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1. Introduction 
Railway transportation, which contributes significantly to economic and industrial development, is 

widely used by countries. Although it is considered the most reliable transportation system, inadequate 

infrastructure maintenance causes railway defects. The railway consists of many parts including fasteners, 

ballast, sleepers, and rails, failure to fix the faults in a timely manner can cause accidents that can lead to 

great loss of life and property. There are various types of defects such as rail surface defects [1], fastener 

defects [2], switch crossing and level crossing point defects [3]. These faults should be detected and 

repaired before they reach a level that could cause accidents. Railway tracks are the components of the 

railway where abrasions and breaks occur due to friction and environmental factors on which the train 

wheel moves. The fasteners, which are the components of the railway line, are used to connect the rails 

to each other and also to connect the rails and their sleepers to each other. If they are broken or missing, 

malfunctions occur that threaten rail safety.  
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 The railways, which are frequently used by countries for both passenger and 

freight transportation, should be checked periodically. Controls made with 

classical methods are slow and there are often overlooked faults.  This work 

suggests a novel deep learning-based technique for identifying fastener and 

railway track surface defects. Within the scope of the proposed method, 

firstly, the railroad track was observed using an autonomous drone. Shaky 

images in the recorded video were removed with a video stabilization 

algorithm. Frames were created and labeled from the video, and rail and 

fastener regions were detected using the Faster R-CNN deep neural 

network. Fault detection was performed through ResNet101v2-based 

classification using different datasets for identifying surface detects in rails 

and different datasets for the detection of fasteners. The proposed method 

was experimentally shown to have a 98% accuracy rate for detecting rail 

surface flaws and a 95% accuracy rate for detecting fastener flaws. A user 

interface was developed to display the identified faulty images on 

computers, tablets, and mobile phones via a mobile application. The 

system, which was previously proposed in a different study, was retrained 

by going through the video stabilization step, thus improving the fault 

detection rate, and the method was also included in the user interface 

module.  This study contributes to the processing of ever-increasing video 

data with deep learning-based methods. It is also anticipated that it will 

benefit researchers working in the field of railway non-contact fault 

detection.  
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Most of the non-contact methods proposed for the detection of faults use rail visual data. Non-

contact fault detection is performed using image processing or deep learning algorithms on images 

obtained with various techniques and various cameras [4]–[6]. Some of the methods proposed in the 

literature for contactless railway fault detection using image data are given below. 

A YOLOv5 deep neural network-based approach was presented by Luo et al. [7] to identify rail 

surface flaws. Before model training, they enriched the data sets with data augmentation techniques such 

as random cropping and rotation. They reduced regression errors and accelerated algorithmic 

convergence by using Soft-SIoUNMS loss. As a result, they showed that their proposed YOLOv5-based 

model detected rail surface defects with 96.9% average precision. Using UAV photos, Singh et al. [8]  

trained the YOLOv4 algorithm to recognize rail sleepers. They demonstrated that the 99.08% average 

precision (mAP) of their suggested method for detecting railroad sleepers.  

Cheng et al. [4] aimed to improve model training success by improving the quality of images used 

for detecting railway defects. They proposed HybridGAN by combining DeblurGANv2 and ESRGAN 

to improve image quality. They trained the YOLOv4 network with and without HybridGAN applied 

forms of the dataset. They experimentally demonstrated that there is an improvement in mAP values in 

the dataset with HybridGAN.  Qiu et al. [9] proposed YOLOv8-FAM based synthetic data generation 

and Automated detection system to detect railway faulty fasteners. Thus, they showed that the cost of 

collecting faulty fastener data was reduced by 40% and that they were able to detect faults better than 

other methods. Liu et al. [10] proposed a DCNN-based method to detect railway faulty fasteners. They 

used SSD and RCNN models in the two-stage method. They determined the fastener regions on the 

images. They were able to detect faults with an average precision of 95.38% in the specified areas. In 

addition, new approaches have been proposed for the detection of fastener-related defects in CNN and 

ResNet50 [11], U-net, ResNer50, Fully Convolutional Network (FCN) [12], YOLOv5 [13] studies. 

Railroad rails are the component on which the train moves. It is exposed to heat, light and friction. 

For this reason, it is a component where defects often occur. Chen et al. [14] used both camera images 

and ultrasound B-scan images to identify rails in their proposed work. In the method, they first designed 

a segmentation algorithm including filtering and rail surfacing using edge detection. Then, they used 

BoTNet 50 network to extract features from the five-class data set. As a result, they were able to identify 

rail defects with 96.97% accuracy with their proposed Camera and Ultrasound Data Fusion (CUFuse) 

model. 

Li et al. [15] introduced a new approach for fast and efficient detection of rail fasteners based on the 

YOLOv5. They also used the K-Means++ clustering algorithm to enhance the positioning competence 

of the method. Test results showed that their proposed method gave accurate results with an average 

sensitivity (mAP) rate of 97.4%. In smart fault detection systems, which are developed as an alternative 

to traditional railway inspection systems, fault detection can be made by using different types of data 

other than image data. Shafique et al. [16] used acoustic signals for error detection in their proposed 

study. They collected data using acoustic signals from the Pakistani railway line. They divided these data 

into 3 categories and classified them with various classification techniques such as CNN, SVM, random 

forest, logistic regression and decision tree. They showed that the best results were acquired by random 

forest (RF), decision tree (DT) with 97% accuracy. Aydin et al. [17] suggested a hybrid method based 

on YOLOv4-Tiny and CNN. In their proposed method, they located the railway fasteners with 

YOLOv4-Tiny. Then, they classified the fasteners with CNN. They experimentally demonstrated that 

their recommended method can detect fastener defects with 98.57% accuracy. Zheng et al. [18] 

introduced a multi-object identification approach based on DCNN to detect detection fastener and rail 

surface problems. Researchers using YOLOv5 to localize fasteners and rails employed Mask R-CNN to 

find rail surface flaws and a ResNet based method to detect rail fastener faults. They classified fasteners 

using three classes as normal, loose and broken. 

In a proposed method based on machine vision, Zhou [19] used rail images obtained with a CCD 

camera to detect surface defects in rail. In order to reduce the effect of ambient brightness on the images, 

they converted the images from RGB format to HSI format. Undesirable noise on the image is removed 
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by Gaussian filtering. Wu et al. [20] proposed RGBNet architecture, which can define thin edge features 

in order to find wear on the rail surface. They have shown that the model they recommend can accurately 

detect over 90% precision and recall values. Zheng et al. [21] Aiming to detect errors that occur on the 

sleepers using the YOLOv3 algorithm and K-Means clustering algorithms, the researchers trained the 

YOLOv3 deep neural network in 15000 iterations with 64 batch-size and 0.001 learning rate. They 

showed that they could detect faults with an average precision (mAP) of 86.29% and an accuracy of 

91.72%. Hu et al. [22] proposed a new method named YoLoX-Nano railway defect detection. They 

added CSPDarknet's Path Fusion Feature Pyramid Network and three output feature maps to the 

method for the feature extraction stage. They determined the mAP value of the proposed system as 

98.07%.  Su et al. [23] first used the K-means algorithm to determine the dimensions of the fasteners 

in their recommended method to determine the fastener defects. Then, they showed in their studies 

that they could detect errors with a 96.1% accuracy rate by training the YOLOv5. 

There are many studies, apart from the methods mentioned above, on the determination of the 

defects that occur in the railway, which consists of a combination of many components as a result of 

processing the image data. Objects (obstacles) on the railway were detected with 85.2% accuracy with 

the 2D Singular Spectrum Analysis (SSA) parsing tool and Faster R-CNN-based method [24]. A 

fastener detection system based on an SVM classifier has been developed [25]. A U-Net-based railway 

sleeper defect detection system with an f1-score of 86.5% has been proposed [26]. ResNet50-based rail 

surface defect detection was performed from railway images obtained with 3D Laser Cameras [27]. A 

fastener detection method with a precision of 97% was proposed with a two-stage Mask R-CNN called 

FishTwoMask R-CNN [28]. They proposed a YOLOv4-based railway rail surface error detection 

method [29]. 

In this study, rail fastener defects and rail surface defects were determined. The data used in the study 

was created with an autonomous drone. Thus, a data set was created in a short time with less human 

effort. By viewing the railway as a bird's eye view, more reliable data were obtained for fault detection. 

The quality of the images has been increased with video stabilization. In addition, an interface has been 

developed that will enable the detected faults to be sent to the railway fault control unit with a mobile 

application. In the other parts of the study, the details of the proposed method, method outputs, and 

performance evaluation are given. In addition, a general evaluation of the method was made by comparing 

the other methods in the literature with the proposed approach in this study. Advantageous aspects of 

the proposed method are given; Using autonomous drones for data acquisition, Improvement of data 

with video stabilization, Fault detection with the combination of object detection, Classification and 

segmentation algorithms in deep learning, Developing a user interface to work on the mobile application 

in order to facilitate the visibility of detected faults. 

2. Method 
Security, monitoring, and fault detection are now carried out using Video Surveillance Systems (VSS). 

Monitoring video data by expert personnel to detect abnormal situations is a method that requires a 

long time and has a high error rate. For this reason, artificial intelligence-based video and image 

processing methods such as deep learning have recently been recommended to extract meaningful 

information from video and image data and detect abnormal/faulty situations. In the study, a deep 

learning-based method is proposed to detect defects occurring on the railway line. In the proposed 

method, firstly, the video obtained from the railway line monitored by the autonomous drone was 

transferred to the computer, stabilized in order to eliminate the vibrational, and then frames were 

created. A faster R-CNN object detection algorithm was trained in order to determine the rail and 

fastener parts on the images. A 3-class data set was created in order to detect defects from the determined 

fastener parts. For the determination of rail surface defects, 3 classes of the data set used in Ref [30] 

were used. In addition, the method proposed in Ref [31] was included in the user interface module, 

which is the last stage of the retrained model, by going through the video stabilization stage within the 

scope of this study. Python OpenCV library is used for video stabilization. Stabilized video was obtained 

by calculating the optical flow in the video given as input for stabilization. As seen in the block diagram 
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in Fig. 1, the data sets consisting of 3 classes for the rail surface defect and 3 classes for the fastener were 

classified using the ResNet101V2 deep transfer model and fault detection was made. The steps followed 

in the recommended method are presented in the form of an artificial intelligence-based video processing 

library to be used in future studies. Algorithm 1 (Fig. 2) was applied to obtain the artificial intelligence-

based Python library. 

 

Fig. 1. Block schematic diagram of the method 

First of all, a video data set was created by viewing the railway line from a bird's eye view with an 

autonomous drone. A video stabilization algorithm was applied to eliminate drone-induced shakes in 

the video containing the railway line. Frames were produced from the video with vibrations. Then, the 

frames allocated for training and testing were labeled, and the Faster R-CNN deep neural network was 

trained. Thus, the rail and fastener regions were determined.  

Algorithm 1: Artificial intelligence-based Python video processing library 

1    import cv2 

2    import tensorflow as tf 

3    model=tf.keras.models.load_newmodel(‘newmodel.h5’) 

4    def stabilize_video(video): 

5        stabilize_video=video 

6        return stabilize_video 

7    def extract_frame(stabilize_video) 

8        frame=cv2.video_capture(stabilize_video) 

9        fps=frame.get(cv2.CAP_PROP_FPS) 

10      frame_term=int(1/fps) 

11        while True: 

12             ret, video=frame.read() 

13             if not ret: 

14                  break 

15        frame.release() 

16        cv2.destroyAllWindows() 

17    def  video_processing(frame) 

18        fault_detection=model.predict(frame) 

19        return fault_detection 

Fig. 2.  Algorithm 1: Artificial intelligence-based Python video processing library 

A 3-class data set named Deformed, Healthy, and Missing was created from the determined fastener 

regions. Since there were not enough deformed images in the rail regions determined for rail surface 

defects, the 3-class data set named Healthy, Joint, Squat given in [30] was used. Rail and fastener data 

sets were trained with ResNet101V2 deep neural network, the classification process was carried out, and 
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fault detection was carried out. In a different previously proposed study, the method developed for 

multiple fault detection by segmentation using the Mask R-CNN architecture [31] was retrained 

through the video stabilization phase and incorporated into the user interface module. In order to 

perform artificial intelligence-based video processing and error detection, the proposed method was 

converted into a Python library to be used in future studies. In order to ensure ease of use, a user interface 

has been developed that can send faulty parts of the railway to computers, tablets, and phones via a 

mobile application. 

Within the scope of the article, Faster R-CNN, ResNet101v2, and Mask R-CNN, which are all deep 

learning-based, were used. Faster R-CNN was used to determine the rails and fasteners on the railway 

line. ResNet101v2 was used for the classification of rails and fasteners. Mask R-CNN was used to identify 

multiple railway components by segmentation. 

A faster R-CNN object detection algorithm provides higher detection accuracy and faster test results 

compared to other R-CNN groups. As seen in the diagram in Fig. 3, a separate bounding box is drawn 

for each class determined in the model consisting of RoI and fully connected layers [32]. 

 

Fig. 3. Faster R-CNN architecture  [32] 

Mask R-CNN is a design that consists of two stages: object recognition and object identification 

using masking, with the goal of detecting objects via sample segmentation. Lcls classification loss, Lbox 

bounding box loss, and Lmask mask loss are examples. The total loss function is the sum of the three 

loss functions. Thus, the total loss function is expressed as L= Lcls + Lbox + Lmask [33].  

ResNet101v2 is a deep transfer learning algorithm that allows classification with low complexity 

despite its high depth. It is also easy to optimize the model, which increases the accuracy of the methods 

with the large number of layers. For this reason, it is the deep transfer learning model that is frequently 

used for image classification [34]. 

Object detection is used to identify semantic structures from digital images. In this study, an object 

detection algorithm was used to determine the regions with rails and fasteners from a railway line 

followed by an autonomous drone. Although there are many developed object detection algorithms, 

Faster R-CNN has been preferred due to its scalability, multi-object detection, object detection using a 

regional recommendation network, and high-speed and high-sensitivity object detection. The 

classification method was used for rail and fastener faults in different forms, each of which consists of 

three classes. ResNet101v2 was used for classification because of its high generalization and classification 

performance. 

In order to quantify the performance of the transfer learning model after multi-class classification, 

the accuracy, recall, precision, and f1-score values given in Formula (1), (2), (3), and (4) were calculated. 

Calculation results are given in the Results and Discussion section. Explanations of the metrics given in 

the equations are given in Table 1. 

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = ∑ 𝑇𝑇𝑇𝑇(𝐶𝐶𝑖𝑖)
𝑁𝑁
𝑖𝑖=1

∑ ∑ 𝐶𝐶𝑖𝑖,𝑗𝑗𝑁𝑁
𝑗𝑗=1

𝑁𝑁
𝑖𝑖=1

   (1) 
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𝑎𝑎𝑟𝑟𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟(𝐶𝐶𝑖𝑖) = 𝑇𝑇𝑇𝑇(𝐶𝐶𝑖𝑖)
𝑇𝑇𝑇𝑇(𝐶𝐶𝑖𝑖)+𝐹𝐹𝐹𝐹(𝐶𝐶𝑖𝑖)

   (2) 

𝑝𝑝𝑎𝑎𝑟𝑟𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝐶𝐶𝑖𝑖) = 𝑇𝑇𝑇𝑇(𝐶𝐶𝑖𝑖)
𝑇𝑇𝑇𝑇(𝐶𝐶𝑖𝑖)+𝐹𝐹𝑇𝑇(𝐶𝐶𝑖𝑖)

   (3) 

𝑓𝑓1 − 𝑝𝑝𝑎𝑎𝑝𝑝𝑎𝑎𝑟𝑟(𝐶𝐶𝑖𝑖) = 2 ∗ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝(𝐶𝐶𝑖𝑖)∗𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟(𝐶𝐶𝑖𝑖)
𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝(𝐶𝐶𝑖𝑖)+𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟(𝐶𝐶𝑖𝑖)

   (4) 

Accuracy is determined by dividing the total number of correct predictions (true positives, TP) by 

the total number of predictions made, providing a measure of the model's overall correctness. Recall, 

also known as the true positive rate, quantifies the model's ability to correctly identify positive examples 

for a specific class 𝐶𝐶𝑖𝑖 by comparing the number of true positives to the total of true positives and false 

negatives (FN). Precision measures the ratio of true positive predictions to all positive predictions (true 

positives and false positives, FP), demonstrating the model's dependability in predicting positive cases. 

The F1-score is a metric that combines precision and recall by computing their harmonic mean. It 

provides a balanced estimate of a model's performance for a certain class 𝐶𝐶𝑖𝑖. 

Table 1.  Meaning of Equation Abbreviations 

Abbreviation Full Name Meaning 

TP True Positive Saying right to right 

TN True Negative Saying wrong to wrong 

FP False Positive Saying wrong to right 

FN False Negative Saying right to wrong 

2.1. Dataset 
500 frames were obtained from the video obtained with the drone. 400 of these images were used to 

train the Faster R-CNN, and 100 were used to test it. The 603 fastener data determined by Faster R-

CNN is divided into 3 groups: Deformed, healthy, and Missing. Since there were insufficient error types 

in the images obtained for rail surface defects, a data set consisting of a total of 1176 images with 3 

classes named Healthy, Joint, and Squats, created in Reference [30], was used. 

3. Results and Discussion 
Railroad images recorded by drone tracking were transferred to the computer and tagged for detection 

of rail and fastener regions using the Labelme data labeling tool. The Faster R-CNN deep neural network 

was trained with the training data by separating the labeled data for training and testing. The training 

parameters and the number of images used in the data set are given in Table 2. 

Table 2.  Faster R-CNN Training Details 

Name Value 
Learning Rate 0.001 

Training dataset 400 

test dataset 100 

Image size 900x900 

Number of iterations 1000 

Number of classes 2 

 

Examples of the training total loss function graph, training accuracy graph, and model test output 

image are given in Fig. 4. Accordingly; the training was completed in 1000 iterations with a loss function 

of 0.367 and a training accuracy of 0.976. The model trained using the test dataset was tested, and it was 

seen that fasteners and rail sections could be detected successfully. 
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(a) Faster R-CNN Total Loss (b)  Faster R-CNN Accuracy 

     

(c) Model results image-1               (d) Model results image-2              (e) Model results image-3 

Fig. 4. Object detection (rail and fastener) output images 

After determining the rail and fastener using the Faster R-CNN object detection algorithm, the 

ResNet101v2 deep transfer network was trained separately for both component types using the data sets 

for the fasteners and rails, examples of which are given in Fig. 5. 
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(d) Healthy (e) Joint (f) Squats 

Fig. 5. Example images of connector and rail dataset 
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603 visual railway data of 227x227 size was used for fastener classification. For the rail surface 

classification, 1176 visual data of 224x224 dimensions were used. For both components, 15 iterations of 

the ResNet101v2 deep transfer network were trained. The effectiveness of the separate training for rail 

and fastener was measured by plotting the multi-class Confusion matrix and calculating the success 

criteria given in Equations (1), (2), (3), and (4), which are used for multi-class classification. Accordingly, 

Confusion Matrixes drawn for the fastener in Fig. 6 (a) for the rail surface defect in Fig. 6 (b) are given. 

  

(a) Fastener confusion matrix (b) Rail surface confusion matrix 

Fig. 6. Confusion matrix (Fastener and Rail) 

ResNet101v2 deep neural network was trained using rail and fastener datasets, and then Equation (1) 

was calculated, and overall accuracy rates were determined. Accordingly, the accuracy rates were measured 

as 95% and 98% for rail and fastener, respectively. 

The fastener dataset, consisting of the Deformed, Healthy, and Missing classes, was tested with the 

images allocated for testing. Model evaluation metrics were calculated. For the Deformed class, 95% 

Precision, 90% Recall, and 92% F1-score values were obtained. For the Healthy class, 91% Precision, 

98% Recall, and 94% F1-score values were obtained. 100% Precision, 97% Recall, and 98% F1-score 

values were obtained for the Missing class. The recorded values are given in Fig. 7. 

 

Fig. 7. Fastener evaluation metrics graph 

The rail surface dataset, consisting of the Healthy, Joint, and Squats classes, was tested with the 

images reserved for testing. Model evaluation formulas were calculated. For the Healthy class, 99% 

Precision, 95% Recall, and 97% F1-score values were obtained. 98% Precision, 99% Recall, and 99% 

80%

85%

90%

95%

100%

Precision Recall F1-score

F A S T E N E R  D E F E C T

Deformed Healtly Missing



ISSN 2442-6571 International Journal of Advances in Intelligent Informatics 261 

 Vol. 10, No. 2, May 2024, pp. 253-264 

 

 Yilmazer and Karakose (Fastener and rail surface defects detection with deep learning techniques) 

F1-score values were obtained for the Joint class. For the Squats class, 97% Precision, 100% Recall, and 

99% F1-score were achieved. The recorded values are given in Fig. 7. 

 

Fig. 8. Rail surface evaluation metrics graph 

In order to detect multiple faults with Mask R-CNN, the data in the proposed study was retrained 

by passing the video stabilization block. As a result of the training, it was observed that the model 

accuracy increased from 95% to 97.4%. Segmentation results were transferred to the user interface. The 

input image and model output image can be displayed on the interface. The comparison between the 

proposed method and similar research in the literature is given in Table 3. 

Table 3.  Comparison of Literature and Proposed Method 

References Fault type Used method Accuracy 
[11] Fastener defects CNN and ResNet50 70.0 % 

[35] Rail defects Deep convolutional neural 

network (DCNN) 

93.35 % 

[36] Fastener YOLOv4-Hybrid model 94.4 % 

[37] Rail surface YOLOX 96.1 % 

[1] Rail defects FCN-8 deep learning 

network 

81.0 % 

Proposed Method Rail surface defect – 

Fastener defect 

Faster R-CNN and Transfer 

Learning (ResNet101v2) 

rail surface: 98.0 % 

fastener : 95.0 % 

 

Railway transportation systems are frequently used by countries. Fault detection is of great 

importance to ensure safe and continuous transportation.   In time, non-contact flaw detection methods 

have replaced the difficult manual maintenance on kilometers-long railways. Various flaw detection 

studies have been recommending in the literature for fault detection in railways consisting of many 

components. In this study, visual railway data is obtained by autonomous drone, saving time and human 

labor. The data was improved with video stabilization. For fault detection, object detection, classification, 

and segmentation methods were used in deep learning. In addition, a user interface was developed where 

the detected faults can be sent to the railway inspection unit via a mobile application. Better detection 

results were obtained compared to other proposed studies, with 98.0% accuracy in determining rail 

surface defects and 95.0% accuracy in determining fastener defects. Within the scope of the study, the 

proposed method contributed to the field of video processing and fault detection in industrial areas. In 

addition, an artificial intelligence-based video processing Python library was created to facilitate the use 

of the method in future studies. Thus, in future studies, video processing applications will be developed 

in various fields (Industrial, security, etc.). 

80%

85%

90%

95%

100%

Precision Recall F1-score

R A I L  D E F E C T

Healthy Joint Squats
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4. Conclusion 
Fault detection studies should be carried out periodically for safe and continuous transportation in 

railway transportation systems, which are frequently used in urban and intercity transportation today. As 

an alternative to the proposed non-contact technique for flaw detection, in the study, a new approach, 

including object detection and classification and defect detection stages, is proposed. In addition, the 

fault detection method with segmentation has been improved and included in the model. Rail and 

fastener sections were determined by training the railway picture acquired with the autonomous drone 

with the Faster R-CNN. A three-class data set was created for fasteners, and a three-class open-access 

dataset was used for rail surface defects. Fault detection in both railway components was made using the 

ResNet101v2 deep neural network, which allows classification in deep transfer learning. The user 

interface where input and model output images can be observed has been developed. Fasteners were 

classified as Deformed, Healthy, and Missing with 95% accuracy. Rail surface defects were classified as 

Healthy, Joint, and Squats with 98% accuracy. Improved detection accuracies were obtained compared 

to the methods proposed in the relevant field. Within the scope of the article, video segmentation, object 

detection, and classification techniques were used. A Python library was created as an artificial 

intelligence accelerator in order to contribute to the application of deep learning in industrial areas and 

to enable its use in such studies. In future studies, the artificial intelligence-based video processing library 

proposed within the scope of the study will be used for video processing in different industrial areas. 
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