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1. Introduction 
Cervical cancer represents a substantial health concern for women worldwide. 604,000 new cases were 

recorded in the year 2020, and among them, 342,000 deaths were reported [1].  Most of these cases and 

deaths, around 90%, happened in low incomes countries. In India, cervical cancer ranks as the third 

most prevalent malignancy, exhibiting an incidence rate of 18.3%, which translates to 123,907 reported 

cases, and stands as the second foremost contributor to mortality, with a fatality rate of 9.1%, according 

to data from GLOBOCAN 2020 [2].  

Unlike other forms of cancers which are genetically triggered, the causation factor of cervical cancer 

is known to be a virus called human papillomavirus (HPV) [3], [4]. Cervical cancer can be completely 

cured if identified in its early stages [5]. Cervical cancer can be nipped off in the bud altogether through 

systematic screening and swift intervention. The World Health Organization (WHO) urged global 

countries to work towards the eradication of cervical cancer [6]. Globalized uniform cervical cancer 

screening can be a potential step toward achieving this goal [7]. 

Artificial intelligence (AI) [8] assisted cancer screening [9], [10] has gained notable traction in the 

past two decades, and cervical cancer diagnosis has benefitted remarkably from AI solutions [11]–[13]. 

Several researchers have embodied deep learning solutions for cervical cancer detection through medical 
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 Cervical cancer poses a significant threat to women's health in developing 

countries, necessitating effective early detection methods. In this study, we 

introduce the Colposcopic Multimodal Temporal Convolution Neural 

Network (CMT-CNN), a novel model designed for classifying cervical 

intraepithelial neoplasia by leveraging sequential colposcope images and 

integrating extracted features with clinical data. Our approach incorporates 

Mask R-CNN for precise cervix region segmentation and deploys the 

EfficientNet B7 architecture to extract features from saline, iodine, and 

acetic acid images. The fusion of clinical data at the decision level, coupled 

with Atrous Spatial Pyramid Pooling-based classification, yields remarkable 

results: an accuracy of 92.31%, precision of 90.19%, recall of 89.63%, and 

an F-1 score of 90.72. This achievement not only establishes the superiority 

of the CMT-CNN model over baselines but also paves the way for future 

research endeavours aiming to harness heterogeneous data types in the 

development of deep learning models for cervical cancer screening. The 

implications of this work are profound, offering a potent tool for early 

cervical cancer detection that combines multimodal data and clinical 

insights, potentially saving countless lives.   
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imaging [14]. Cervical cancer diagnostic images range from pap smear, colposcope, magnetic resonance 

imaging (MRI) to computerized tomography (CT) [15]. Singh et al. [16] published a chronological 

review of the deep learning solutions in screening of cervical cancer. The outcome of the survey ascertains 

that deep learning CAD solutions are a bridge to developing automatic screening of cervical cancer.  

Colposcopy imaging is considered the gold standard for identifying cervical. Colposcopy examination 

is a pivotal tool for cervical cancer screening that offers a greater degree of accuracy than the Thin-Prep 

cytologic test (TCT) tests and human papillomavirus (HPV) tests [17]. During a colposcopy test, 5% 

acetic acid is smeared on the cervix to highlight the cancerous features[18]. A colposcope is used to 

capture the cervix image, which would have the lesions appearing distinctly within a few minutes of 

acetowhite treatment. In some cases, the cervix images are captured in a time series fashion with acetic 

acid, saline, and Lugol's iodine application. Colposcopy image classification for diagnosis is generally 

done to differentiate benign and low/high squamous intraepithelial lesions [19] or cervical intraepithelial 

neoplasia (CIN). The CIN level (Fig. 1) is used as the class label in this classification study. Clinicians 

experience and expertise is the basis of diagnostic accuracy in traditional colposcope exam. It is a scarce 

resource in several low to middle income countries. There is an insufficient number of experienced 

specialists to accommodate the number of patients who need screening. Parallelly, several researchers are 

investigating the use of deep learning to distinguish between cervical lesions seen in colposcopy images 

to help with patients triaging in clinical settings and improve clinicians' diagnostic accuracy. The 

objective of this research is to develop a novel technique to handle multi stage cervix images and patient 

data to provide classification support to expert clinicians to enable efficient diagnosis of cervical cancer. 

 

Fig. 1. Cervix image representing the features in various levels of malignancy 

A well-structured literature review is essential as it provides a foundation of existing knowledge, 

contextualizes the research, and identifies gaps that this study aims to address. 

A significant amount of research is aimed at segmenting and classifying colposcope images  [20], 

[21]. Fan et al. [22] used a Mask R-CNN to segment the cervix area of interest, encoded the input 

images through EfficientNet B3 architecture, and attained 92.7% accuracy with 0.9856 AUC in 

classifying cancer. Yan et al. [23] designed a BFCNN, a bilinear fuse convolutional neural network for 

the segmentation and classification of cervigrams. Yuzhen Cao [24] developed a multiscale feature fusion 

classification network design for classifying the cervical transformation zone, which demonstrated an 

accuracy of 88.49% with 90.12% sensitivity. Asiedu et al. [25] used machine learning methods of using 

boundary boxes to extract ROI and classify the region through support vector machines. Despite their 

satisfactory performance, these models suffer from methodological fallibility of using a single acetic acid 

image as input. In order to overcome the said drawback, the input of the model could be enhanced to 

harbor multiple types of information like clinical reports, manual analysis findings, video sequences of 

target organ examination etc.  

However, the approach of using more than one input datatype (data modality) along with temporally 

acquired images is low in practice. Park et al. [26] used anatomical maps with texture and colour to 
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identify cancerous regions, then employed k-means clustering to divide these regions into sub-regions. 

Using a CRF classifier, they amalgamated the categorization results of surrounding areas. in a 

probabilistic way and finally determined the overall classification results with the help of KNN and LDA 

integration, thus enabling automatic recognition of normal, CIN, and SCC (squamous cells of the 

cervix). Xu et al. [27] carried out a study in which they took three pyramid features (PLBP, PLAB, and 

PHOG) and manually extracted them, then compared seven traditional classifiers and one convolutional 

neural network (CNN). The cancer classification was then completed, and it was found that CNN was 

more effective than the standard machine learning classifiers. Chen et al. [28] tested a multimodal deep 

fusion technique called MultiFuseNet to classify cervical dysplasia. They proposed Multimodal Fusion 

Learning for Cervical Dysplasia Diagnosis for feature fusion of image modality with metadata and 

reported an accuracy of 87.4% with 86.1% specificity and 88.6% sensitivity. Li et al. [29] created a 

computer-generated diagnostic program based on an AW opacity index, which yielded a diagnosis with 

84% specificity and 88% sensitivity. Authors of [30] developed a diagnostic image analysis system based 

on acetowhite lesion-based statistical features and evaluated its diagnostic accuracy. The reported 

sensitivity and specificity were 79% and 88%, respectively. Li et al. [31]constructed a convolutional 

network incorporating graph and edge features, denoted as E-GCN, and reported an accuracy of 78.33% 

when leveraging time series image characteristics. Perkins et al. [19]offered a contrasting perspective by 

integrating 17 time series colposcope images, their investigation revealing an absence of a significant 

improvement in accuracy upon analyzing the amalgamation of these 17 images. This finding prompts 

contemplation regarding the potential efficacy of incorporating non-image data to meaningfully enhance 

classification accuracy. Peng et al. [22] scrutinized the alterations in multimodal features through the 

development of a multi-state convolutional neural network employing a genetic algorithm approach, 

culminating in an impressive accuracy rate of 86.3%. Concurrently, Yinuo Fan et al. [32] devised a 

multimodal fusion colposcopic convolutional neural network (CMF-CNN), leveraging Squeeze-and-

Excitation (SE) fusion techniques, yielding an outstanding accuracy rate of 92.70%. The above two 

multimodal approaches have used image and clinical data. However, they have the limitation of using a 

single acetic acid image as input. Adding meaningful information from the cervix image via saline and 

Lugol's iodine solution application is the way forward to assert superior, interpretable, and dependable 

results. Li et al. [31] approached the time series imaging problem by building a graph convolutional 

network(E-GCN) with edge features to fuse sequential images of the cervigrams (images captured at 

60’s, 90’s, 120’s, 150’s) and achieved an accuracy of 78.33. A bird's eye view of the results presented in 

this section comes down to a scattered version of accuracies. One explanation to account for the varied 

results is that the strength of a deep learning model is dependent on the dataset size and quality. Higher 

accuracies with low sensitivity and specificity may represent the overfitting that could have occurred. In 

the same manner, the lesser accuracy with consistent specificity and sensitivity indicates the robustness 

of the trained model. In this article, we propose a colposcopic multimodal temporal CMT-CNN deep 

attention module that trains on heterogenous time series cervix image data in combination with clinical 

findings to classify cervical intra epithelial neoplasia. 

The "Colposcopic Multimodal Temporal Convolution Neural Network (CMT-CNN)" represents a 

crucial component of our study. This innovative model was specifically designed to address the unique 

challenges associated with cervical cancer detection using colposcopic imagery. CMT-CNN utilizes a 

combination of temporal convolutional neural networks and multimodal data integration techniques to 

enhance the accuracy of cervical cancer diagnosis. 

The key contributions of the paper are as follows 

• A novel specular reflection removal method is proposed to remove the specular reflections from 

surface of cervix image.  

• Mask Region convolution neural network is employed for segmenting the cervix region of interest 

from the colposcope image. 

• The visual features are extracted using an EfficientNet architecture which are further fused with 

the corresponding clinical data vectors at decision level.  



320 International Journal of Advances in Intelligent Informatics   ISSN 2442-6571 

 Vol. 10, No. 2, May 2024, pp. 317-332 

 

 

 Mukku and Thomas (CMT-CNN: colposcopic multimodal temporal hybrid deep learning model to…) 

• Finally, a deep neural network with Atrous special pyramid-based hybrid classification segregates 

the cancer cases 

To provide a more detailed understanding of CMT-CNN's functionality, we will elaborate on its key 

components, including the architecture, data preprocessing methods, and the rationale behind its 

multimodal approach in the methodology section. Additionally, we will highlight how CMT-CNN 

differs from existing techniques and the advantages it offers in terms of improved diagnostic accuracy 

and early detection in discussion section. By incorporating this information, we aim to ensure that 

readers have a comprehensive understanding of the innovative CMT-CNN model and its role in our 

research. 

The paper is structured as follows: Section 2 explains the methods and materials, Section 3 presents 

the results and discusses them, and Section 4 concludes the study 

2. Method 
The schematic architecture of the current study is given in Fig. 2. The proposed CMT-CNN 

performs the fusion learning of acetic acid, saline, and iodine images and clinical data, then makes a CIN 

classification. The approach was broken down into four main steps: preprocessing and specular reflection 

removal; segmentation of the cervical region; image feature extraction, combining multiple features from 

clinical data; and finally, the classification of the features. In the first step, the specular reflections are 

identified, removed, and inpainted. In the second step, the cervix region of interest is segmented to be 

extracted from the colposcope images using Mask R-CNN. Subsequently, the images were resized and 

normalized to a uniform level of 512x512. Next, networks designed to encode image features were chosen 

to extract the features separately. For this purpose, EfficientNet B7 [33] architecture was chosen as a 

feature encoding network. Following that step, a colposcopic multimodal temporal (CMT model) 

network for feature fusion, including an atrous spatial pyramid pooling (ASPP) [34] block, Conv block, 

squeeze and excitation block [35] is introduced, which compresses and fuses the multitype image features 

of the input. The clinical data is fused with the image features using the One-Hot encoding process, 

making it a preprocessed multimodal dataset ready for classification. In the last step, the clinical and 

image features are concatenated and classified using dropout, FS, and swish layers. 

 

Fig. 2. Schematic architecture of the CMT-CNN 
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2.1. Preprocessing and specular reflection 
Before beginning with the methodology, the entire dataset is preprocessed to remove specular 

reflections (SR). SR are high-intensity bright spots on the cervix caused by the moisture on the cervix 

reflecting the light from the colposcope. These spots are identical to the acetowhite lesions. AW lesions 

are the key features for the identification of the presence of cervical cancer. Since specular reflections 

(SR) have the same morphological appearance as acetowhite lesions, the diagnosis will be hindered by 

SR. In order to overcome the said drawback, it is essential to remove SR before classifying the cervigram. 

Over the last couple of decades, several researchers have proposed SR removal techniques using machine 

and deep learning methods.  

The fundamental principle of specular reflection areas involves the reflection of light from a smooth, 

shiny surface. This type of reflection produces a clear and sharp image of the light source as opposed to 

diffuse reflection, which produces a more scattered and diffused image. The angle at which the light 

strikes the surface, as well as the angle at which it is reflected, plays a pivotal role in understanding the 

characteristics of the reflected light. Additionally, the smoothness and shininess of the surface can affect 

the clarity and sharpness of the reflected image. (Fig. 3). 

 

Fig. 3. Specular reflections on the cervix surface 

Specular reflections obstruct the efficient analysis of cancerous changes in surface regions. For 

instance, [6] has explored the role of SR in confusing the endoscope procedure. SR removal has two 

phases. The first is to locate the specular region and remove the SR pixels. The second is to paint these 

areas back to their original morphology. During the phase of detection, generally, the image is projected 

into a diverse color space to facilitate further processing of the region of interest (ROI). For instance, 

the image formats used are RGB, grey-level [36], HSV, HSI [37], and a threshold value to identify the 

SR. Subsequently, the removed pixels are replaced with inpainting to preserve the image morphology. 

2.1.1. Specular reflection identification 
A specular reflection is a type of reflection in which the reflected light rays are at an angle to each 

other. In other words, the reflection is in the opposite direction as the incident light. In a bi-dimensional 

histogram, specular reflection refers to the symmetrical nature of the histogram when it is reflected along 

the x-axis or the y-axis. This means that the shape of the histogram remains the same after it is reflected, 

and the relative frequencies of the data points are preserved. Therefore, a bi-directional histogram 

decomposition is used to detect specular reflections whose formula is given in equations (1&2) 

𝑚𝑚 =  1
3

(𝑏𝑏 + 𝑔𝑔 + 𝑟𝑟)   (1) 

where 'm' stands for pixel intensity. 
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Here, 's' denotes saturation, and (r, g, b) = (red, green, blue). Two important threshold values (mmax, 

Smax) determine the specular reflection pixels through a bi-dimensional histogram. Two independent 

criteria that must be met for a pixel to be considered as SR are given in equation (2). 

2.1.2. Specular reflection removal 
Image linear correction is a simple and effective way usually employed to enhance image quality and 

is often used as a preprocessing step for more advanced image analysis techniques. It involves applying a 

linear transformation to the pixel values of the image in order to stretch or compress the range of 

intensity values. There are several different techniques that can be used for linear image correction. The 

pixel replacement should be executed in a manner that ensures the preservation of the essential 

information contained within the cervix image. Routinely, the SR pixels are replaced with the mean of 

pixels surrounding the pixel that needs to be replaced. 

2.1.3. Inpainting of deleted specular pixels 
The Laplacian equation is a partial differential equation that describes the behavior of a two-

dimensional surface. The Laplacian equation can be used in image repainting, a technique used to restore 

damaged images. In this context, the Laplacian equation can be used to identify SR in the image, which 

can then be used to repaint the SR areas. In order to apply the Laplacian equation in image repainting, 

the image is first convolved with a Laplacian kernel to enhance the edges and boundaries. The repainting 

is then performed in the areas of the image that have SR, using the enhanced edges and boundaries as a 

guide. The final step is to smooth the repainted areas and blend them with the rest of the image, to 

produce a seamless and natural-looking result. The equation for Laplace transformation is given in 

equation (3) 

𝐹𝐹(𝑠𝑠) = ∫ 𝑓𝑓(𝑡𝑡)𝑒𝑒−𝑠𝑠𝑠𝑠𝑡𝑡′∞
0    (3) 

2.2. Cervix region of interest (ROI) extraction 
A colposcope image frequently contains extraneous elements such as background noise and unwanted 

objects like vaginal walls and speculum [38]. The cervix region must be precisely cropped for subsequent 

efficient classification. The previous research on cervix ROI extraction is broadly classified into machine 

learning and deep learning methods. ML methods like gaussian mixture modelling [39], K means 

clustering [40], etc., were used extensively. As for deep learning methods, Deeplab V3 [41], Mask R 

CNN [42], and Faster R CNN are prominently employed. In this experiment, we adopted a supervised 

Mask R-CNN model because of its superior semantic object segmentation ability.  

A Mask Regional Convolutional Neural Network (Mask R-CNN) is a cutting-edge deep learning 

architecture specifically designed for instance partition and object detection tasks in computer vision. In 

our study, we leveraged Mask R-CNN as a pivotal component for cervix region segmentation within 

colposcopic images. Mask R-CNN is a CNN architecture for object detection and instance segmentation 

[43]. It draws out the Faster R-CNN object detection model by incorporating a new branch for object 

mask prediction along with the pre-existing one for bounding box recognition [42]. This allows the 

model to identify not only what objects are present in an image but also where they are located and what 

their precise shape is. This property makes Mask R-CNN an invaluable tool for tasks and image 

segmentation and object counting within the stream of medical imaging [43]. 

There is a backbone network of convolution neural network. This backbone network extracts 

hierarchical features from the input image, preserving spatial information at different scales. Mask R-

CNN includes an region proposal network (RPN), which scans the feature maps generated by the 

backbone network to propose potential object regions. These proposals are ranked based on their 
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likelihood of containing an object. After obtaining the region proposals, Region-of-Interest Align is 

used to extract fixed-size feature maps from the backbone network's output for each proposed region. 

This step ensures that each region has a consistent size, making it suitable for further processing. 

Subsequently a mask prediction functionality is implemented. This is the unique aspect of Mask R-

CNN. For each proposed region, it predicts a binary mask that specifies which pixels belong to the object 

of interest and which do not. This is achieved through a convolutional head that operates on the RoI 

feature maps. 

Mask regional convolution neural networks can attain greater accuracy in segmentation while taking 

the same amount of time due to its implementation of ROI Align technology, as compared to Faster R-

CNN. After being processed at the ROI align layer, convolution block layer, linear layer, and RPN layer, 

the cervical region is extracted and highlighted with the help of a ‘bounding box’. The information on 

the location and size of cervical region detected was recorded by recording the x- coordinates and y-

coordinates, along with the height and width of the upper origin of the rectangular box drawn (Fig. 4). 

It was then extracted and resized. 

 

   

   

   

Fig. 4. a) Initial image b) ROI marked c) Resized 

2.3. Feature extraction 
EfficientNet is a CNN architecture that has been designed to maximize both the accuracy and 

efficiency of a model. One way it achieves this is by using A scaling method that uniformly modifies the 

dimensions of network layers based on the magnitude of the input data. This allows the model to 

maintain a high level of accuracy even when working with small or large input images. Another way 

EfficientNet improves efficiency is by using a novel compound scaling method that scales the network 

in a more structured way, allowing it to achieve better performance with fewer parameters. 
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EfficientNet introduces a concept called "compound scaling," which involves systematically scaling 

the model in three dimensions: width (channel count), depth (layer count), and resolution (input image 

size). The goal is to find the right balance between these dimensions to maximize accuracy. To scale the 

depth of the network, EfficientNet repeats building blocks (combinations of convolutional and pooling 

layers) multiple times. The number of repetitions is determined by a parameter called the "depth 

multiplier." Increasing the depth allows the network to capture more complex hierarchical features. 

Width scaling involves increasing the number of channels (also referred to as the filter count or width 

multiplier) in each layer of the network. This parameter controls the network's capacity and helps it 

learn richer feature representations. In addition to that EfficientNet scales the input image resolution, 

allowing the model to process higher-resolution images. EfficientNet frequently utilizes depth-wise 

separable convolutions, a technique that dissects the conventional convolution process into two distinct 

layers: point-wise convolution and depth-wise convolution. Squeeze-and-Excitation (SE) blocks are 

implemented to enhance feature representations. SE blocks dynamically recalibrate feature responses on 

a per-channel basis., focusing on more informative channels and suppressing less relevant ones. 

The encoding part of the EfficientNet model was used for feature extraction from the saline, acetic 

acid, and iodine temporal sequential images. The model used inverted bottleneck convolution (MBconv) 

as a backbone network. This MBConv [44] made use of a separable deep convolution function for 

separating channels from regions, thus reducing the parameters needed. The SE attention mechanism 

introduced by Hu et al. in [45] SENet has been leveraged in this experiment to expand the sensing 

region. Further, based on each channel's importance, the parameters were allotted. The length of the 

sensing field is increased by dilating the convolution. Thereby enabling information to penetrate the 

neural network, thus assuring generalization and dependable accuracy. The use of the EfficientNet model 

significantly lowered the parameter count while retaining doubly harvested efficiency and accuracy.  

The layers of the network were kept at 30, among which the first layer is BachNorm (BN), followed 

by 26 MBconv layers, after which a single convolution layer (whose equation is given by (4)) is placed. 

Finally, another BN layer is put in place. The conv layer is of size 3 x 3 with a growth rate of 6. Once 

the EfficientNet model had completed the training process, its parameters were locked in place and 

could no longer be adjusted.  

𝑎𝑎(𝑚𝑚,𝑖𝑖) ∗  𝑏𝑏(𝑚𝑚,𝑖𝑖) = ∑ ∑ 𝑎𝑎(𝑧𝑧1, 𝑧𝑧2) ∙ 𝑏𝑏(𝑚𝑚− 𝑧𝑧1,𝑖𝑖 − 𝑧𝑧2)∝
𝑧𝑧2= −∝

∝
𝑧𝑧 = −∝   (4) 

2.3.1. Multimodal temporal feature fusion 
The time series images of saline, acetic acid, and iodine are individually processed to extract the 

relevant features (Fig. 5).  

 

Fig. 5.  Proposed architecture of CMT-CNN (a) 

The proposed model integrates these image features with selected clinical features to classify the 

malignancy. The dimensionality of the temporal image is reduced using the fusion module given in Fig. 

6. 
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Fig. 6.  Proposed architecture of CMT-CNN (b) 

2.3.2. Meta data module 
In this study we propose a hybrid attention module to integrate information from three colposcope 

images take in time series with the meta data of that case. Initially the image data has the features 

extracted through an EfiicientNet B7 model, whose output is a tensor. Subsequently the tensor is passed 

through a feature compression layer added at the end of the EfiicientNet, so as to convert the tensor 

into a vector. Parallelly, the metadata features are extracted through a random forest model. The output 

of the RF is a vector. In the next stage, the self-attention module assigns weights to the image and meta 

features separately. In addition to that, the hybrid attention module uses the Value from meta data to 

select weights for Queary and Key of the image vectors and vice versa. This enables the model to 

systematically select the important features with the help of complementary information. The final 

feature vector obtained from the hybrid attention module is classified into classes “normal”, “CIN1” and 

“CIN2” groups. 

2.4. Transfer learning 
In this paper, transfer learning [46] methods are employed to accelerate the network's convergence 

and improve its ability to preserve the characteristics of various designs sourced from various models. 

Make sure to keep the originality of each model's pattern and ensure that the features of each design 

remain distinct. Initially, using EfficientNet B7, which is an ImageNet pretrained model, the saline, 

acetic acid, and iodine applied images were trained, leading to an accelerated convergence rate for the 

network. The feature extraction and fusion networks were not trained separately. Instead, they were 

combined into a single network so that the loss would not converge owing to the complexity of 

mastering the features. The feature encoding layers of EfficientNet-B3 were frozen, and the outputs of 

the feature maps were incorporated as input in a multi-modal feature fusion classification system for 

image classification. Frozen parameters would ensure that none of the layers are updated during training, 

thereby preserving the benefits of the features extracted of iodine stained images and acetic acid images, 

ensuring there is no intercession between them, and avoiding any negative effect on results.  Post the 

optimal features acquisition, they were then fed into the successive colposcopic multimodal temporal 

classification framework (CMT-CNN) for the combination of two datatypes used in this experiment 

(Fig. 7). 

 

Fig. 7. Proposed architecture of CMT-CNN(c) 
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3. Results and Discussion 
This section presents the details of the experimental environment, dataset information, and 

evaluation metrics for assessing the performance of the model 

3.1. Experimental setup 
The model was implemented with a Python Google colab environment, utilizing an Intel Xeon W-

2233-based workstation equipped with 32 GB of RAM, a 1 TB HDD, and a 256 GB SSD processor. 

The computational power was further augmented by an NVIDIA Quadro P5000 GPU with 32 GB of 

dedicated memory. Essential libraries such as OpenCV and Matplotlib, among others, were employed to 

facilitate the model development and analysis. 

3.2. Dataset 
The dataset contained 906 uterine cervix images of saline, acetic acid, and Lugol's iodine stages. The 

target classes are Normal, CIN 1 (cervical intraepithelial neoplasia), and CIN 2. Each case contained 

three cervix images captured by a colposcope in the time intervals 0 seconds, 60 seconds, and 120 seconds. 

In addition to that, clinical data pertaining to age, HPV test result, CIN grade, observations, proposed 

course of treatment etc., corresponding to images is available for each case. The data was split in an 80:20 

ratio for training the model and testing it. The IARC Cervical Cancer Image Bank curates images sourced 

from diverse clinical environments. Images gathered retrospectively are eligible for inclusion solely when 

they conform to rigorous criteria concerning the image collection procedure and quality. A panel of 

experts meticulously assesses these images prior to their incorporation into the image bank. The process 

of image collection is a collaborative effort involving colposcopists and adheres to standardized formats. 

Moreover, access to the image bank is subject to stringent verification protocols, overseen either by duly 

regulated research teams or by commercial AI developers. 

3.3. Evaluation criteria 
We use the metrics accuracy, recall, precision and F-1 score to evaluate the performance of the model.  

Equations (5-8) encompass the mathematical formulations for the evaluation metrics acquired. Here, 

TP refers to true positive, TN true negative, FP false positive, FN false negative. 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑟𝑟𝑎𝑎𝐴𝐴𝐴𝐴 =  𝑇𝑇𝑇𝑇1+𝑇𝑇𝑇𝑇1
𝑇𝑇𝑇𝑇1+𝐹𝐹𝑇𝑇1+𝑇𝑇𝑇𝑇1+𝐹𝐹𝑇𝑇1

   (5) 

𝑅𝑅𝑒𝑒𝐴𝐴𝑎𝑎𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇1
𝑇𝑇𝑇𝑇1+𝐹𝐹𝑇𝑇1

   (6) 

𝑃𝑃𝑟𝑟𝑒𝑒𝐴𝐴𝑖𝑖𝑠𝑠𝑖𝑖𝑃𝑃𝑖𝑖 = 𝑇𝑇𝑇𝑇1
𝑇𝑇𝑇𝑇1+𝐹𝐹𝑇𝑇1

   (7) 

𝐹𝐹1 − 𝑆𝑆𝐴𝐴𝑃𝑃𝑟𝑟𝑒𝑒 = 2
1

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃+
1

𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅
   (8) 

3.4. Segmentation results 
Visual noise from the vaginal wall, speculum, and cotton swabs can disrupt the diagnosis in 

colposcopy images. To increase the accuracy of the diagnosis, preprocessing methods have been applied 

to extract the region of interest without extraneous noise. Region-based convolution neural network 

was implemented to isolate the cervical area of cervigrams, followed by resizing the ROI into a 

predetermined ratio of 512 x 512. The uniform size of the image makes it easy to feed them to the 

CMT- CNN framework. The average precision of Mask R-CNN was noted to be 93.12 %. 

3.5. Classification results 
Using the correct type of neural network structure will help to identify important characteristics in 

images and boost the precision of classification. The same image feature encoding networks were 

compared against each other by using them to train, verify and test the saline, acetic, and iodine image 

datasets, respectively. The EfficientNet B7 module has performed with an accuracy of 92.31%, precision 
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of 90.19%, recall of 89.63, and F-1 score of 90.72. The convergence of the CMT-CNN model was 

monitored by recording the losses from training and validation at each epoch (Fig. 8). 

 

Fig. 8. Training and validation accuracy of CMT-CNN 

Table 1 gives a comparison of the current framework's results with respect to state-of-the-art models. 

The results demonstrate that the CMT CNN model’s results are superior to the previous reported works. 

Table 1.  Comparative analysis of the state of art models with proposed method 

Study Model Accuracy(%) Dataset 
[47] Colponet 81.35 Acetic acid image 

[23] BF-CNN 85.50 Acetic acid image and iodine image 

[20] CMF- CNN 92.70 Acetic acid, iodine image and text data. 

[48] ResNet 50  86.80 Acetic acid and text data 

[31] ResNet 50 + EGCN 78.33 5 acetic acid images taken in time series 

[49] MobileNet V 83.33 1 iodine image and 5 acetic acid images  

[50] ResNet 50 84.10 1 iodine image, 1 acetic acid image, 1 text data 

Proposed  CMT CNN 92.31 1 saline image, 1 acetic acid image, 1 iodine image 

with clinical findings.   

 

Table 1 presents a comparative analysis of the state-of-the-art models that attempted to classify 

cervical intraepithelial neoplasia. To contextualize the achievements of the CMT-CNN model, it is 

essential to contrast its efficiency with reference to other available models in cervical cancer classification 

tasks. Table 1 presents a summary of accuracy rates achieved by various models on different datasets. 

The CMT-CNN model attained an accuracy of 92.31%.using a dataset consisting of a saline image, 

an acetic acid image, an iodine image, and clinical findings. This remarkable accuracy underscores the 

model's effectiveness in classifying cervical lesions. In comparison, the Colponet model [50] achieved an 

accuracy of 81.35% using only acetic acid images. While this model shows promise, it falls short of the 

CMT-CNN's performance. The BF-CNN model [24], which utilized acetic acid and iodine images, 

achieved an accuracy of 85.50%. Although an improvement over Colponet, it still lags behind the CMT-

CNN. 

The CMF-CNN model [21] stands out with an impressive accuracy of 92.70%, which is on par with 

the CMT-CNN. However, it's important to note that CMF-CNN utilized text data in addition to iodine 

images and acetic acid images. This highlights the potential advantages of incorporating diverse data 

types in cervical cancer classification. The ResNet 50 model , using acetic acid and text data, achieved an 

accuracy of 86.80%, while the ResNet 50 + EGCN model [33], which utilized a time series of five acetic 

acid images, achieved an accuracy of 78.33%. MobileNet V , which combined one iodine image with five 
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acetic acid images, achieved an accuracy of 83.33%. Finally, the ResNet 50 model , using one iodine 

image, one acetic acid image, and text data, achieved an accuracy of 84.10%. 

It is evident that a combination of 1 saline image, 1 acetic acid image, 1 iodine image with clinical 

findings is the input that brought about the best accuracy.  

The findings of this study have significant implications for cervical cancer screening and the broader 

field of medical imaging. Firstly, the CMT-CNN model's accuracy in classifying cervical lesions indicates 

its potential as a valuable tool for healthcare providers. It has the capacity to assist in the early 

identification of cervical cancer, enabling timely intervention and improving patient outcomes. 

Moreover, the incorporation of diverse data types, including images and clinical findings, suggests a new 

direction in medical image analysis. The success of the CMF-CNN model, which used text data alongside 

images, underscores the importance of holistic patient information in diagnosis. This methodology holds 

promise for extension to additional medical imaging applications, enhancing the accuracy of disease 

detection and patient care. 

Additionally, the CMT-CNN model's performance highlights the utility of temporal information in 

medical imaging. By considering sequential images taken over time, the model can capture dynamic 

changes in cervical lesions, further improving diagnostic accuracy. This temporal approach may find 

applications in other areas of medical imaging, where monitoring disease progression is crucial. 

3.6. Discussion 
In the field of colposcopy, the integration of clinical evidence with colposcopic images has long been 

the standard practice for cervical cancer diagnosis. While computer-aided diagnosis (CAD) algorithms 

based on colposcopic images have provided valuable support to medical practitioners, they have not 

reached a level of comprehensiveness where they can replace the expertise of clinicians entirely. In 

recognition of this, our current study has attempted to bridge this gap by developing the Colposcopic 

Multimodal Temporal Convolution Neural Network (CMT-CNN) framework. This innovative approach 

aims to enhance the precision of cervical lesion diagnosis by amalgamating multimodal clinical data with 

temporal information derived from the colposcopic image data. Atrous special pyramid-based hybrid 

classification" is a critical component of our proposed Colposcopic Multimodal Temporal Convolution 

Neural Network (CMT-CNN) architecture. "Atrous" pertains to atrous convolution, also recognized as 

dilated convolution, a technique that expands the convolution layer’s receptive field while minimizing 

the escalation in the number of parameters. Atrous convolutions empower the network to glean insights 

from a wider context, an advantageous trait, especially in image classification tasks. 

The incorporation of multimodal clinical data represents a significant advancement, as it recognizes 

the intricate interplay of various patient-specific factors in the diagnostic process. By encompassing 

variables such as age, HPV test results, CIN grade, and histopathology findings, our model strives to 

provide a more holistic understanding of the health status of the patient. This integration not only 

contributes to the accuracy of the diagnosis but also aligns with the comprehensive approach adopted by 

medical practitioners. 

Furthermore, the utilization of temporal information extracted from colposcopic images adds another 

layer of sophistication to our framework. This temporal dimension captures dynamic changes in cervical 

lesions over time, which can be invaluable in distinguishing benign from malignant lesions. It also allows 

for the identification of subtle alterations that may elude conventional static image analysis. 

By integrating clinical data, our model gains access to valuable information that medical practitioners 

typically consider when making a diagnosis. For instance, the age of the patient can be a critical factor 

in assessing the risk of cervical cancer. Additionally, the CIN grade is a source of critical information on 

the severity of cervical lesions. The fusion of clinical data allows our model to make more precise and 

personalized diagnoses. It enables the model to consider individual patient characteristics, which can 

result in tailored and accurate predictions. For example, the presence of high-risk HPV in a younger 

patient might indicate a different level of concern compared to the same finding in an older patient. Our 

CMT-CNN framework uses both image features and clinical data to arrive at its final classification. This 
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holistic approach ensures that the model's predictions are not solely reliant on visual cues from 

colposcopic images. Instead, it combines these cues with patient-specific information, mirroring the 

decision-making process of medical professionals. 

However, it is essential to acknowledge the limitations and potential drawbacks in our experimental 

design. One notable limitation is the possibility of our approach failing to detect lesions in the cervical 

canal of patients with type 2 and type 3 transformation zones (TZ). Lack of exposure and visibility of 

these lesions on colposcopic images can impede their accurate diagnosis. This limitation underscores the 

need for complementary diagnostic methods and a multidisciplinary approach in challenging cases. 

Another aspect that warrants consideration is the relatively limited size of our dataset. The dataset's 

size can impact the accuracy of feature extraction and classification, potentially limiting the model's 

ability to generalize to a broader population. Additionally, our study did not encompass an analysis of 

polyps and stenosis, which are important considerations in cervical health assessment. Future research 

endeavors should aim to address these limitations by expanding the dataset and exploring the 

incorporation of additional diagnostic factors. 

4. Conclusion 
Cervical cancer holds a high burden of malignancy and mortality in developing countries. It is caused 

by a sexually transmitted virus, HPV, left untreated for long durations, and this cancer does not have a 

genetic trigger, making it curable. Early diagnosis is the key to treatment and curing cancer completely. 

Clinicians do not limit their analysis to just the single cervix image when making a diagnosis but should 

also incorporate the saline image, iodine image, and other clinical data to make a more informed decision. 

This information can help them determine the best course of action for their patient. This study puts 

forth a colposcope multimodal temporal fusion model to integrate the cervix images taken in time series 

along with the clinical data of each case. This approach is complementary to the aggregation of 

information that doctors use. The CMT CNN framework aggregates all the information a clinician 

would have to consider to make a diagnosis. A Mask R-CNN was employed for the cervix region of 

interest extraction. A multimodal temporal fusion-based feature network is employed to integrate image 

and text features and subsequently classify them into three categories: normal, CIN1,2, and CIN2. This 

network includes components such as the Atrous Spatial Pyramid Pooling (ASPP), Squeeze-and-

Excitation (SE) module, and Convolutional Blocks. The current model performed with a precision of 

90.19%, accuracy of 92.31, F-1 score of 90.72, and recall of 89.63, which we consider satisfactory. A 

broader implication of our findings is that the integration of multimodal information could serve as the 

bridge that closes the gap between human and machine-based medical diagnosis. Overall, the method 

not only enables clinicians to make a more informed diagnosis but also serves as a direction to explore 

multi-stage inputs like adding the pap test images, HPV results etc., as inputs for better diagnostic 

performance. 
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