Compression,” JOIV Int. J. Informatics Vis., vol. 3, no. 1, Jan. 2019, doi: 10.30630/joiv.3.1.216.

X. Hu, X. Chen, and R. M. Davison, “Social Support, Source Credibility, Social Influence, and Impulsive Purchase Behavior in Social Commerce,” Int. J. Electron. Commer., vol. 23, no. 3, pp. 297–327, Jul. 2019, doi: 10.1080/10864415.2019.1619905.

J. H. J. Min, H. J. J. Chang, T.-M. C. Jai, and M. Ziegler, “The effects of celebrity-brand congruence and publicity on consumer attitudes and buying behavior,” Fash. Text., vol. 6, no. 1, p. 10, Dec. 2019, doi: 10.1186/s40691-018-0159-8.

S. Kim, J. Kandampully, and A. Bilgihan, “The influence of eWOM communications: An application of online social network framework,” Comput. Human Behav., vol. 80, pp. 243–254, Mar. 2018, doi: 10.1016/j.chb.2017.11.015.

J. Galaskiewicz and S. Wasserman, “Social Network Analysis,” Sociol. Methods Res., vol. 22, no. 1, pp. 3–22, Aug. 1993, doi: 10.1177/0049124193022001001.

S. Wasserman and K. Faust, Social Network Analysis, 1994, doi: 10.1017/CBO9780511815478.

D. Chawla and H. Joshi, “The Moderating Effect of Demographic Variables on Mobile Banking Adoption: An Empirical Investigation,” Glob. Bus. Rev., vol. 19, no. 3_suppl, pp. S90–S113, Jun. 2018, doi: 10.1177/0972150918757883.

S. K. Abbas, H. A. Hassan, J. Asif, H. M. Junaid, and F. Zainab, “What are the key determinants of mobile banking Adoption in Pakistan?,” Int. J. Sci. Eng. Res., vol. 9, no. 2, pp. 841–848, Feb. 2018, doi: 10.14299/ijser.2018.02.012.

M. U. Hassan, A. Iqbal, and Z. Iqbal, “Factors affecting the adoption of internet banking in Pakistan: an integration of technology acceptance model and theory of planned behaviour,” Int. J. Bus. Inf. Syst., vol. 28, no. 3, p. 342, 2018, doi: 10.1504/IJBIS.2018.092530.

L. B. Shyamasundar and P. Jhansi Rani, “A Multiple-Layer Machine Learning Architecture for Improved Accuracy in Sentiment Analysis,” Comput. J., vol. 63, no. 3, pp. 395–409, Mar. 2020, doi: 10.1093/comjnl/bxz038.

F. H. Khan, U. Qamar, and S. Bashir, “Enhanced cross-domain sentiment classification utilizing a multi-source transfer learning approach,” Soft Comput., vol. 23, no. 14, pp. 5431–5442, Jul. 2019, doi: 10.1007/s00500-018-3187-9.

A. A. Alalwan, A. M. Baabdullah, N. P. Rana, K. Tamilmani, and Y. K. Dwivedi, “Examining adoption of mobile internet in Saudi Arabia: Extending TAM with perceived enjoyment, innovativeness and trust,” Technol. Soc., vol. 55, pp. 100–110, Nov. 2018, doi: 10.1016/j.techsoc.2018.06.007.

D. L. Moody, “Theoretical and practical issues in evaluating the quality of conceptual models: current state and future directions,” Data Knowl. Eng., vol. 55, no. 3, pp. 243–276, Dec. 2005, doi: 10.1016/j.datak.2004.12.005.

D. L. Hansen et al., “Do You Know the Way to SNA?: A Process Model for Analyzing and Visualizing Social Media Network Data,” in 2012 International Conference on Social Informatics, 2012, pp. 304–313, doi: 10.1109/SocialInformatics.2012.26.

L. C. Freeman, “Centrality in social networks conceptual clarification,” Soc. Networks, vol. 1, no. 3, pp. 215–239, Jan. 1978, doi: 10.1016/0378-8733(78)90021-7.

U. Brandes, “A faster algorithm for betweenness centrality*,” J. Math. Sociol., vol. 25, no. 2, pp. 163–177, Jun. 2001, doi: h10.1080/0022250X.2001.9990249.

A. Clauset, M. E. J. Newman, and C. Moore, “Finding community structure in very large networks,” Phys. Rev. E, vol. 70, no. 6, p. 066111, Dec. 2004, doi: 10.1103/PhysRevE.70.066111.

C. Udanor, S. Aneke, and B. O. Ogbuokiri, “Determining social media impact on the politics of developing countries using social network analytics,” Program, vol. 50, no. 4, pp. 481–507, Sep. 2016, doi: 10.1108/PROG-02-2016-0011.

T. Venturini, “Diving in magma: how to explore controversies with actor-network theory,” Public Underst. Sci., vol. 19, no. 3, pp. 258–273, May 2010, doi: 10.1177/0963662509102694.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Advances in Intelligent Informatics
ISSN 2442-6571  (print) | 2548-3161 (online)
Organized by UAD and ASCEE Computer Society
Published by Universitas Ahmad Dahlan
W: http://ijain.org
E: info@ijain.org (paper handling issues)
   andri.pranolo.id@ieee.org (publication issues)

View IJAIN Stats

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0