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1. Introduction 
Statistical process monitoring methods are necessary for effective monitoring of the production status 

of a process plant to keep quality consistency and operation safety. However, the nonlinearity, process 

dynamics, and process uncertainties in chemical processes make online monitoring challenging. Due to 

the complexity in large processes, the process model based on first-principle knowledge is very difficult 

to be obtained. In contrast, the data-driven models which is able to perform well in process modeling 

without any precise physical knowledge of the process attracts a lot of attention from the industry. 

Dynamic partial least squares (DPLS) [1] and dynamic inner PLS [2] were developed to describe the 

dynamic properties of processes, but both of them cannot handle the nonlinear behavior of the systems. 

To handle nonlinear dynamic processes, the kernel trick is used in DPLS. Its shallow structure with a 

single kernel function confines the kernel-based dynamic PLS in the highly nonlinear process. Also, the 

large historical data would cause a heavy computational burden. Recently, recurrent neural networks 

(RNNs) [3], [4] and long-short term memory (LSTM) [5]–[7] are widely used as soft-sensor models 

because of their ability to represent the nonlinear dynamic feature. To keep a lower dimension and a 
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 In the competitive market, process monitoring can ensure the quality of 

products, but strong nonlinearities, slow dynamics, and uncertainties 

characterize the complexities of the large-scale chemical plant. When the 

fault occurs, it will not influence the process instantaneously but will react 

after a few time points. After all the products affected by the faults are 

inspected, it is too late to fix the process. Conventional approaches neither 

do nor care about early detection before any disturbance significantly affects 

the process. To estimate disturbances propagated through the process, a 

multi-step prediction model is essential. The purpose of early process 

monitoring is to detect any problem with the currently running process as 

early as possible. In this paper, a multi-step prediction system is proposed. 

The system is a dynamic model that can capture the dynamic relationship 

of past process input variables and future process output variables. It 

provides a lower dimension and a lower noise-contaminated space for data 

analysis. Particularly, the past input and output process data can be mapped 

from the observation space into the latent space to acquire their intrinsic 

properties. The latent variables preserve the dynamic information for future 

multi-step prediction so that early warning can be achieved. An industrial 

example of the PVC dying process is presented to show the multistep 

predictive ability of the proposed method.  

 

 

This is an open access article under the CC–BY-SA license. 

    

 

 

Keywords 
Multi-step prediction 
Early warning 
Dynamic model 
Probabilistic model 
State-space model 
 

 

https://doi.org/10.26555/ijain.v10i2.1528
http://ijain.org/index.php/IJAIN/index
mailto:ijain@uad.ac.id?subject=%5BIJAIN%5D
mailto:jason@wavenet.cycu.edu.tw
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://crossmark.crossref.org/dialog/?doi=10.26555/ijain.v10i2.1528&domain=pdf


334 International Journal of Advances in Intelligent Informatics   ISSN 2442-6571 

 Vol. 10, No. 2, May 2024, pp. 333-347 

 

 

 Lee et al. (A novel multi-step prediction model for process monitoring) 

lower noise-contaminated space while constructing dynamic models, integrate LSTM or RNN with 

latent variable models. The Gaussian-Bernoulli restricted Boltzmann machine [8] and an ensemble 

model that integrates the stacked autoencoder and bi-directional LSTM were developed [9].  Although 

the aforementioned methods can learn the dynamic properties of processes, they are only used to estimate 

and monitor the data at the current time point only, not at the future multi-step time points, so the 

monitoring models neither do nor care about early detection before any disturbance significantly affects 

the process. To our best knowledge, the performance of their applications on early warning monitoring 

has rarely been researched. 

To realize a model which detects the influence of faults at the early time, a multistep prediction 

model which can describe the temporal properties of the process as well as predict the future trend 

properties of the process is required. At present, approaches to multistep prediction are mainly developed 

under some fundamental multistep prediction strategies [10]. In the iterative and direct strategy, 

nonlinear autoregressive with exogenous input (NARX) was proposed [11]. With a one-step-ahead 

NARX developed to predict the output in the next time point, the forecasted values at the future time 

point are used subsequently and recursively as inputs for predictions at future time points until the entire 

prediction horizon is forecasted. The drawback of NARX with the iterative strategy may yield the 

accumulation of errors and the dimension of data would increase with the expansion of the window size. 

This certainly increases the computation loading and makes the performance of the model affected by 

the redundancy of variables and the noise of data to a certain extent. To eliminate the impact of correlated 

variables and noise, the model in the latent feature space instead of the observation space is highly 

attractive. The optimally pruned extreme learning model (OP-ELM) with the direct strategy [12]–[14] 

was proposed to perform the multi-step prediction. It is a multi-model approach. The number of one-

step-ahead prediction models depends on the number of prediction horizons. And the prediction of each 

model in each horizon is independent of the others. The direct strategy can prevent the problem of error 

accumulation, but it would induce conditional independence of the prediction. Like ELM, OP-ELM 

has a fast computation speed, but it is considered a shallow model, so it may not be able to describe the 

complicated industrial process.  

To describe the complex dynamic behavior of processes, RNN and LSTM are widely used to develop 

multi-step prediction tasks in different fields such as multi-step prediction for cutterhead torque [15], 

travel time prediction [16] etc. Also, transductive LSTM for time series prediction is applied to weather 

forecasting [17]. The LSTM autoencoder neural network (LSTMED) [18], [19], which is a task-

oriented method for uneven dynamic process monitoring model, was developed in an unsupervised 

manner to solve the problem of insufficient faulty data [20]. Particularly, the approach which can 

expertise the important input information is conducted into the modeling of multistep methods. The 

denoising spatial-temporal encoder-decoder (DSTED) [21] which integrated denoising gated recurrent 

unit (DGRU) [22], [23] and sequence-to-sequence spatial-temporal encoder-decoder network was 

proposed to predict the burn-through point of ore sintering process. The LSTM-temporal convolutional 

network, which is a temporal emphasized model, is proposed in [24] to predict the photovoltaic power 

multistep ahead to control the intermittency of solar energy. Hybrid methods, such as WT-ED-LSTM,  

which consists of wavelet transformation, encoding-decoding based on LSTM and prediction LSTM 

with attention mechanism, and VMD-LSTM, which integrated variation mode decomposition (VMD) 

[25], [26], attention-LSTM [27], and support vector regression (SVR) [28], [29], were proposed for 

coal price forecast [30]. Although the aforementioned method looks promising in multistep prediction, 

but there were developed as deterministic models; thus, they cannot demonstrate the uncertain nature 

in reality.  

Most predictive models developed in the past were focused on predicting the data at the current 

time. When any disturbances occur, the disturbance would propagate through the entire process before 

the qualities are significantly affected.  After all the products are inspected, it is too late to fix the process.  

If the abnormal occurrence, which does not significantly influence the process at the beginning, can still 

be detected as early as possible, the operators can compensate for the disturbance before the quality 
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significantly deviates from the desired specification. In this paper, a multi-step prediction system is 

proposed. The multi-step prediction system is a dynamic model and it is called the Multi-NSSM, which 

is short for Multi-Step Nonlinear State Space Model. Multi-NSSM captures the dynamic relationship 

of manipulated, process input variables and process output variables. Multi-NSSM integrates the 

encoder-decoder and the probability state-space model to efficiently extract the latent features for future 

process output probability estimation at multi-ahead time points. Specifically, a multi-step prediction 

system provides a lower dimension and a lower noise-contaminated space for data analysis. The past 

input and the past output process data can be mapped from the observation space into the latent space 

to acquire the intrinsic properties. They preserve the dynamic information for future multi-step 

predictions so that early warning can be achieved. In contrast to one-step-ahead prediction learning 

scheme, the multi-step ahead prediction learning scheme makes sure that the prediction result within 

the prediction horizon is good on average. Thus, multi-step ahead prediction can reject the effect of the 

noisy data and stabilize the probability estimation of the future data. 

2. Method 
In a typical operation, there are 4 main types of variables: manipulated variables, process input 

variables, process output variables, and quality variables. Manipulated variables are the ones that maintain 

some of the process output variables in the desired condition, like the control valve openings while 

process input variables are any variables which are not adjustable, like the upstream flows, heating steams, 

and the other source inputs to the process, but they cause the changes of process output variables. The 

set of time-series data of both manipulated and process input variables are symbolized by 

{ }, 1, ,M
t t T= ∈ =U u  

 here. To make simple, compact explanations, only process input variables 

representing both manipulated and process input variables are discussed as follows. Process output 

variables refer to the variables that reflect the process operating status such as temperatures, pressures, 

etc. of the process; it is symbolized by 

{ }, 1, ,N
t t T= ∈ =X x  

. In the large-scale system, process 

output variables cannot be completely and immediately affected by the changes of the manipulated or 

process input variables due to the slow dynamic behaviors of the operating system. Thus, there is a 

dynamic relationship between 

U
 (the process input variables) and 

X
 (the process output variables). 

The dynamic behaviors of process input variables (
tu
) and process output variables (

tx
) can be 

represented by a stochastic nonlinear state-space model. They are written as. 

𝐳𝐳𝑡𝑡 = 𝑓𝑓𝑢𝑢(𝐮𝐮𝑡𝑡 ,𝐝𝐝𝑡𝑡) + 𝐦𝐦𝑡𝑡    

𝐳𝐳𝑡𝑡+1 = 𝑓𝑓𝑧𝑧(𝐳𝐳𝑡𝑡) + 𝛆𝛆𝑡𝑡+1    

𝐱𝐱𝑡𝑡+1 = 𝑔𝑔𝑥𝑥(𝐳𝐳𝑡𝑡+1) + 𝐧𝐧𝑡𝑡+1   (1) 

where tz  represents the state-space variables extracted from process input variables and unmeasured 

disturbances ( td ). Meanwhile, tz  also represents the latent variable (LV) of the process model. uf  is 

the vector mapping function that describes the observation variables ( )tu  from the observation space 

into the latent space to acquire the inherent properties of the process. As the nonlinear dynamic process 

is depicted in the latent space, zf , which is a step-ahead prediction vector function, predicts the dynamic 

nonlinear behavior of the process in the next time step. With the corresponding step-ahead predicted 

latent variables ( )1t+z , xg  is the unknown vector mapping functions that reconstruct the observations 

of the originally predicted process variable. tε  and tm  are the process noise associated with dynamic 

changes in latent variables while tn  represents the observation noise of the process data. All noises 

assume to follow zero-mean Gaussian distributions, ( ) ( )~ 0,tp Nm I , ( ) ( )~ 0,tp Nε I  and 

( ) ( )~ 0,tp Nn Γ , where the covariance matrices of tε  and tm  are assumed to be identity matrices. 
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To predict the future trend of the process output variables, the dynamic transition in (1) for one-

time point to the future time points should be rewritten as : 

𝐳𝐳𝑃𝑃𝑡𝑡 = 𝑓𝑓𝑈𝑈(𝐔𝐔𝑃𝑃𝑡𝑡 ,𝐃𝐃𝑃𝑃𝑡𝑡)    

𝐳𝐳𝐹𝐹𝑡𝑡 = 𝑓𝑓𝑧𝑧(𝐙𝐙𝑃𝑃𝑡𝑡)    

𝐳𝐳𝐹𝐹𝑡𝑡 = 𝑔𝑔𝑥𝑥(𝐙𝐙𝐹𝐹𝑡𝑡)   (2) 

where 

1, , ,
t pP t t t τ− −

 =  Z z z z
 is the state-space variables from the current and previous 

pτ
 time points 

while 

1 2, , ,
t fF t t t τ+ + +

 =  Z z z z
 denotes the state variables of the future 

fτ
 time points. The definitions 

of 
tPU
, 

tPD
, and 

tFX
 are similar to those of 

tPZ
 and .

tFZ
., but they are not detailed here. As the 

disturbances are unmeasurable, their information would be inherited by the past measured process 

outputs, so 

( ),
t tp PfU U D

 can be replaced by 

( ),
t tp PfU U X

. Thus, 

( ),
t tp PfU U X

 is a dynamic vector 

mapping function that maps process input variables and process output variables from the observation 

space into the latent space to extract the dynamic characteristics of the data. 

( )tpfZ Z
 is the multi-step 

prediction vector function that predicts the long-term future trend of the state in the latent space based 

on 
tPZ
. With the predicted latent variables in the future time points, the corresponding long-term 

future process output variables 

( )tFX
 can be reconstructed by the vector mapping functions, 

( )tFgX Z

. With noise probability distributions, the probability distributions of the state-space model in (2) can 

be further rewritten in a conditional probability form. 

𝑝𝑝(𝐙𝐙𝑃𝑃𝑡𝑡|𝐔𝐔𝑃𝑃𝑡𝑡,𝐗𝐗𝑃𝑃𝑡𝑡)~𝑁𝑁�𝑓𝑓U�𝐔𝐔𝑃𝑃𝑡𝑡�, 𝐈𝐈�    

𝑝𝑝(𝐙𝐙𝐹𝐹𝑡𝑡|𝐙𝐙𝑃𝑃𝑡𝑡)~𝑁𝑁�𝑓𝑓z�𝐙𝐙𝑃𝑃𝑡𝑡�, 𝐈𝐈�    

𝑝𝑝(𝐗𝐗𝐹𝐹𝑡𝑡|𝐙𝐙𝐹𝐹𝑡𝑡)~𝑁𝑁�𝑔𝑔x�𝐙𝐙𝐹𝐹𝑡𝑡�,𝚪𝚪�   (3) 

( )|
t tF Pp Z Z  in (3) describes the state estimation transition of the latent variables from the current 

and previous time points to the future time points.  ( )|
t tF Pp Z Z  is referred to as estimation transition 

distribution and ( )|
t tF Fp X Z  is known as emission distribution for reconstructing the future process 

output variables. To acquire this multi-step prediction state-space model, the functions and the 

parameters ( ) ( ) ( ){ }, ,g ,f fU Z X Γ    in (3) should be estimated by maximizing the conditional log-

likelihood function of the future process output variables given process input variables. The modeling 

scheme will be detailed below. 

To have the model predict the future process outputs by the past process inputs and outputs, the 

goal of the modeling scheme is set to maximize the probability likelihood of the future process output 

estimates conditioned on the past process inputs and outputs within the window sequential data. The 

maximum probability is defined as  

max In ∏ 𝑝𝑝𝜃𝜃(𝐗𝐗𝐹𝐹𝑡𝑡|
𝑇𝑇−𝑡𝑡𝑓𝑓−𝑡𝑡𝑝𝑝
𝑡𝑡=1 𝐔𝐔𝑃𝑃𝑡𝑡 ,𝐗𝐗𝑃𝑃𝑡𝑡)   (4) 

The probability likelihood of the whole sequence with 
T

 samples can be represented by multiplying 

the probability likelihood of the window data 

f pT τ τ− −
. 

1, , ,
t p pP t t tτ τ− − +

 =  X x x x
, 
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1, , ,
t p pP t t tτ τ− − +

 =  U u u u
, and 

1 2, , ,
t fF t t t τ+ + +

 =  X x x x
, where 

fτ
 refers to the multi-step 

prediction horizon while 

pτ
 represents the length of the window data with the past measurements. 

Henceforth, for easy and compact expression, only time 

t
 window sequential data as (4) is tentatively 

considered in the following derivations. Time series process show as Fig. 1. 

 

Fig. 1. Time-series process input and output data are mapped from the observation space into the latent space. 

Then rearrange the time-series latent variables (the left side) and the future time-series process outputs 

(the right side) into 2-dimensional window data 

In large-scale processes, climate and environmental changes and the various types of sensor errors 

cannot be avoided, so there are uncertain measurement data. To have a robust model, the proposed 

method is used to establish a multistep predictive model that can predict the long-term trend of the 

process outputs at the future time points in the latent space. The latent features ( )Z  can be obtained 

through mapping f pT τ τ− −  overlapping windows with the process input and output data ( ),U X  into 

the latent variables { }; 1, ,t f pt T τ τ= = − −Z Z   (left side of Fig. 1). The historical future process 

outputs are rearranged into 2-dimensional window data, (right side of Fig. 1). The window data are 

assigned as the target to train the model, which has a future prediction ability. 

To obtain the inner behaviors of the processes, measurement data can be mapped from the 

observation space into the latent space. Assume process output variables are the function of latent 

variables. The conditional probability distribution can be expressed as 

𝑝𝑝𝜃𝜃�𝐗𝐗𝐹𝐹𝑡𝑡�𝐔𝐔𝑃𝑃𝑡𝑡 ,𝐗𝐗𝑃𝑃𝑡𝑡� = ∬𝑝𝑝�𝐗𝐗𝐹𝐹𝑡𝑡�𝐙𝐙𝐹𝐹𝑡𝑡�  𝑝𝑝(𝐙𝐙𝐹𝐹𝑡𝑡|𝐙𝐙𝑃𝑃𝑡𝑡)𝑝𝑝(𝐙𝐙𝑃𝑃𝑡𝑡|𝐔𝐔𝑃𝑃𝑡𝑡 ,𝐗𝐗𝑃𝑃𝑡𝑡)�����������������𝑑𝑑𝐙𝐙𝐹𝐹𝑡𝑡𝑑𝑑𝐙𝐙𝑃𝑃𝑡𝑡
𝑝𝑝𝜃𝜃(𝐙𝐙𝐹𝐹𝑡𝑡 ,𝐙𝐙𝑃𝑃𝑡𝑡|𝐔𝐔𝑃𝑃𝑡𝑡 ,𝐗𝐗𝑃𝑃𝑡𝑡)

  (5) 

With Bayes and Jensen equality, ( )ln | ,
t t tF P Ppθ X U X  can be further rearranged into the variational 

lower bound, written as 

𝐿𝐿�𝐗𝐗𝐹𝐹𝑡𝑡�𝐔𝐔𝑃𝑃𝑡𝑡 ,𝐗𝐗𝑃𝑃𝑡𝑡� = 𝐸𝐸𝑞𝑞∅(𝐙𝐙𝐹𝐹𝑡𝑡|𝐙𝐙𝑃𝑃𝑡𝑡)[In 𝑝𝑝𝜃𝜃(𝐗𝐗𝐹𝐹𝑡𝑡|𝐙𝐙𝐹𝐹𝑡𝑡)   (6) 

−𝐸𝐸𝑞𝑞∅(𝐙𝐙𝑃𝑃𝑡𝑡|𝐔𝐔𝑃𝑃𝑡𝑡 ,𝐗𝐗𝑃𝑃𝑡𝑡)[𝐾𝐾𝐿𝐿 �𝑞𝑞∅�𝐙𝐙𝐹𝐹𝑡𝑡�𝐙𝐙𝑃𝑃𝑡𝑡�� �𝑝𝑝𝜃𝜃�𝐙𝐙𝐹𝐹𝑡𝑡�𝐙𝐙𝑃𝑃𝑡𝑡���   

−𝐾𝐾𝐿𝐿(𝑞𝑞∅(𝐙𝐙𝑃𝑃𝑡𝑡|𝐔𝐔𝑃𝑃𝑡𝑡 ,𝐗𝐗𝑃𝑃𝑡𝑡)| �𝑝𝑝𝜃𝜃�𝐙𝐙𝑃𝑃𝑡𝑡�𝐔𝐔𝑃𝑃𝑡𝑡 ,𝐗𝐗𝑃𝑃𝑡𝑡��   
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The whole Multi-NSSM model structure is presented in Fig. 2 and it contains three parts of the 

models, including the posterior distribution model ( ( )| ,
t t tP P Pqφ Z U X  and ( )| ,

t t tP P Ppθ Z U X ), the 

sequence-to-sequence encoder-decoder network ( ( )|
t tF Pqφ Z Z  and ( )|

t tF Ppθ Z Z ), and the 

reconstructed decoder network ( ( )|
t tF Fpθ X Z ). The description of each part in the variational lower 

bound is presented in the subsections below. 

 

Fig. 2. Structure of Multi-NSSM model 

2.1. Posterior distribution model  ( ( )| ,
t t tP P Pqφ Z U X  and ( )| ,

t t tP P Ppθ Z U X ) 

Before going through the multi-step ahead predictions in the latent space, the main task is to extract 

the dynamic latent features at the current and past time points. The inference posterior distribution 

( )| ,
t t tP P Pq Z U X  and the true posterior distribution ( )| ,

t t tP P Pp Z U X  are used to map the process input 

variables from the observation space into the latent space to obtain the inherent process latent behaviors. 

Due to the slow dynamic behaviors in the large-scale process, the state of the process will be affected by 

sequential information, shown as 

𝐡𝐡𝑡𝑡 = 𝚲𝚲(𝐮𝐮𝑡𝑡−𝜏𝜏𝑝𝑝:𝑡𝑡 , 𝐱𝐱𝑡𝑡−𝜏𝜏𝑝𝑝:𝑡𝑡)   (7) 

also can be denoted as  

𝐡𝐡𝑡𝑡 = 𝚲𝚲(𝐡𝐡𝑡𝑡−1,𝐮𝐮𝑡𝑡 , 𝐱𝐱𝑡𝑡)   (8) 

represents the forward RNN transition while. (10) demonstrates the backward RNN. 

�̃�𝐡𝑡𝑡 = 𝚲𝚲(�̃�𝐡𝑡𝑡+1,𝐮𝐮𝑡𝑡−𝜏𝜏𝑝𝑝:𝑡𝑡 , 𝐱𝐱𝑡𝑡−𝜏𝜏𝑝𝑝:𝑡𝑡)   (9) 

The bi-directional recurrent neural network (Bi-RNN) is used to map the observation process input 

variables into the RNN hidden cell state h . The forward RNN learns the dynamic transition information 

of sequential data from 1t −  to t  while the backward RNN captures the dynamic properties from t  to 

1t −  to enhance the information of the latent features. The initial states of the backward RNN can be 

obtained via the final hidden state of the forward RNN; on the contrary, the initial states of the forward 

RNN can be obtained from the final hidden state of the backward RNN. One of the advantages of using 

Bi-RNN is smoothening the initial state of the model; thus, model precision increases and model 



ISSN 2442-6571 International Journal of Advances in Intelligent Informatics 339 

 Vol. 10, No. 2, May 2024, pp. 333-347 

 

 Lee et al. (A novel multi-step prediction model for process monitoring) 

overfitting is prevented. The Bi-RNN structure of ( )| ,
t t tP P Pp Z U X  is almost the same as 

( )| ,
t t tP P Pq Z U X .  The only difference is that ( )| ,

t t tP P Pq Z U X  is changed to  ( )| ,
t t tP P Pp Z U X . 

To obtain the latent feature pZ , Kalman smoother is used to transform the hidden state from Bi-

RNN into the latent space to form the posterior distributions ( )| ,
t t tP P Pq Z U X  and  ( )| ,

t t tP P Pp Z U X

. Then the similarity of the distributions between ( )| ,
t t tP P Pq Z U X  and ( )| ,

t t tP P Pp Z U X  in the third 

term of the right side of(6) can be calculated by the KL divergence. 

𝐾𝐾𝐿𝐿(𝑞𝑞𝜙𝜙(𝐙𝐙𝑃𝑃𝑡𝑡|𝐔𝐔𝑃𝑃𝑡𝑡 ,𝐗𝐗𝑃𝑃𝑡𝑡)| �𝑝𝑝𝜃𝜃�𝐙𝐙𝑃𝑃𝑡𝑡�𝐔𝐔𝑃𝑃𝑡𝑡 ,𝐗𝐗𝑃𝑃𝑡𝑡��   (10) 

2.2. Sequence-to-sequence encoder decoder network ( ( )|
t tF Pqφ Z Z  and ( )|

t tF Ppθ Z Z ) 

After the latent feature 

tpZ  is obtained, the multistep transition posterior distribution ( )|
t tF Pq Z Z  

and the multi-step transition prior distribution ( )|
t tF Pp Z Z  can be estimated through a sequence-to-

sequence encoder-decoder network. In the sequence-to-sequence network, the encoder mainly captures 

the dynamic characteristics of 

tPZ , which denote the hidden cell states ( )1, , ,
pt t tτ− −h h h , while the 

decoder predicts the dynamic characteristics of 

tFZ , which denote the hidden cell states 

( )1 1, , ,
Ft t t τ+ − +h h h , but the final hidden cell states ( )th   of the encoder will be used as the initial states 

of the decoder. The hidden cell states presented in the sequence-to-sequence encoder decoder network 

are different from those mentioned in posterior distribution models. To reduce notation usage, the same 

notations are used.   

Although the entire historical time series data in the training phase are available, the future outputs 

will never be known during the online implementation. If the future latent features are used as the input 

of the decoder in training, the predicted latent features { }; 1:f fz f t t τ= + +  will only focus on getting 

the information that allows the predicted process outputs to be as close to the actual process outputs as 

possible. In the conventional iterative mechanism, the predicted latent features do not learn the dynamic 

transition. This can lead to an accumulation of errors during online execution. Since the future latent 

feature 

tFZ  is unknown, the available future latent features from time t  to 1ft τ+ −  are not used as 

the input of the decoder. To be closer to the actual situation, the inputs of the decoder (

tFZ ) are 

obtained in an iterative manner. In each window data, only the latent features ( )tZ  from the time point  

pt τ−  till t  are available for multi-step ahead predictions. 

𝐙𝐙𝑡𝑡 = �𝐳𝐳𝑡𝑡−𝜏𝜏𝑝𝑝 , 𝐳𝐳𝑡𝑡−𝜏𝜏𝑝𝑝+1, … , 𝐳𝐳𝑡𝑡� ∈𝐿𝐿×𝑉𝑉   (11) 

where V  represents the number of latent variables. This means that the inputs of the decoder 

are obtained from the previously estimated latent features iteratively. This training idea can 

effectively avoid the accumulation of errors within the prediction horizon.  

Two sequence-to-sequence encoder-decoder networks for distributions of ( )|
t tF Pq Z Z  and 

( )|
t tF Pp Z Z  are separately constructed. Then the similarity of fτ  time-step ahead transition 

distributions between ( )|
t tF Pq Z Z  and ( )|

t tF Pp Z Z  in the second term of the right side of (6) 

can be calculated by the KL divergence,  
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𝐾𝐾𝐿𝐿(𝑞𝑞�𝐙𝐙𝐹𝐹𝑡𝑡�𝐙𝐙𝑃𝑃𝑡𝑡�| �𝑝𝑝�𝐙𝐙𝐹𝐹𝑡𝑡�𝐙𝐙𝑃𝑃��   (12) 

2.3. Reconstructed decoder network ( ( )|
t tF Fpθ X Z ) 

With the latent samples 

tFZ  of the future transition posterior distribution, the reconstructed process 

output (
ˆ

FX )  can be estimated through the emission network which follows the form of the Gaussian 

distribution. The reconstructed process output in the variational lower bound can be calculated by  

𝐸𝐸𝑞𝑞∅(𝐙𝐙𝐹𝐹𝑡𝑡|𝐙𝐙𝐹𝐹𝑡𝑡)�In 𝑝𝑝 �𝐗𝐗𝐹𝐹𝑡𝑡�𝐙𝐙𝐹𝐹𝑡𝑡�� =   (13) 

1
𝑆𝑆
∑ � −1

2
 �𝐗𝐗𝐹𝐹𝑡𝑡 − �𝛍𝛍𝑡𝑡(𝐙𝐙𝐹𝐹𝑡𝑡

𝑆𝑆 )�∑𝑥𝑥(𝐙𝐙𝐹𝐹𝑡𝑡
𝑆𝑆 )(𝐗𝐗𝐹𝐹𝑡𝑡 − 𝛍𝛍𝑥𝑥(𝐙𝐙𝐹𝐹𝑡𝑡

𝑆𝑆 )) − 1
2

|∑𝑥𝑥(𝐙𝐙𝐹𝐹𝑡𝑡
𝑆𝑆 )| −𝑚𝑚𝑚𝑚�𝑆𝑆

𝑆𝑆=1   

where 

t

s
FZ  is the s-th sampling point drawn from the smoothed posterior ( )|

t tF Pq Z Z . 

3. Results and Discussion 
The early warning system is mainly decided by designing a fault detection index. For every product, 

the specification threshold boundary can be designed. The predefined threshold boundary can be used 

to test whether the multistep-ahead predictions are constrained in the bound of the process trend 

defined by the normal region. If the multistep-ahead predictions are located out of bound, the process 

will be operated in an unhealthy condition. 

A real ammonia synthesis process is used to evaluate the effectiveness of the proposed method. NH3 

is widely used as a crucial ingredient in many productions, so the ammonia synthesis process is very 

common in reality. In the ammonia synthesis process, the pre-decarburization unit plays an important 

role in absorbing the carbon dioxide (CO2) from the process gas (PG) to reduce the concentration of 

CO2 and make it eligible for subsequent production. The absorbed CO2 can be used for further 

production. The flowsheet of the pre-decarburization unit is presented in Fig. 3.  

 

Fig. 3. Flowsheet of the pre-decarburization unit 
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The pre-decarburization unit consists of 4 major devices, including a feed gas separator, a PG 

separator, a heat exchanger, and an absorption column. The absorption of CO2 mainly occurs in the 

absorption column, and the chemical reactions are given by: 

RNH2 + 𝐶𝐶𝐶𝐶2 → 𝑅𝑅𝑁𝑁𝑅𝑅+𝐶𝐶𝐶𝐶𝐶𝐶−   (14) 

RNH2 + 𝑅𝑅𝑁𝑁𝑅𝑅+𝐶𝐶𝐶𝐶𝐶𝐶− → 𝑅𝑅𝑁𝑁𝑅𝑅𝐶𝐶𝐶𝐶𝐶𝐶 + 𝑅𝑅𝑁𝑁𝑅𝑅3+   (15) 

From the perspective of the ammonia synthesis process, its main core absorbs CO2 to make CO2 

qualified for subsequent production and reduce the operation risk. Nevertheless, the uncertainty of 

disturbances such as environmental changes, variation of upstream and the degradations of devices will 

significantly affect the productivity and safety of the process. To reduce the impact of the disturbances 

on the concentration of CO2, a multistep ahead prediction model is highly required to demonstrate the 

influences of current disturbances in the ammonia synthesis process. Therefore, the ammonia synthesis 

process is chosen to verify the multi-step prediction ability of the proposed method. 19 crucial process 

variables, including the manipulated process input variables 

( )U
 and the process output variables 

( )X
, 

are used to construct the multi-step ahead prediction model. The descriptions of the selected variables 

are listed in Table 1. 

 

Table 1.  Description of the selected variables 

Num. Description Variables 

1 Feed Gas Flow Rate U 

2 Feed Gas Separator Liquid Level U 

3 Feed Gas Separator Pressure Diff. U 

4 Feed Gas Pressure  U 

5 Feed Gas Temperature U 

6 PG Separator Liquid Level U 

7 PG Separator Pressure Difference U 

8 Pressure Control in PG Separator U 

9 PG Temperature in Absorption Column U 

10 Adsorption Column #1 Liquid Level U 

11 PG Pressure in Absorption Column U 

12 Adsorption Column #2 Liquid Level U 

13 Middle Absorption Column Temperature U 

14 Adsorption Column #3 Liquid Level U 

15 PG Pressure at the Top of Absorption Column U 

16 Liquid Ammonia Temperature in Absorption Column U 

17 PG Temperature at the Top of Absorption Column U 

18 Regenerator Liquid Level U 

19 PG Temperature in PG Separator X 

 

The process variables   are collected by on-line sensors, so 2,100 samples, including normal and 

abnormal samples, are extracted from the DCS database of a real ammonia synthesis process. Fig. 4 (a) 

shows the behavior of the process variables. The occurrence of fault disturbance can be inferred from the 

feed gas flow rate (Fig. 4 (b)). The fault disturbances occur at time points 677 and 1,895, respectively. 
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(a) (b) 

Fig. 4. The behavior of the (a) process variables and (b) the feed gas flow rate (PV1) 

Fig. 5 shows the behavior of the collected process output variable. In Fig. 5, the red horizon dashed 

line represents the desired specification of PG temperature in PG separator while both black horizontal 

dashed lines are the upper and lower bounds that define the normal condition. Because of the large scale 

and slow dynamic transition nature of the ammonia synthesis process, the visualization of the impact of 

faults on process outputs emerges at time point 780 and 1,951 although the faults occur at time points 

677 and 1,895. The sample points of 780-1,350 and 1951-2,070 are significantly out of specification. As 

the testing data start from the 1800th time point, the purpose of multi-step prediction is to observe the 

impact of faults on quality variables in advance (before 1,951 time points). 

 

Fig. 5. The behavior of collected process output (the industrial case) 

To realize early warning, both normal and abnormal situations must be included in the training set 

for the model to learn the process properties. About 1,800 process samples are used to arrange training 

and validation window data. Among the training and validation window dataset, 1,586 window data are 

used as a training dataset while 200 window data are used as a validation dataset. The rest of the data are 

used to form the testing window dataset to access the performance of the multi-step prediction model. 

The network structure of Multi-NSSM is designed as follows: 

• The forward-backward RNN consists of only 1 layer with 5 neurons. 

𝑞𝑞∅�𝐙𝐙𝑃𝑃𝑡𝑡�𝐔𝐔𝑃𝑃𝑡𝑡 ,𝐗𝐗𝑃𝑃𝑡𝑡�,𝑝𝑝𝜃𝜃(𝐙𝐙𝑃𝑃𝑡𝑡|𝐔𝐔𝑃𝑃𝑡𝑡 ,𝐗𝐗𝑃𝑃𝑡𝑡))  

• The sequence-to-sequence RNN encoder-decoder network consists of only 1 layer with 5 neurons.  

�𝑞𝑞∅�𝐙𝐙𝐹𝐹𝑡𝑡�𝐙𝐙𝑃𝑃𝑡𝑡�,𝑝𝑝𝜃𝜃�𝐙𝐙𝐹𝐹𝑡𝑡�𝐙𝐙𝑃𝑃𝑡𝑡��  
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Each DNN consists of 3 fully connected layers and each layer has 5 neurons. A hyperbolic tangent is 

used as the activation function for each layer. ( )( )|
t tF Fpθ X Z  

The initial cell state of the RNN network in the prediction network is assumed to start from zero. 

The window size of the data is 10 and the prediction horizon is set to be 5. The optimizer for Multi-

NSSM is the Adam optimizer with a learning rate of 0.001 in TensorFlow. Cross validation and early 

stopping are used to prevent model overfitting. 

To show the multi-step predictive ability of the proposed Multi-NSSM, multi-step RNNs with 

multi-input-multi-output (MIMO), iterative (Iter) and direct (Direc) strategies are included for 

comparisons (Table 2). To quantitatively assess the prediction performance, the R

2

 performance index 

is considered using noise-free testing data. The R

2

 formulations are given as: 

𝑅𝑅2 = 1 − 𝑆𝑆𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟
𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡

= 1 − ∑ (𝑥𝑥𝑛𝑛−𝑥𝑥�𝑛𝑛𝑁𝑁
𝑛𝑛=1

∑ (𝑥𝑥𝑛𝑛−𝑥𝑥)���2𝑁𝑁
𝑛𝑛=1

   (16) 

where nx  is noise-free process output, ˆnx  is the reconstructed process output of the model, and N  

is the total number of testing data. If the predicted values are close to the noise-free process output data, 

the R

2

 would approximate 1; otherwise, the R

2

 score would be away from 1. Hence, the R

2

 of the 

comparison models are shown in Table 2. 

Table 2.  The 

2R  of the first five-step ahead predictions in Multi-RNN-MIMO, Multi-RNN-Iter, Multi-

RNN-Direc and Multi-NSSM models 

R2 Step 1 Step 2 Step 3 Step 4 Step 5 
Multi-RNN (MIMO) 0.86 0.856 0.852 0.85 0.847 

Multi-RNN (Iter) 0.98 0.93 0.82 0.73 0.66 

Multi-RNN (Direc) 0.94 0.98 0.92 0.95 0.88 

Multi-NSSM 0.997 0.995 0.995 0.994 0.993 

 

The comparison results in Table 2 show that the R2 of Multi-NSSM are closer to 1 than those of 

Multi-RNNs. With either the prediction of the first step or the fifth step applied to the testing data, 

Multi-NSSM predicts better than Multi-RNNs because the process is usually contaminated with 

uncertain noise. RNN, which is a deterministic model, cannot describe the uncertainty of the process 

while Multi-NSSM, which is a probability model, can well describe the process uncertainty. The 

deterministic model can be seen as a special case of a probabilistic model because it describes only one 

condition in the distribution. On the other hand, if the same process input variable and hidden state 

variables are inputted to the RNN model, RNN will always obtain the same output. Nevertheless, the 

condition of the process is susceptible to uncertainties in reality, such as environmental changes, variation 

in flow rates, etc. Based on the influence of uncertainties, the output of the process will not always be 

the same. Thus, using distribution to describe the output of the process is more reasonable and this is 

the benefit of constructing a probabilistic model. After the multistep prediction model (Multi-NSSM) 

is completely trained, the multistep prediction system on the process output is ready to perform early 

warning. The multistep predicted process output data from Multi-NSSM in the 1st step are shown on 

Fig. 6(a). 
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(a) (b) 

Fig. 6. The 1-step predictions of process variables of (a) the Multi-NSSM and (b) the zoomed part of the dark 

purple box in (a) 

Because of the slow dynamic transition nature of the large-scale process, the occurrence of the fault 

often does not have an instantaneous effect on the process outputs. The proposed multistep prediction 

system can identify the influence of the fault in advance through the multistep predictions, thereby 

accomplishing accurate monitoring result and even early warning. As mentioned previously, the fault 

occurs at 1,890th time point and the impact on the process output can only be observed at the 1,951th 

time point. In Fig. 6, the 1st step prediction detects the fault at the 1,950th time point. Moreover, the 

5-step ahead prediction of process variable at the 1900th time point is shown in Fig. 7(a). As the 

contribution of the disturbance are too small to affect the process and slow dynamic transition of the 

process, the disturbances gradually propagate to influence the process instead of affecting the process 

immediately. Although the 1-step prediction of the process output at 1,949th time point (Fig. 6 (b)) 

and the first prediction in the 5-step ahead prediction 1,949th time point (Fig. 7 (b)) maintains in the 

normal operating condition, the predicted future process outputs slowly deviate from the normal region. 

The growth of the previous fault disturbance has given an impact on the process. 

As for the 1-step prediction at 1,950th time point (Fig. 6 (b)) and the first prediction in the 5-step 

ahead prediction at 1,950th time point (Fig. 7 (c)) indicates that the process is totally influenced by the 

fault disturbance. Thus, the multi-step predictions from the 1,950th time point onwards deviate from 

the normal region. 
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(c) 

Fig. 7. The trends of the 5-steps ahead predictions at the (a) 1,900

th

, (b)1,949

th

, and (c)1,950

th

 time points 

4. Conclusion 
Because of the large scale and slow dynamic transition of chemical processes, the occurrence of fault 

disturbance may not influence the process instantaneously until a few time points later as the disturbance 

must propagate through the process. The impact of fault disturbances cannot be determined by 

measuring or predicting the process outputs at the current time. It will be too late to be detected after 

all the products are inspected. The fault disturbances already have given a huge impact on process safety 

and profits. Therefore, a multistep ahead prediction model is essential for estimating the impact of 

disturbances by predicting the future trend of the process outputs. Moreover, there are usually uncertain 

disturbances in chemical processes. A probabilistic model is good at describing the uncertain nature. 

With the aforementioned problems, the proposed method is proposed to mitigate those problems. 

Multi-NSSM is constructed using the measured process input and output variables to obtain its 

predictive ability for future process output predictions. With the multistep ahead prediction process 

outputs from Multi-NSSM, multi-step ahead process monitoring can be done for early warning. 

Meanwhile, the temperature reflection in the PVC drying process is slow and consists of process 

dynamics. From the result and discussion section, it is found that the proposed Multi-NSSM can identify 

the fault disturbance in advance to achieve early warning, although the fault disturbances do not 

influence the process instantaneously.  The comparison results in the industrial cases show that Multi-

NSSM developed as a probabilistic model can well describe the uncertainty of the process while Multi-

RNN developed as a deterministic model cannot. This can be proof by the fault detection result in Fig. 

7. The proposed multi-step ahead prediction model can only describe the learned fault that happened 

before. The meta-learning strategy can be used to merge with the multi-step ahead prediction model, 

the information from other faults can be used to transfer knowledge to enhance the information for new 

disturbances. These may be breakthrough points to solve the above problem in future research direction. 
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