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1. Introduction 
In the modern era of globalization and swift market changes, the effectiveness of supply chain 

management (SCM) has emerged as a pivotal component in achieving and maintaining a competitive 

edge. This is even more pronounced in niche sectors like automotive service and spare parts distribution. 

Here, the margins for error are slim as success depends on precise pricing strategies coupled with 

intelligent inventory management methodologies [1], [2]. While robust SCM frameworks have the 

potential to streamline inventory flows, curtail unnecessary expenses, and amplify customer service 

quality, ill-conceived strategies can trigger a cascade of challenges. These include the peril of stockouts, 

dealing with unwarranted inventory surplus, contending with extended lead times, and grappling with 

surging operational costs. Such challenges pose severe threats, often undercutting the profitability matrix 

and competitive market stance [3]. 

Our study builds on the foundational role of SCM in the automotive parts and service industry, 

introducing a novel methodology that merges game theory, BiLSTM-Attention deep learning, and 
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 Effective supply chain management is pivotal for enhancing customer 

satisfaction and driving competitiveness and profitability in the automotive 

service and spare parts distribution sector. Our research introduces an 

innovative approach, integrating game theory, BiLSTM-Attention deep 

learning, and Reinforcement Learning (RL) to refine supply and pricing 

strategies within this domain. Focusing on Moroccan automobile 

companies, we utilized Enterprise Resource Planning (ERP) system data to 

forecast customer behavior using a BiLSTM model enhanced with an 

Attention mechanism. This predictive model achieved a Mean Squared 

Error (MSE) of 0.0525 and an R² value of 0.896, indicating high accuracy 

and an ability to explain substantial variance in customer behavior. To 

further our analysis, we incorporated reinforcement learning, evaluating 

three algorithms: Q-learning, Deep Q-Networks (DQN), and SARSA. Our 

findings demonstrate SARSA's superior performance in our context, 

attributed to its adeptness at navigating the dynamic environment of the 

automotive supply chain. By synergizing the predictive power of the 

BiLSTM-Attention model with the strategic optimization capabilities of 

reinforcement learning, particularly SARSA, our study offers a 

comprehensive framework for automotive companies to enhance their 

supply chain strategies, balancing profitability and customer satisfaction 

effectively in a rapidly evolving industry sector.  
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reinforcement learning to tackle the sector's complex dynamics, aiming to enhance business interactions, 

profitability, and customer satisfaction. Various methods, including simpler ones like random forest, 

lasso, GRU, RNN, CNN, LSTM, and BiLSTM, and hybrid models like RNN-LSTM, CNN-RNN, and 

CNN-LSTM, have been used across disciplines for forecasting in recent years [4]–[7]. Attention 

mechanisms, in particular, have revolutionized deep learning by enabling models to focus dynamically 

on relevant data segments, improving data representation and addressing long-range dependencies [8]. 

While these technologies have advanced various domains, including natural language processing [9]–

[11], their application in the automotive industry requires specific customization to meet the distinct 

challenges and opportunities of this evolving sector. 

Transitioning from a broad examination of technological advancements to their particular relevance 

in our research, we delve into addressing the pivotal gaps highlighted by previous studies in the realm of 

behavior prediction and strategic decision-making within the automotive sector [12] delved into 

predicting customer purchasing behavior using various machine learning classifiers, attaining notable 

accuracy. Nevertheless, their reliance on static datasets might not capture the dynamic nature of the 

automotive service and spare parts sector, where specific industry variables are crucial. Their research also 

touches upon the unexplored potential of deep learning for larger datasets. [13] investigated multiscale 

adaptive object detection with contrastive feature learning in retail, a method adept at processing spatial 

and visual data for analyzing customer behavior. However, the method's high computational and memory 

demands and initial design tailored to retail settings may limit its applicability in the more variable and 

resource-strained automotive supply chain environments. [14] provided valuable insights within the 

banking sector, yet their study's reliance on conventional feature engineering and classification falls short 

of capturing the temporal dynamics that deep learning architectures, particularly BiLSTM-Attention, 

can offer architectures that are crucial for dissecting and forecasting the time-sensitive behaviors in 

dynamic sectors like automotive. [15] employed a GRU network to forecast occupancy in intelligent 

buildings, an approach that might only partially capture the complex behavioral patterns over time, 

which is essential in the automotive context. Similarly, [16] work in consumer behavior prediction, 

utilizing the SVM classification algorithm, showcases high accuracy and recall, underscoring the need 

for further enhancement in predictive depth and generalizability across various industries. The 

exploration of BiLSTM-attention mechanisms by [17] and [18] highlights their potential yet 

underscores the necessity for bespoke adjustments to effectively tackle the distinct challenges of the 

automotive spare parts and service industry. 

Extending our analysis further, we target the automotive spare parts industry with game theory and 

reinforcement learning to enhance stock and pricing predictions. This focus requires adapting existing 

models from various domains to address the unique challenges of this sector, underscoring the need for 

specialized methodologies in this context. For instance, [19] integrates game theory and reinforcement 

learning for construction bidding to counteract the winner's curse. However, this model's reliance on 

specific algorithms and the low bid method may not suit the automotive sector's varied pricing and 

bidding strategies. Its primary focus on cost estimates, without considering factors like markup values 

or a fluctuating number of competitors, could limit its adaptability to the dynamic automotive supply 

chain environment. [20] explore energy management in microgrids using real-time pricing and 

reinforcement learning, optimizing electricity distribution. While compelling within microgrids, this 

model might struggle in the automotive supply chain due to its design for specific energy system 

dynamics, contrasting with the automotive sector's supply chain logistics, demand variability, and 

production planning. [21] develop a multi-agent deep reinforcement learning framework for community 

virtual power plants (cVPPs), focusing on energy management and bidding strategies.  

Adapting this framework to the automotive supply chain might require broadening the reinforcement 

learning algorithms and rethinking the bidding strategy beyond the low bid method to account for the 

automotive industry's complexity. [22] propose a deep reinforcement learning framework for managing 
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photovoltaic-battery systems, emphasizing load forecasting. While promising for energy management, 

its suitability for the automotive supply chain may be limited by the substantial training time and 

computational resources needed, which could hinder rapid deployment in the industry's dynamic setting. 

[23] MARL framework, designed for energy system demand response, may not fully align with the 

automotive supply chain's diverse operational constraints and market dynamics. Lastly, [24] study stock 

price formation through a multi-agent reinforcement learning model, SYMBA, which might not capture 

the full complexity of the automotive market due to its narrow focus on single-stock trading and lack of 

features such as short-selling, potentially limiting its applicability to real-world market analysis. These 

studies highlight the need for tailored adaptations to leverage these advanced methodologies effectively 

in the automotive spare parts industry. To navigate these challenges, our approach is to customize the 

integration of game theory and reinforcement learning, tailoring it to the distinctive requirements of the 

automotive spare parts and service industry. Our strategy employs game theory to forecast outcomes 

from strategic interactions, factoring in the sector's dynamic and complex nature.  

This is complemented by reinforcement learning, which will iteratively learn and refine policies over 

time, enhancing decision-making capabilities and facilitating precise stock and price strategy forecasting. 

Such an approach is vital for addressing the dynamic challenges of pricing and inventory management, 

underscored by the effectiveness of multi-agent RL in developing adaptive pricing strategies, as 

demonstrated in the research by [25]–[27]. This tailored integration is designed to provide a robust 

framework that not only overcomes sector-specific challenges but also drives strategic and operational 

excellence in the automotive spare parts and service industry. 

Our fusion of a BiLSTM-Attention model with game theory and RL culminates in a framework 

tailored for the automotive industry, enhancing its forecasting and strategic agility. This initiative 

promises a supply chain responsive to the sector's evolving needs, ensuring stakeholders can adeptly 

navigate its dynamic landscape. 

2. Method 
First, In this section, we initially present the proposed framework as described in Fig.1.  

 

Fig. 1. Proposed Framework 
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2.1. Data Processing 
In this study, we meticulously analyzed a dataset sourced from the ERP system of a Moroccan car 

distributor, concentrating on the after-sales service data from 2019 to 2022. Following an extensive data 

cleansing phase where we removed duplicates, instances of negative margins, blank cells, and outliers, 

our dataset was refined to encompass 91,769 records, each described by 12 detailed columns, as presented 

in Table 1.  

Table 1.  Features Description 

Feature Description 
Customer A unique ID represents each customer in the dataset. 

Mileage The vehicle's odometer reading in kilometers at the time of service. 

Workshop The name or location of the Workshop where the service was performed. 

Date of Passage The date when the vehicle was serviced. 

Brand The make of the vehicle. 

Model The model of the vehicle. 

Date of Circulation The initial registration date of the vehicle. 

Type of Repair The category or description of the repair. 

Invoice Amount The total cost charged for the service. 

Margin The profit made from the service. 

Warranty Status Indicates whether the vehicle was under warranty at the time of repair. 

Repair Duration The time taken to complete the repair. 

 

During preprocessing, categorical data were encoded into numerical values and numerical data were 

normalized using the Min-Max method, scaling them to a 0-1 range with the formula. 

𝑥𝑥min  =   (x−xmin)
(xmax−xmin)

   (1) 

Once normalized, the data were stored as either 32-bit or 64-bit integers. Subsequently, the dataset 

was divided into two subsets: one for training with 73,415 entries and another for testing with 18,354 

entries, facilitating the development and validation of models. This methodology is essential for ensuring 

the dataset's suitability for in-depth analysis and modeling. 

2.2. New Feature Prediction and Model Integration 
After processing the data, we identified a critical feature, 'Customer Behavior,' which reflects the 

customers' maintenance choices, hinting at their loyalty or potential switch to competitors. We devised 

an algorithm to analyze and categorize this behavior based on two key metrics. 

• Visit Intervals: The time between consecutive visits, indicating how regularly customers seek 

maintenance services. 

• Mileage Increase: The change in vehicle mileage between visits, providing insights into vehicle 

usage and potential service needs 

2.2.1. Selection of BiLSTM-Attention Model 
We subsequently employed a BiLSTM-Attention model to forecast 'Customer Behavior .'The 

LSTM structure, created by [28] in 1997, addressed long-term dependency issues in traditional RNNs 

by incorporating a "memory" concept  [29]. Fig. 2 encapsulates the LSTM and BiLSTM configurations 

utilized in our model. 

• LSTM cell 

The input of an LSTM unit is composed of three distinct vectors. The first, named input vector, 

is external to the LSTM unit and is injected into it at instant t (The vector xt in the diagram 

above); the two of them are generated by the LSTM unit at the previous instant (t-1) (In the 

diagram, they are the vector ht-1 indicating the hidden state, and the vector ct-1 representing cell 
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state). The long-term memory cell (ct) at time t is updated using external input as well as short-

term memory from the previous time step (t-1), denoted by xt-1 and ht-1, respectively [29]. 

 

Fig. 2. a) An LSTM cell; b) Unidirectional LSTM; c) BiLSTM 

• Unidirectional LSTM 

The LSTM gate handles information flow, resolving the vanishing gradient problem 

• BiLSTM 

This type of LSTM combines two unidirectional LSTMs moving in opposite directions. It operates 

using both recent and older information. 

The attention mechanism in deep learning allows models to focus more on specific features during 

training. It calculates attention weights, indicating each feature's importance and creating a weighted 

input representation. Mathematically [30], given an input sequence 𝑋𝑋 = [𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛] and a target 

vector y, these inputs are transformed into key vectors K and value vectors V using trainable parameters 

𝑊𝑊𝑘𝑘 and 𝑊𝑊𝑣𝑣: 𝐾𝐾 = [𝑊𝑊𝑘𝑘 ∗ 𝑥𝑥1, … ,𝑊𝑊𝑘𝑘 ∗  𝑥𝑥𝑛𝑛];  𝑉𝑉 = [𝑊𝑊𝑣𝑣 ∗ 𝑥𝑥1,𝑊𝑊𝑣𝑣 ∗  𝑥𝑥𝑛𝑛] . Target vector y is transformed into 

a query vector 𝑄𝑄 using parameters  𝑊𝑊𝑞𝑞:𝑄𝑄 = 𝑊𝑊𝑞𝑞 ∗ 𝑦𝑦. The attention scores, 𝑎𝑎, are computed as the dot 

product between 𝑄𝑄 and 𝐾𝐾: 𝑎𝑎 = [𝑄𝑄 *𝑘𝑘1, 𝑄𝑄 * 𝑘𝑘2, ..., Q * 𝑘𝑘𝑛𝑛], and normalized via the softmax function: a 

= softmax(a). The attention weights, w, are computed as a weighted sum of the value vectors 𝑉𝑉 with 

weights given by 𝑎𝑎: 𝑤𝑤 =  [𝑎𝑎1  ∗  𝑣𝑣1,𝑎𝑎2  ∗  𝑣𝑣2, . . . , 𝑎𝑎𝑛𝑛  ∗  𝑣𝑣𝑛𝑛]. The final output 𝑧𝑧 is the concatenation of 

𝑤𝑤: 𝑧𝑧 =  [𝑤𝑤1  +  𝑤𝑤2 + . . . + 𝑤𝑤𝑛𝑛], which is then passed through a fully connected layer for the final 

prediction. 

2.2.2. The proposed BiLSTM-Attention model implementation 
We implemented the network structure using the Python programming language and the Keras 

neural network framework. The combination of Python and Keras allowed us to create and train deep 

learning models in a user-friendly and flexible environment, which proved highly effective for our task. 

Table 2 shows the structure of a Bidirectional Long Short-Term Memory (BiLSTM)-Attention model 

that has been tuned by optimizing its hyperparameters.  

In this instance, the "Mean Squared Error" (MSE) is employed as the loss function, which can be 

described as, 

𝑀𝑀𝑀𝑀𝑀𝑀 = ∑(𝑦𝑦𝑖𝑖−𝑦𝑦𝑝𝑝)²
𝑛𝑛

   (2) 

In addition to the MSE, R2 is another parameter used to measure the performance of our model: 

𝑅𝑅2 = 1 − ∑(𝑦𝑦𝑖𝑖−𝑦𝑦𝑝𝑝)²)/𝑛𝑛
∑(ŷ𝑖𝑖−𝑦𝑦𝑝𝑝)²)/𝑛𝑛

   (3) 
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Where 𝑦𝑦𝑖𝑖 is the predictive value, 𝑦𝑦𝑝𝑝 is the actual value, ŷ𝑖𝑖 is the average value, and n is the number of 

observations or rows. Finally, « Grid search » is a hyperparameter optimization technique that involves 

searching over a pre-defined set of hyperparameter values to find the set of hyperparameters that result 

in the best performance on a validation set. 

Table 2.  BiLSTM-attention model structure 

Component Role/Calculation Input value 
Input 

 

Inputs are tokenized using Keras' Tokenizer and padded to a 

fixed length.                               

 

Dataset 

Input layer 

 

Takes the padded sequences as input 

 

padded sequences 

Embedding layer 

 

Depict tokens within a compact vector space, with each 

dimension in the vector signifying a distinct attribute or aspect 

   

 

Tokens 

Bidirectional 

LSTM 

The output of the embedding layer is fed into a Bidirectional 

LSTM layer with dropout regularization. 

 

num_units = 64 ; 

dropout_rate=0.2 ; 

recurrent dropout= dropout rate 

 
Attention layer Calculates attention weights for each timestep of the input 

sequence.  

 

Activation function= Tanh 

Dense output 

layer 

Uses the transformed features from the preceding layers to 

make the final predictions 

function= Softmax 

 

Optimizer Is the mathematical function used to minimize the error 

function 

Adam 

Loss Function Determines the dissimilarity between the predicted and actual 

outputs 

MSE (Mean Squared Error) 

Batch_size Is the number of samples that are processed in a single 

forward/backward pass of the neural network during training 

32 

Learning rate It is the value used to adjust a model's parameters towards 

minimizing the error function. 

0.01 

Epochs Refers to the number of times the entire training operation 

will be performed 

20 

 

The BiLSTM-Attention model is our research's foundation for game theory and reinforcement 

learning, focusing on the 'Customer Behavior' feature. This model creates probabilities of customers' 

adherence or non-adherence to regular maintenance, setting the initial conditions for our game. The 

model's choice is based on its ability to handle time sequences and long-term dependencies, which is 

crucial for using historical customer data. Its attention mechanisms help determine the importance of 

different time steps, enhancing prediction accuracy. These predictions are key for our reinforcement 

learning model, guiding it towards an optimal policy to maximize the cumulative reward for the branch 

workshop. 

2.3. Integration of BiLSTM-Attention Mechanism and Reinforcement Learning 
Integrating the BiLSTM-Attention mechanism with reinforcement learning is essential for 

accurately predicting customer behavior and influencing decision-making in supply chain management. 

2.3.1. BiLSTM-Attention for Enhanced Feature Representation 
The BiLSTM-Attention mechanism processes data bidirectionally to capture both past and future 

contexts. Its attention layer assigns weights to different time steps, highlighting critical information for 

the task. This process enhances feature representation, improving customer behavior prediction accuracy, 

a crucial element in the reinforcement learning model. 

2.3.2. Role in Reinforcement Learning 
The improved feature representations from BiLSTM-Attention serve as inputs for the reinforcement 

learning model, enabling more informed decisions in the dynamic supply chain environment. The 

detailed understanding of customer behavior enriches the model's state space, enhancing policy 

effectiveness. 
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2.3.3. Practical Application 
In scenarios where various market factors influence customer behavior, the attention mechanism 

identifies and emphasizes these dependencies, aiding the reinforcement learning model in dynamically 

adjusting strategies to market demands. This capability is vital for optimizing inventory and pricing, thus 

enhancing the automotive supply chain's profitability and efficiency. Fig. 3 visually demonstrates how 

the attention mechanism supports strategic adaptation within the reinforcement learning framework. 

 

Fig. 3. BiLSTM-Attention Aided Reinforcement Learning for Market Demand Adaptation 

2.4. Game Modeling 

2.4.1. Game Theory Fundamentals 
Introduced by John von Neumann in 1928, game theory models strategic player interactions, 

particularly in zero-sum games  [31]. In the context of normal-form games, a game is characterized as a 

tuple (𝑛𝑛,𝐴𝐴1, … ,𝐴𝐴𝑛𝑛,𝑅𝑅1, … ,𝑅𝑅𝑛𝑛), where n is the number of players, Ak represents available actions to 

player 𝑘𝑘, and 𝑅𝑅𝑘𝑘:𝐴𝐴1 × … ×  𝐴𝐴𝑛𝑛 → 𝑅𝑅 is the player k's reward function, determining the payoff for a play 

a ∈∈ 𝐴𝐴1 × … × 𝐴𝐴𝑛𝑛 [32]. Game theory studies various game types and solution concepts like Nash 

equilibrium (no player gains by unilaterally changing strategy) and Pareto optimality (no player can 

improve without hurting others) to predict rational player behavior. 

2.4.2. Game Model Setup 
The game under consideration is a non-cooperative, repeated, and stochastic three-player 

engagement with imperfect information. Let us first introduce the symbols utilized for representing 

game models, as shown in Table 3.  

Table 3.  Notations and definitions 

Variable Definition 
M The Profit Margin for each Repair  

M
c
 Marketing cost 

A Average Number of Annual Visits (Customer visits to the Branch Workshop) 

R Remain Period of Warranty Coverage (Of customer car) 

C
BW

 The cost associated with adjusting the prices and managing the stock levels by Branch Workshop (Company) 

S This represents the cost savings for the customer when either the Branch Workshop or the competitor 

adjusts their pricing and inventory strategy. The savings are calculated as the percentage discount applied to 

the invoice amount, supplemented by a value 𝛿𝛿, which stems from the successful implementation of an 

efficient sourcing strategy. 

α
BW

 It represents the adaptive response when the branch workshop modifies its inventory and pricing strategy. 

Specifically, a value greater than one (αBW >1) indicates a significant adjustment in strategy. 

α
c
 Represents the strategic response when a competitor increases marketing and service enhancements 

investments. Specifically, an αc value greater than one (αc >1) indicates a significant shift due to these 

competitive actions. 

P This denotes the probability of a customer choosing the competitor over the Branch Workshop. 
 

The agility variable, denoted as 𝛽𝛽, penalizes players in scenarios where any participant exerts no effort. 

Specifically, a β value greater than one (𝛽𝛽 > 1) indicates significant punitive measures in the event of 

inactivity. 

D
l
  Refers to the date of the last reparation in the Workshop 

D
f
  Refers to the date of the first use of the car 

W Refers to the total warranty period 

Y
i
 Represent the expected payoffs for the Branch Workshop under different conditions. 
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The three key players – "Customers," "Branch Workshops," and "Competitors" – act independently, 

repeatedly interacting over time. The stochastic nature of the game is attributed to the variable '𝑃𝑃,' 

which represents the unpredictable decision-making of customers choosing between the Workshop and 

the competitor. While customers' interests may align with either the workshops or the competitors, the 

workshops and competitors typically conflict. Importantly, this game does not strictly follow a zero-sum 

dynamic, as the total gains or losses can fluctuate depending on the strategies and choices made by the 

players. 

Based on the competitive intelligence analysis (benchmarking) conducted by the Branch Workshop, 

it is inferred that competitors usually adopt one of two strategic paths. These strategies involve either 

proactive adaptation of stock levels and pricing in response to market trends or maintaining their existing 

strategies in terms of stock and pricing. The specific strategies and objectives for each player within this 

game are detailed in Table 4. 

Table 4.  The game description 

Players Strategies Objectives 

Customer(Cu) 

Choosing the Branch Workshop (CBW) or the Competitor (CC) refers to 

a customer's decision between these two service options. 

 

Minimize the Cost 

Competitors(K) Adapts Price and Stock(APS) or Maintains Price and Stock(MPS) Maximize the profit 

Branch 

Workshop(BW) 

Adapts Price and Stock(APS) or Maintains Price and Stock(MPS) Maximize the profit 

2.4.3. Payoff Function Definition 
We detail the payoff functions for the Branch Workshop, considering various strategic interactions 

and outcomes. These functions incorporate factors like profit margins, marketing efforts, and customer 

loyalty indicators: 

• Payoff Calculations: Payoffs are calculated using defined formulas, incorporating elements like the 

probability of customer choices, the impact of competitive actions, and operational costs. 

• Objective: The primary objective is to maximize the Branch Workshop's payoff by optimizing its 

strategies in the competitive landscape. 

The Branch Workshop payoffs are presented in Table 5. 

Table 5.  Branch Workshop’ Payoffs 

Customer Competitors Branch Workshop Branch Workshop Payoffs 

 

 

CBW 

 

APS 

 

APS 

Y1 

MPS Y2 

APS 

 

MPS 

Y3 

MPS Y4 

 

CC 

 

APS 

 

APS 

Y5 

MPS Y6 

APS 

 

MPS 

Y7 

MPS Y8 

In our study, our objective is to maximize the payoff for the Branch Workshop. For this purpose, we 

employed a single-agent Markov Decision Process (MDP) model, which necessitates determining only 

the payoffs for the Branch Workshop. We plan to formulate the other payoffs in future research, aiming 

for a more comprehensive analysis of the entire situation. Hence, the payoffs for the Branch Workshop 

are as follows: 
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𝑌𝑌1 = (𝑀𝑀 − 𝐶𝐶𝐵𝐵𝐵𝐵)∗𝐴𝐴∗𝑅𝑅∗(1 − 𝑃𝑃)∗𝛽𝛽2∗(1/𝛼𝛼𝑐𝑐)∗𝛼𝛼𝐵𝐵𝐵𝐵   (4) 

𝑌𝑌2 = (𝑀𝑀 − 𝐶𝐶𝐵𝐵𝐵𝐵)∗𝐴𝐴∗𝑅𝑅∗(1 − 𝑃𝑃)∗𝛼𝛼𝑐𝑐∗𝛽𝛽3
∗𝛼𝛼𝐵𝐵𝐵𝐵   (5) 

𝑌𝑌3 = 𝑀𝑀∗𝐴𝐴∗𝑅𝑅∗(1 − 𝑃𝑃)∗(1/𝛼𝛼𝑐𝑐)∗(1/𝛽𝛽)3(1/𝛼𝛼𝐵𝐵𝐵𝐵)   (6) 

𝑌𝑌4 = 𝑀𝑀∗𝐴𝐴∗𝑅𝑅∗(1 − 𝑃𝑃)∗(1/𝛽𝛽)2𝛼𝛼𝑐𝑐∗(1/𝛼𝛼𝐵𝐵𝐵𝐵   (7) 

𝑌𝑌5 = (−𝑀𝑀 − 𝐶𝐶𝐵𝐵𝐵𝐵)∗𝐴𝐴∗𝑅𝑅∗𝑃𝑃∗√(1/𝛽𝛽)∗𝛼𝛼𝑐𝑐∗(1/𝛼𝛼𝐵𝐵𝐵𝐵)   (8) 

𝑌𝑌6 = (−𝑀𝑀 − 𝐶𝐶𝐵𝐵𝐵𝐵)∗𝐴𝐴∗𝑅𝑅∗𝑃𝑃∗(1/𝛼𝛼𝑐𝑐)∗(1/𝛽𝛽)∗(1/𝛼𝛼𝐵𝐵𝐵𝐵)   (9) 

𝑌𝑌7 = (−𝑀𝑀)∗𝑅𝑅∗𝑃𝑃∗𝛼𝛼𝑐𝑐∗𝛽𝛽3𝛼𝛼𝐵𝐵𝐵𝐵   (10) 

𝑌𝑌8 = (−𝑀𝑀)∗𝑅𝑅∗𝑃𝑃∗(1/𝛼𝛼𝑐𝑐)∗𝛽𝛽3𝛼𝛼𝐵𝐵𝐵𝐵   (11) 

'𝐴𝐴' in the equation denotes the annual average of a customer's visits to the Branch Workshop, 

calculated by scaling their total visits since their car's first use to a yearly rate. This is achieved by 

multiplying the visit count by 365 and dividing by the days elapsed since the car's first use to the last 

repair, adjusting for non-calendar-year usage periods. 

𝑅𝑅 = 𝑊𝑊 − (
𝐷𝐷𝑙𝑙−𝐷𝐷𝑓𝑓
365

)   (12) 

In the equation, 'R' represents the Remaining Warranty Coverage of the customer's car, computed 

by subtracting the elapsed time since the car's first use from the total warranty period 'W .'Time is 

converted to years for consistency. This calculation informs us about the remaining warranty, influencing 

potential repair costs and visit frequency. 

𝑀𝑀𝑐𝑐 = (𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵)/(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅)  (13) 

'𝑀𝑀𝑐𝑐 ' in the equation denotes the Marketing Costs per repair, calculated by dividing the total annual 

marketing budget by the annual number of repairs. This measurement gives a detailed view of marketing 

cost-efficiency, indicating the company's marketing spending per repair service, which is crucial for 

analyzing workshop profitability. 

𝑆𝑆 = 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷% ∗ 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 +  𝛿𝛿   (14) 

'𝑆𝑆' in the equation denotes the customer's Cost Savings when the Workshop adjusts its price and 

stock. It sums the discount savings (Discount % * Invoice amount) and ' 𝛿𝛿,' representing extra savings 

from the Workshop's effective sourcing strategy. ' 𝛿𝛿 ' includes changes in costs of goods sold (COGS), 

logistics, and inventory carrying costs. Therefore, '𝑆𝑆' represents total customer savings via discounts and 

strategic sourcing. 

𝐶𝐶𝐵𝐵𝐵𝐵 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 + 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 + 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 + 𝑀𝑀𝑀𝑀 + 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑎𝑎𝑎𝑎𝑎𝑎 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶   (15) 

Equations (4) to (11) represent the payoffs for the Branch Workshop under different scenarios, 

factoring in strategies of all players: customers, the Workshop, and competitors. The Workshop's payoff 

(𝑌𝑌𝑖𝑖) includes parameters 𝛼𝛼𝐵𝐵𝐵𝐵 and 𝛼𝛼𝑐𝑐, reflecting the Workshop's and competitors' actions, respectively. 

Competitor's adaptations act as a punishment factor, modifying payoffs negatively by '𝛼𝛼𝑐𝑐 ' or positively 

by '1/𝛼𝛼𝑐𝑐 '. The agility parameter '𝛽𝛽' rewards the Workshop's good decisions and penalizes poor ones. 

Payoffs (𝑌𝑌5) to (𝑌𝑌8) show potential losses when customers choose a competitor. The Workshop's 

decision quality and competitor's actions influence the loss magnitude. The agility parameter '𝛽𝛽' 

mitigates losses when good decisions are made and exacerbates it for poor decisions. 
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The payoffs are calculated considering the repair margin '𝑀𝑀,' the efforts '𝐶𝐶𝐵𝐵𝐵𝐵 ' on stocks and prices, 

the annual visits '𝐴𝐴,' the remaining warranty period '𝑅𝑅,' and the probability '𝑃𝑃' of customers choosing 

the competitor. 

2.4.4. Markov Decision Process (MDP) Framework 
Our study uses a Markov Decision Process (MDP) to model interactions between the 'Branch 

Workshop,' its customers, and competitors. MDP optimizes the Workshop's decisions, factoring in 

customers and competitors through transition probabilities and reward functions. 

This methodology reduces the complexity of the competitive environment, permitting strategic 

choices within the action space. The Workshop can ascertain and implement the optimal strategy for 

maximum long-term rewards despite external influences by harnessing the MDP in reinforcement 

learning. The MDP models an environment's dynamics and consists of four elements: state space, action 

space, transition probability function, and reward function. 

Our proposed MDP components are: 

• State space (S): Our model comprises all potential customer and competitor strategies 

combinations. Each game state is represented as a pair: (customer_strategy, competitor_strategy). 

We define the state space S as 

𝑆𝑆 = {(𝑥𝑥, 𝑧𝑧)| ∈ 𝑋𝑋, 𝑧𝑧 ∈ 𝑍𝑍}   (16) 

Where ' 𝑥𝑥 ' denotes a specific customer strategy from set 𝑋𝑋, and ' 𝑧𝑧 ' indicates a selected competitor 

strategy from set 𝑍𝑍. Thus, 𝑆𝑆 includes all possible pairs (𝑥𝑥, 𝑧𝑧), providing a complete view of the 

strategic landscape. This state space represents potential outcomes of strategic interactions, laying 

the foundation for our MDP model by illustrating the 'Branch Workshop's decision-making 

environment 

• Action space (A): Represents all possible strategies the 'Branch Workshop' can employ, including 

'Adapts Price and Stock' or 'Maintains Price and Stock .'These actions represent the tactics the 

Workshop may choose based on the current game state. We define the action space A as: 

𝐴𝐴 = {𝑎𝑎1,𝑎𝑎2)   (17) 

Where A includes all possible actions or strategies for the 'Branch Workshop .' Action space A is 

crucial to the MDP as it outlines the Workshop's possible choices under different states. It 

influences the reinforcement learning agent's learning and decision-making as it seeks the optimal 

strategy to maximize rewards 

• Payoff function (P): Quantifies the profits for the 'Branch Workshop' based on the game state (𝑠𝑠) 
and the chosen action (𝑎𝑎). It maps a state-action pair to an actual number, representing the payoff, 

shown as 𝑃𝑃: 𝑆𝑆 𝑥𝑥 𝐴𝐴 −>  ℝ. So, for each state-action pair (𝑠𝑠, 𝑎𝑎), there is a real-valued payoff, 

expressed as: 

𝑃𝑃(𝑠𝑠,𝑎𝑎) = 𝑓𝑓(𝑠𝑠,𝑎𝑎)   (18) 

The payoff function f(𝑠𝑠,𝑎𝑎) calculates the 'Branch Workshop's profit (or regret) based on the current 

state (𝑠𝑠) and selected action (𝑎𝑎). It factors in market conditions, customer behavior, competitor 

actions, and operational costs, thus providing a comprehensive measure of potential profit for every 

possible decision 

• Transition function (T): The transition function T defines how the game's state changes based on 

the 'Branch Workshop's actions. If the Workshop takes a certain action in state s, the game moves 

to a new state s'. This transition depends on factors like customer preference, competitor reaction, 

and market trends. So, we have 
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𝑇𝑇(𝑠𝑠,𝑎𝑎) = 𝑠𝑠𝑛𝑛𝑛𝑛𝑛𝑛   (19) 

However, the exact deterministic rule is data-dependent and influenced by factors such as customer 

preference, competitor reaction, and market dynamics. Here, (𝑠𝑠) belongs to the state space S, and 

(𝑎𝑎) pertains to the action space A. Despite R and P being mathematically alike, they have different 

roles. P indicates the Workshop's economic profit or loss, while R guides the learning agent, 

enabling it to refine its strategy via reinforcement learning. 

Reinforcement learning, part of machine learning, educates agents to maximize rewards via 

environmental interactions. Agents optimize future actions by getting feedback and modifying their 

behavior. They either select the action with the top Q-value for a state or try new actions with an 𝜀𝜀 
probability. Over time, the agent refines its strategy, identifying the best actions for the 'Branch 

Workshop.' The goal is to comprehend the best action-value function Q(𝑠𝑠, 𝑎𝑎), with 's' denoting state 

and 'a' action. The Q-value estimates the expected cumulative reward for an action in a state under the 

best policy, and the best action carries the highest Q-value. Employed techniques include: 

• Based on the Bellman equation, the Q-learning algorithm updates the Q-table [33]. 

𝑄𝑄(𝑠𝑠,𝑎𝑎) = 𝑄𝑄(𝑠𝑠,𝑎𝑎) + 𝛼𝛼[𝑅𝑅(𝑠𝑠,𝑎𝑎) + 𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝑎𝑎 𝑄𝑄(𝑠𝑠′,𝑎𝑎′) − 𝑄𝑄(𝑠𝑠,𝑎𝑎)]   (20) 

Here, 𝛼𝛼 represents the learning rate, 𝛾𝛾 is the discount factor for future rewards, (s ) and s' denote 

the current and subsequent states and a and a' signify the current and subsequent actions, 

respectively. 

• Based on the equation, the SARSA (State-Action-Reward-State-Action) algorithm updates the 

Q-table [34]. 

𝑄𝑄(𝑠𝑠,𝑎𝑎) = 𝑄𝑄(𝑠𝑠,𝑎𝑎) + 𝛼𝛼[𝑟𝑟 + 𝛾𝛾 𝑄𝑄(𝑠𝑠′,𝑎𝑎′) − 𝑄𝑄(𝑠𝑠,𝑎𝑎)]   (21) 

In this case, the next state's action value, 𝑄𝑄 (𝑠𝑠′,𝑎𝑎′), is used instead of the maximum value among 

all possible following states as Q-Learning does. 

• The Deep Q-Network (DQN) algorithm updates the Q-table through a neural network, and the 

Bellman equation is replaced by a loss function L that minimizes the difference between the 

predicted Q-values and the target Q-values  [35]. 

𝐿𝐿 = 𝐸𝐸[�𝑟𝑟 + 𝛾𝛾 𝑚𝑚𝑚𝑚𝑚𝑚𝑎𝑎′  𝑄𝑄′�𝑠𝑠′,𝑎𝑎′;𝜃𝜃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡� − 𝑄𝑄(𝑠𝑠,𝑎𝑎;𝜃𝜃)� 2]   (23) 

In the equation, r is the reward for action a in state 𝑠𝑠, 𝛾𝛾 is the future reward discount factor, and 𝑠𝑠' 
and 𝑎𝑎' are the next state and action. 𝑄𝑄(𝑠𝑠,𝑎𝑎;  𝜃𝜃) and 𝑄𝑄′(𝑠𝑠, ′ 𝑎𝑎′;  𝜃𝜃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) are the predicted and target Q-

values, using weights θ and 𝜃𝜃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡. E [ ] is the expected value over a sample of experiences. 

2.4.5. Enhancing Reinforcement Learning with BiLSTM-Attention 
Integrating the BiLSTM-Attention model with Q-learning enhances the precision of state-action 

value function, 𝑄𝑄(𝑠𝑠,𝑎𝑎), computations by providing a richer feature set for a more profound state 

understanding, leading to more accurate Q-value estimates. This detailed input helps prevent over-

generalization and aids in the optimal policy convergence of the Q-learning algorithm, requiring 

adjustments to the learning rate, α, and discount factor, 𝛾𝛾. Additionally, the BiLSTM-Attention model 

improves the DQN's ability to approximate the optimal action-value function by supplying attention-

weighted inputs, increasing decision-making accuracy. This necessitates network architecture and loss 

function refinements to ensure stable training and prevent overfitting. Similarly, the attention 

mechanism benefits SARSA's on-policy approach by highlighting temporal sequences, influencing policy 

and value estimate updates, and allowing for a more nuanced policy space navigation, which prompts a 

review of policy exploration parameters to balance exploration and exploitation. 



452 International Journal of Advances in Intelligent Informatics   ISSN 2442-6571 

 Vol. 10, No. 3, August 2024, pp. 441-459 

 

 

 Amellal et al. (Predictive optimization in automotive supply chains) 

2.5. Reinforcement Learning Implementation 
In alignment with the model framework detailed previously, our code implementation involves a 

sequence of defined steps to establish a dynamic reinforcement learning environment. This structured 

approach facilitates the training and assessing an agent's strategic capabilities using a suite of 

reinforcement learning algorithms, namely Q-Learning, Deep Q-Networks (DQN), and SARSA. To aid 

in interpreting the agent's strategic evolution and efficacy, the code includes mechanisms for visual 

representation. Here is a succinct elaboration of the code implementation process show as Fig. 4: 

 

Fig. 4. Reinforcement learning models construction 

Fig. 4 presents the reinforcement learning model construction, which is performed as follows: 

• Environment Class Definition: This initial phase involves constructing the 

"WorkshopEnvironment" class, which is crucial for simulating the business context within our 

model. The environment is designed to integrate customer behavior predictions made by the Bi-

LSTM-attention model. These predictions become part of the environment's state and influence 

the potential actions and resulting rewards. This step also includes the integration of the strategic 

decisions, modeled through the payoff functions (Y1 to Y8), which are informed by the predicted 

customer behavior. 

• Creation of Agent Classes: Following the environment definition, the next step is the creation of 

agent classes, namely, "QLearningAgent," "DQNAgent," and "SARSAAgent." These classes are 

constructed to operate within the defined environment. The agents are crafted with the ability to 

interpret the enriched states, which now encapsulate both the traditional state variables and the 

new 'Behavior' feature predicted by the BiLSTM-attention model. 

• Training the QLearningAgent: With the agents created, we move on to the training phase, where 

the "QLearningAgent" and other agents learn to navigate the environment. They make decisions 

based on the states, which include customer behavior predictions, and refine their strategies to 

optimize the expected payoffs according to the MDP framework. Training is an iterative process 

where agents update their policies in response to the rewards received from the environment. 

• Performance Evaluation: Post-training, we evaluate the agents' performance within the 

environment, now with a fully informed perspective that includes the impact of customer behaviors 

on the payoffs. The agents' performance metrics are scrutinized to assess strategic depth, decision-

making quality, and proficiency in maximizing the Branch Workshop's profits. 

• Visualization of Results: We visualized the agent's learning progress and outcomes. We graphed the 

rewards (profits) obtained in each episode during the training and the average profits per action or 

strategy. The visualization gave us an understanding of the agent's decision-making progress over 

time and its ability to navigate the state-action space of our MDP, thereby assisting in further 

refinement of our models and business strategies 

2.6. Decision Making 
With the integration of our computational framework, powered by a BiLSTM-Attention deep 

learning model, into the business platform, businesses like "Branch Workshops" now have an advanced 

strategic decision-making tool at their disposal. This framework utilizes potential business actions as 

inputs, each representing a unique state in the dynamic business environment. These states cover a broad 

spectrum of scenarios, incorporating the following factors: market dynamics, customer behaviors, 

competitor actions, operational profits, and costs. 
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At the heart of this framework is a reinforcement learning algorithm that actively interacts with the 

business environment. It executes actions and subsequently receives rewards based on the derived profits. 

This feedback cycle guides the algorithm, promoting it to learn and select the most profitable actions. 

The BiLSTM-Attention model plays a pivotal role in this integrated framework. It processes 

historical and real-time data to predict customer behaviors and market conditions, providing valuable 

input to the reinforcement learning algorithm. This predictive ability equips the algorithm to make 

more informed, efficient decisions, leading to optimized profitability. 

The integrated framework, now part of the operational platform, outputs optimal business actions 

tailored to different situations. The learning algorithm's iterative process continually refines these 

actions, designed to maximize profitability amidst shifting market conditions. 

This integration necessitates real-time access to the "Branch Workshops" and market data, enabling 

the framework to consistently update and fine-tune its advice. As the business interacts with the market, 

the model's learning capability facilitates the refinement of strategies, delivering progressively precise 

recommendations. 

The model also offers visualization tools, including metrics like rewards per episode during the 

training phase and average rewards per action. Displayed on the company's platform, these insights assist 

management in understanding the implications of their decisions, serving as a resource for continuous 

strategy enhancement. 

3. Results and Discussion 

3.1. Results 

3.1.1. Computational Environment 
The computation was performed on a Jupyter Notebook platform equipped with an Intel(R) 

CORE(TM) i5 processor, 8 GB of RAM, Intel UHD Graphics GPU, and Windows 10 Pro 64-bit 

operating system. 

3.1.2. In-depth Analysis of the BiLSTM-Attention Model 
Fig. 5 demonstrates that our BiLSTM-Attention model effectively predicts customer behavior, 

significantly reducing errors in training and validation sets after just a few epochs. This model is 

particularly adept at capturing long-term dependencies and focusing on crucial sequence parts, which 

enhances its accuracy. The decline in error rates underscores the model's robust generalization 

capabilities and proficient handling of new data, effectively mitigating overfitting. 

 

Fig. 5. Line plot of train and validation loss from the BiLSTM-Attention 

Furthermore, the most striking result is the BiLSTM-Attention model, achieving the lowest MSE 

(0.0525) and the highest R2 value (0.896) when compared with traditional LSTM and BiLSTM models 
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(Table 6). This indicates a significant reduction in prediction errors and showcases the model's superior 

ability to account for nearly 90% of the variability in the target variable, which is a substantial 

improvement in predictive modeling accuracy. 

Table 6.  Errors results depend on the model 

 LSTM BiLSTM 
MSE 0.0730 0.0723 

R2 0.881 0.873 

 

These findings align with the current body of literature, such as the studies by [36] and [37], which 

underscore the enhanced performance of BiLSTM over traditional LSTM models in sequence prediction 

tasks. This superiority is further supported by broader trends in deep learning research, where attention 

mechanisms have been recognized for their substantial contributions to improving model accuracy and 

overall performance [9], [38]. While our study does not directly compare our model to traditional 

forecasting models like AutoRegressive Integrated Moving Average (ARIMA), it is essential to note that 

our BiLSTM-Attention approach, with its inherent flexibility and ability to handle complex data 

uncertainties, represents a significant advancement over ARIMA's linear methodology, which often falls 

short in dealing with intricate data complexities [39]. 

This improvement is pivotal as it significantly enhances the model's ability to capture and predict 

complex patterns, outperforming existing models. It illustrates the effectiveness of integrating attention 

mechanisms with BiLSTM in capturing crucial long-term dependencies, a key advancement in predictive 

analytics. 

3.1.3. Reinforcement learning models  
This study compared three reinforcement learning algorithms: Q-Learning, Deep Q-Networks 

(DQN), and SARSA, using the metrics of total reward, average reward per episode, and cumulative 

reward. Each algorithm was tested in a simulated environment and evaluated on these metrics. Fig. 6 

graphically depicts each algorithm's rewards and average rewards per episode. It shows that Q-Learning 

and SARSA performed better than DQN, yielding similar total and average rewards per episode results. 

 

Fig. 6. Reward and the average reward per episode regarding the model 

The study also used average and cumulative rewards to compare Q-Learning, DQN, and SARSA. 

The results in Fig. 7 revealed that SARSA performed best, mainly due to its stable on-policy learning 

approach, reduced overestimation of action values, and quick adaptation to changing environments. 
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Fig. 7. Average and Cumulative Reward per episode 

Fig.7 displays a clear trend of increasing cumulative rewards per episode for DQN, SARSA, and Q-

Learning, showcasing their capability in learning and strategic decision-making. Notably, action 1 

consistently outperforms action 0 in terms of cumulative rewards, with this preference being more 

pronounced in DQN and SARSA compared to Q-Learning. SARSA's on-policy learning framework 

stands out for its steady selection of action 1, underscoring its agility in adapting to environmental shifts 

and its proficiency in balancing the dual objectives of exploration and exploitation, thereby securing 

favorable outcomes. 

These findings align with and expand upon the work of [40], [41], who have underscored the benefits 

of on-policy learning in dynamic environments. By comparing on-policy (SARSA) and off-policy (DQN 

and Q-Learning) algorithms, our research provides deeper insights into their strengths and applicability 

in real-world scenarios, highlighting the versatility and resilience of these methods. The adaptability and 

success of these reinforcement learning strategies in various industrial contexts illustrate their potential 

to offer dynamic and robust solutions across various applications. Among these, SARSA distinguishes 

itself, demonstrating superior performance in cumulative rewards, attributed to its strategic decision-

making, and highlighting its potential as a preferred algorithm in environments where on-policy learning 

is crucial. 

3.2. Discussion 

3.2.1. Insights from the BiLSTM-Attention Model 
Integrating the attention mechanism with the BiLSTM model significantly enhances the model's 

ability to interpret and predict complex behavioral patterns accurately, offering a considerable 

advancement over traditional LSTM models. This development is a testament to the model's increased 

technical sophistication and ability to handle more nuanced and detailed data. Furthermore, it signifies 

a broader shift within the industry toward more advanced and intricate predictive models. This evolution 

reflects a growing emphasis on leveraging deep insights and achieving higher precision in predictive 

analytics, aligning with broader industry trends toward sophisticated data-driven strategies, as discussed 

by various experts in the field  [36], [37]. 

3.2.2. Strategic Implications of Reinforcement Learning Findings 
Our study's exploration of reinforcement learning provides critical strategic insights, especially in 

selecting and applying algorithms to meet specific industry challenges. SARSA's exceptional performance 

in our analysis indicates a strategic preference for on-policy learning methods in dynamic and 

unpredictable settings. This preference aligns with strategic considerations in algorithm selection for 

real-world applications, as discussed by leading experts and researchers in the field, highlighting the 

importance of adaptable and robust learning strategies in complex environments [40], [41]. 
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3.2.3. Implications of the proposed framework and future directions 
The application of these models extends beyond theoretical implications, offering tangible benefits 

in strategic decision-making, resource allocation, and predictive analytics within the industry. These 

practical applications mirror the advancements in AI deployment in business settings. In addition, the 

findings contribute to a deeper understanding of how advanced modeling techniques can be tailored to 

specific industry needs, enhancing efficiency and strategic foresight. Adopting these models can lead to 

more informed decision-making processes, aligning with the industry trends toward data-driven 

strategies.  

Our study's insights are framed within the boundaries of a specific computational setup and the 

chosen dataset. One area for improvement is the study's focus on a particular set of modeling techniques 

without exploring a more comprehensive array of potential methods, which may offer different insights 

or advantages. Additionally, our analysis should have extended to include multifaceted data elements like 

customer sentiment, which could provide a more comprehensive understanding of consumer behavior 

dynamics. Future research should broaden the scope of the methodologies examined, comparing the 

effectiveness of various predictive models in similar contexts. There is also a significant opportunity to 

delve into the impact of reinforcement learning models in more complex and dynamic environments. 

Integrating a broader spectrum of data factors, such as customer sentiment, in subsequent studies could 

enhance the depth and relevance of the models, offering a more nuanced perspective on the predictive 

patterns and behaviors observed. 

4. Conclusion 
specifically SARSA, in refining the decision-making processes within the automotive distribution 

industry. This optimization is supplemented by using BiLSTM-Attention models, contributing to 

accurate feature prediction. The strength of our study lies in its practical implications and potential to 

inform future research directions. One significant contribution is the opportunity to implement machine 

learning algorithms to discern patterns and correlations between variables such as customer loyalty, brand 

reputation, pricing strategies, and inventory decisions. By doing so, we can adjust our game modeling 

approach to incorporate the potential impact of these factors on the decision-making process and the 

inherent effects of market volatility and uncertainty. Another contribution is the potential use of deep 

learning models to anticipate market trends, competitor pricing strategies, demand forecasts, and 

inventory optimization under many scenarios. This allows us to account for the market's volatile nature 

and competitors' uncertain actions. This direction can lead to developing more robust models resilient 

to market uncertainties and capable of providing accurate predictions. Our proposed future research 

directions promise to surmount current limitations and further boost the performance of our models. 

This, in turn, leads to a more holistic understanding of optimal inventory and pricing actions in the 

automotive distribution industry, equipping it to navigate market volatility and uncertainty successfully. 

Ultimately, our work presents an integrated, data-driven strategy to revolutionize management in the 

automotive distribution industry, promoting efficiency, profitability, and competitiveness. 
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