Ensemble deep models for covid-19 pandemic classification using chest x-ray images via different fusion techniques

(1) * Lamiaa Menshawy Mail (Technology and Information systems department, Port Said University, Egypt)
(2) Ahmad H Eid Mail (Electrical Engineering department, Port Said University, Egypt)
(3) Rehab F Abdel-Kader Mail (Electrical Engineering department, Port Said University, Egypt)
*corresponding author


A pandemic epidemic called the coronavirus (COVID-19) has already afflicted people all across the world. Radiologists can visually detect coronavirus infection using a chest X-ray. This study examines two methods for categorizing COVID-19 patients based on chest x-rays: pure deep learning and traditional machine learning. In the first model, three deep learning classifiers' decisions are combined using two distinct decision fusion strategies (majority voting and Bayes optimal). To enhance classification performance, the second model merges the ideas of decision and feature fusion. Using the fusion procedure, feature vectors from deep learning models generate a feature set. The classification metrics of conventional machine learning classifiers were then optimized using a voting classifier. The first proposed model performs better than the second model when it concerns diagnosing binary and multiclass classification. The first model obtains an AUC of 0.998 for multi-class classification and 0.9755 for binary classification. The second model obtains a binary classification AUC of 0.9563 and a multiclass classification AUC of 0.968. The suggested models perform better than both the standard learners and state-of-the-art and state-of-the-art methods.


Coronavirus (COVID-19); Deep Learning; Machine Learning; Decision Fusion; Feature Fusion




Article metrics

Abstract views : 362 | PDF views : 149




Full Text



[1] T. Ozturk, M. Talo, E. A. Yildirim, U. B. Baloglu, O. Yildirim, and U. Rajendra Acharya, “Automated detection of COVID-19 cases using deep neural networks with X-ray images,” Comput. Biol. Med., vol. 121, p. 103792, Jun. 2020, doi: 10.1016/J.COMPBIOMED.2020.103792.

[2] M. E. H. Chowdhury et al., “Can AI Help in Screening Viral and COVID-19 Pneumonia?,” IEEE Access, vol. 8, pp. 132665–132676, 2020, doi: 10.1109/ACCESS.2020.3010287.

[3] S. Lalmuanawma, J. Hussain, and L. Chhakchhuak, “Applications of machine learning and artificial intelligence for Covid-19 (SARS-CoV-2) pandemic: A review,” Chaos, Solitons & Fractals, vol. 139, p. 110059, Oct. 2020, doi: 10.1016/J.CHAOS.2020.110059.

[4] A. Alimadadi, S. Aryal, I. Manandhar, P. B. Munroe, B. Joe, and X. Cheng, “Artificial intelligence and machine learning to fight covid-19,” Physiol. Genomics, vol. 52, no. 4, pp. 200–202, Apr. 2020, doi: 10.1152/PHYSIOLGENOMICS.00029.2020/ASSET/IMAGES/LARGE/ZH70042044120001.

[5] Q. Sen Sun, S. G. Zeng, Y. Liu, P. A. Heng, and D. S. Xia, “A new method of feature fusion and its application in image recognition,” Pattern Recognit., vol. 38, no. 12, pp. 2437–2448, Dec. 2005, doi: 10.1016/J.PATCOG.2004.12.013.

[6] M. A. Ganaie, M. Hu, A. K. Malik, M. Tanveer, and P. N. Suganthan, “Ensemble deep learning: A review,” Eng. Appl. Artif. Intell., vol. 115, p. 105151, Oct. 2022, doi: 10.1016/J.ENGAPPAI.2022.105151.

[7] U. G. Mangai, S. Samanta, S. Das, and P. R. Chowdhury, “A survey of decision fusion and feature fusion strategies for pattern classification,” IETE Tech. Rev. (Institution Electron. Telecommun. Eng. India), vol. 27, no. 4, pp. 293–307, Jul. 2010, doi: 10.4103/0256-4602.64604.

[8] T. Meng, X. Jing, Z. Yan, and W. Pedrycz, “A survey on machine learning for data fusion,” Inf. Fusion, vol. 57, pp. 115–129, May 2020, doi: 10.1016/J.INFFUS.2019.12.001.

[9] Y. Liu, X. Chen, Z. Wang, Z. J. Wang, R. K. Ward, and X. Wang, “Deep learning for pixel-level image fusion: Recent advances and future prospects,” Inf. Fusion, vol. 42, pp. 158–173, Jul. 2018, doi: 10.1016/J.INFFUS.2017.10.007.

[10] A. A. Ardakani, A. R. Kanafi, U. R. Acharya, N. Khadem, and A. Mohammadi, “Application of deep learning technique to manage COVID-19 in routine clinical practice using CT images: Results of 10 convolutional neural networks,” Comput. Biol. Med., vol. 121, p. 103795, Jun. 2020, doi: 10.1016/J.COMPBIOMED.2020.103795.

[11] U. Özkaya, Ş. Öztürk, and M. Barstugan, “Coronavirus (COVID-19) Classification Using Deep Features Fusion and Ranking Technique,” Stud. Big Data, vol. 78, pp. 281–295, 2020, doi: 10.1007/978-3-030-55258-9_17.

[12] Z. Huang et al., “Multi-center sparse learning and decision fusion for automatic COVID-19 diagnosis,” Appl. Soft Comput., vol. 115, p. 108088, Jan. 2022, doi: 10.1016/J.ASOC.2021.108088.

[13] K. H. Abdulkareem et al., “Automated System for Identifying COVID-19 Infections in Computed Tomography Images Using Deep Learning Models,” J. Healthc. Eng., vol. 2022, 2022, doi: 10.1155/2022/5329014.

[14] P. gifani, A. Shalbaf, and M. Vafaeezadeh, “Automated detection of COVID-19 using ensemble of transfer learning with deep convolutional neural network based on CT scans,” Int. J. Comput. Assist. Radiol. Surg., vol. 16, no. 1, pp. 115–123, Jan. 2021, doi: 10.1007/S11548-020-02286-W.

[15] A. Narin, C. Kaya, and Z. Pamuk, “Automatic Detection of Coronavirus Disease (COVID-19) Using X-ray Images and Deep Convolutional Neural Networks,” Pattern Anal. Appl. 2021 243, vol. 24, no. 3, pp. 1207–1220, Mar. 2020, doi: 10.1007/s10044-021-00984-y.

[16] S. Minaee, R. Kafieh, M. Sonka, S. Yazdani, and G. Jamalipour Soufi, “Deep-COVID: Predicting COVID-19 from chest X-ray images using deep transfer learning,” Med. Image Anal., vol. 65, p. 101794, Oct. 2020, doi: 10.1016/J.MEDIA.2020.101794.

[17] A. Waheed, M. Goyal, D. Gupta, A. Khanna, F. Al-Turjman, and P. R. Pinheiro, “CovidGAN: Data Augmentation Using Auxiliary Classifier GAN for Improved Covid-19 Detection,” IEEE Access, vol. 8, pp. 91916–91923, 2020, doi: 10.1109/ACCESS.2020.2994762.

[18] A. Badawi and K. Elgazzar, “Detecting Coronavirus from Chest X-rays Using Transfer Learning,” COVID 2021, Vol. 1, Pages 403-415, vol. 1, no. 1, pp. 403–415, Sep. 2021, doi: 10.3390/COVID1010034.

[19] R. K. Gupta, N. Kunhare, R. K. Pateriya, and N. Pathik, “A Deep Neural Network for Detecting Coronavirus Disease Using Chest X-Ray Images,” https://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJHISI.20220401.oa1, vol. 17, no. 2, pp. 1–27, Jan. 1AD, doi: 10.4018/IJHISI.20220401.OA1.

[20] G. H. G. S. A. D. Dhanapala and S. Sotheeswaran, “Transfer Learning Techniques with SVM For Covid-19 Disease Prediction Based On Chest X-Ray Images,” ICARC 2022 - 2nd Int. Conf. Adv. Res. Comput. Towar. a Digit. Empower. Soc., pp. 72–77, 2022, doi: 10.1109/ICARC54489.2022.9754029.

[21] G. M. M. Alshmrani, Q. Ni, R. Jiang, H. Pervaiz, and N. M. Elshennawy, “A deep learning architecture for multi-class lung diseases classification using chest X-ray (CXR) images,” Alexandria Eng. J., vol. 64, pp. 923–935, Feb. 2023, doi: 10.1016/J.AEJ.2022.10.053.

[22] M. F. Aslan, “A robust semantic lung segmentation study for CNN-based COVID-19 diagnosis,” Chemom. Intell. Lab. Syst., vol. 231, p. 104695, Dec. 2022, doi: 10.1016/J.CHEMOLAB.2022.104695.

[23] E. F. Ohata et al., “Automatic detection of COVID-19 infection using chest X-ray images through transfer learning,” IEEE/CAA J. Autom. Sin., vol. 8, no. 1, pp. 239–248, Jan. 2021, doi: 10.1109/JAS.2020.1003393.

[24] K. A. Mohamed, E. Elsamahy, and A. Salem, “COVID-19 Disease Detection based on X-Ray Image Classification using CNN with GEV Activation Function,” Int. J. Adv. Comput. Sci. Appl., vol. 13, no. 9, pp. 890–898, Dec. 2022, doi: 10.14569/IJACSA.2022.01309103.

[25] M. B. Er, “COVID-19 detection based on pre-trained deep networks and LSTM model using X-ray images enhanced contrast with artificial bee colony algorithm,” Expert Syst., p. e13185, 2022, doi: 10.1111/EXSY.13185.

[26] M. ; Ksibi et al., “COVID-AleXception: A Deep Learning Model Based on a Deep Feature Concatenation Approach for the Detection of COVID-19 from Chest X-ray Images,” Healthc. 2022, Vol. 10, Page 2072, vol. 10, no. 10, p. 2072, Oct. 2022, doi: 10.3390/HEALTHCARE10102072.

[27] K. Agrawal, R. Kumar, and S. Jain, “An Efficient Ensemble Model for Diagnosing Covid-19 and Pneumonia Using Chest X-Ray Images,” Indian J. Sci. Technol., vol. 15, no. 38, pp. 1900–1906, Oct. 2022, doi: 10.17485/IJST/V15I38.1269.

[28] T. N. Do, V. T. Le, and T. H. Doan, “SVM on Top of Deep Networks for Covid-19 Detection from Chest X-ray Images,” J. Inf. Commun. Converg. Eng., vol. 20, no. 3, pp. 219–225, Sep. 2022, doi: 10.56977/JICCE.2022.20.3.219.

[29] Y. Chandola, J. Virmani, H. S. Bhadauria, and P. Kumar, “End-to-end pre-trained CNN-based computer-aided classification system design for chest radiographs,” Deep Learn. Chest Radiogr., pp. 117–140, Jan. 2021, doi: 10.1016/B978-0-323-90184-0.00011-4.

[30] S. A. Singh and S. Majumder, “Short and noisy electrocardiogram classification based on deep learning,” Deep Learn. Data Anal., pp. 1–19, Jan. 2020, doi: 10.1016/B978-0-12-819764-6.00002-8.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Advances in Intelligent Informatics
ISSN 2442-6571  (print) | 2548-3161 (online)
Organized by UAD and ASCEE Computer Society
Published by Universitas Ahmad Dahlan
W: http://ijain.org
E: info@ijain.org (paper handling issues)
   andri.pranolo.id@ieee.org (publication issues)

View IJAIN Stats

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0