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1. Introduction 
Coffee is a highly significant agricultural commodity, valued at over 70 billion US dollars at retail [1]. 

It is the primary source of income for over 100 million people and is vital to the economies of over 60 
countries [2]. Coffee is significant around the world for various reasons, involving social, economic, and 
cultural aspects across different regions. It has become a cultural symbol and is deeply embedded in the 
social fabric of many societies. In countries such as Saudi Arabia, it has evolved into a cultural icon 
wherever people gather for conversation, work, or leisure. The rising importance of coffee has led to 
increasing investment in coffee plantations.  

Coffee plants are, however, susceptible to various diseases that may have a negative effect on the 
health and yield of crops, lowering revenue and affecting investment. Hemileia vastatrix, the pathogen 
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 The early treatment and detection of plant diseases are important, as many 
diseases affecting crops are highly contagious. Recent advancements in deep 
learning have helped to provide innovative tools that have not only assisted 
early detection but also significantly improved the performance and 
accuracy of Coffee Leaf Disease (CLD) classification and treatment. 
However, training a deep learning model from scratch can be both resource 
and time-consuming. To overcome this challenge, the transfer learning 
technique can take full advantage of pre-trained models for more general 
tasks on extensive datasets to ameliorate the performance of a new, related 
task using few-shot training. This paper proposes a deep learning model, 
coupled with transfer learning, for CLD detection that aims to provide 
high-accuracy forecasting of diseases that could affect coffee leaves. Our 
method involves 195 different pre-trained deep learning models, including 
real-time models like MobileNet and dense ones like EfficientNet and 
ResNet, for detecting four different diseases. The findings suggest that the 
EfficientNetB0 model, with transfer learning, has the most relevant 
accuracy (99.99%), thus offering an effective solution for classifying coffee 
leaf diseases. This result could be used to develop applications that help 
coffee growers improve their crops' productivity and quality by detecting 
coffee plant leaf diseases early and accurately. Such an Artificial 
Intelligence-based application would provide growers with timely control 
measures, preventing the spread of disease and minimizing crop damage.  
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that causes coffee rust, can impose annual losses on coffee investments of up to two billion US dollars 
[3]. It can also be a principal constraint on producing Arabica coffee (Coffea arabica) worldwide. The 
fungus Phoma affects coffee crops, resulting in multiple detrimental symptoms, including leaf lesions, 
branch desiccation, and the decay of flowers and fruits. Coffee leaf miners, also known as Leucoptera 
coffee, are deemed to be one of the most critical coffee pests due to the substantial damage they inflict 
on coffee plantations. Cercospora leaf spot, caused by Cercospora coffeicola, can cause leaf fall in seedlings 
and, in severe cases, stem dieback. When berries are infected, they ripen before the beans are mature, 
resulting in unpleasant flavors when the coffee is processed.  

These Coffee Leaf Diseases (CLDs) and their impact on economies necessitate more effective 
detection methods to enable subsequent treatment by farmers. In fact, effective disease management in 
coffee plantations often involves a combination of cultural practices, chemical control (fungicides and 
pesticides), and the use of disease-resistant coffee varieties. Monitoring and early detection are crucial to 
implementing timely control measures and preventing the spread of diseases. Artificial intelligence 
applications are the most widely adopted and effective solutions. More specifically, using machine 
learning for automatic coffee disease detection is an innovative approach that can contribute significantly 
to the early diagnosis and effective deal with diseases in coffee plantations. 

 Machine learning has increasingly been used in recent years to identify plant leaf diseases [4]. 
Noteworthy advancements have been observed in plant disease recognition, thanks to the substantial 
performance improvements demonstrated by deep learning, a subset of machine learning [5]. 
Furthermore, recent research on CLD classification has successfully integrated deep learning into its 
methods, leading to significant improvements in both the accuracy and sensitivity of detection systems 
[6]–[9]. However, little has been done to employ these approaches in the diagnosis of coffee leaf diseases.  
The competence of earlier similar approaches has not been proven, and they have not been generalized. 
Further to this, the classification of coffee leaf diseases can be complicated due to the extensive 
resemblance in the structure of different illnesses [5]. 

 With regard to the efficiency of Deep Learning (DL), it is acknowledged that DL models perform 
optimally when testing and training data share a similar feature space and distribution [10]. However, 
the challenge arises when there is a shift in distribution, requiring the rebuilding of models from scratch, 
which is costly. To overcome this limitation, the introduction of transfer learning has proven beneficial  
[10]–[12]. In traditional DL, the knowledge gained from past experiences is often ignored, and learning 
processes proceed without consideration of this prior knowledge. On the other hand, transfer learning 
incorporates previously learned tasks to process new ones. The integration of transfer learning techniques 
into deep learning methods offers new possibilities in terms of efficiency and generalization. 

The main goal of this research is to forecast the kinds of illnesses that affect coffee leaves at an early 
stage. We adopted a deep learning model based on the transfer learning technique to achieve this goal. 
We aim to propose a practical, effective, and efficient solution that can be implemented in real-time or 
in laboratory contexts.  

 The following are the main contributions of this research:  

• Applying several deep learning models, including ResNet50, MobileNet, and EfficientNetB0, as the 
classification backbones for the detection of coffee plant diseases.   
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• Based on transfer learning applied to Deep Learning models and MobileNet, the proposed method 
identifies and categorizes five different forms of CLD. These consist of leaves that are healthy as 
well as those that have Phoma, Cercospora, Rust, and Miner diseases. 

• Making use of pre-trained models on huge databases and fine-tuning them for the CLD-specific 
tasks.  

• Proposing an algorithm that includes several steps for the learning procedure. 

The adoption of the transfer learning model provided several advantages. It reduces computing and 
training time by learning generic properties, like textures, edges, and simple shapes, from the pre-trained 
models. It also improved the classification of the diseases by changing the pre-trained classifiers. 

Paper is organized as follow. Section 2 presents a brief summary of relevant publications on CLD 
categorization, which establishes the background for our investigation. Section 3 describes the Pre-
trained CNN models we used, the transfer learning method we employed, and the details of our proposed 
CLD classification method. Section 4 presents the dataset used to evaluate our model, the configurations 
of different CNN models based on the transfer learning approach, and how we trained, validated, and 
evaluated this model. The last section concludes the paper and highlights the key findings. 

2. Related Works 
Deep learning is a machine learning sub-field based on ANNs (Artificial Neural Networks) to learn 

from different data types. Inspired by the human brain, artificial neural networks can learn complex 
patterns and extract knowledge from data. Training deep neural nets is a process of tuning their internal 
settings to gradually improve their ability to map inputs to outputs. Recent breakthroughs in both 
theoretical concepts and practical engineering have led to significant advances in this computationally 
intensive process [13]. When DL architectures demonstrated their performance and began to evolve 
over time, researchers employed them for image recognition and classification. These architectures have 
also been found to be applicable in various agricultural contexts [14], particularly for CLD detection [9]. 
The general process of CLD detection based on deep learning models is illustrated in Fig. 1. 

 
Fig. 1. General process of the CLD detection method using  deep learning 

Deep learning has outperformed other machine learning methods in multiple fields, including CLD 
classification [15]–[19]. In this context, Ayikpa et al. [15] evaluated a combination of machine learning 
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and deep learning methods for CLD detection and classification. For machine learning, the models used 
were LR, KNN, SVM, RF,  MPL Classifier, GNB, and DT Classifier. For deep learning, the models 
used were ResNet-50, MobileNet, DenseNet-201,  VGG-19,  InceptionV3, and a custom Convolutional 
Neural Network (CNN) model. These models were trained and evaluated on the JMuBEN dataset to 
classify and recognize CLD. They demonstrated good performance using deep learning models for the 
task of CLD classification.  

Also, Montalbo et al. [20] proposed a method for separating Barako CLD into four classes: Healthy, 
Rust,  Sooty Molds, and Cercospora Leaf Spots. The researchers employed three deep-learning models: 
Xception, VGG16, and ResNetV2-152. Their analysis revealed that the trained models achieved 
impressive classification accuracies, with VGG16 in the lead at 97%, followed by Xception at 95%, and 
ResNetV2-152 at 91%. As well as this, a study by Esgarioa et al. [9] evaluated common CNN 
architectures (AlexNet, GoogLeNet, VGG19, ResNet50) for multi-task learning, involving both severity 
estimation and classification of biotic stress. Among these, ResNet50 proved to be the most effective, 
achieving an average accuracy of 94.05% for stress classification and 84.76% for severity estimation. The 
authors of [16] proposed a CLD method and utilized five deep learning models for its implementation: 
ResNet, InceptionV3, DenseNet, Xception, and VGG16. They demonstrated that DenseNet emerged as 
the optimal choice for this image classification task. Another type of method of CLD recognition 
combines various deep learning models [18]. For example, [18] introduced an ensemble model that relies 
on two distinct deep neural networks to aggregate representations. The authors demonstrated that the 
proposed model enhances accuracy when compared to a single architecture. In evaluating the 
BARACOL dataset, the best results were noted when combining MobileNet and EfficientNet models. 
This models fusion reaches a precision, accuracy, and recall of 97.45%, 97.80%, and 97.92%, 
respectively. 

Deep neural networks often outperform traditional algorithms and are excellent at classification tasks. 
However, training these powerful models can be time-consuming, especially for large datasets. Transfer 
learning offers a compelling solution, significantly reducing the time it takes to train neural networks 
and potentially even improving performance. So, to leverage the benefits of transfer learning, studies in 
the literature have incorporated this approach into their CLD classification methods. In [17], a CLD 
classification method using transfer learning and fine-tuning was proposed. The method classifies leaves 
into groups with three distinct diseases: Rust, Phoma, or Cercospora. The proposed models for this 
classification are based on the ResNet50, DenseNet121, and VGG19 architectures. These models 
underwent training with transfer learning and fine-tuning. Evaluation on the JMuBEN and JMuBEN2 
datasets demonstrated the superiority of DenseNet, achieving an accuracy of 99.36% after fine-tuning 
the model. Other recent works have introduced transfer learning into their CLD classification methods, 
demonstrating its effectiveness in enhancing the results for pre-trained models [21]–[23]. Table 1 
provides a comprehensive overview of recent methods for Coffee Leaf Disease (CLD) classification, 
selected based on strict inclusion and exclusion criteria. The inclusion criteria required that all articles 
be written in English and published as journal papers between 2020 and 2023. Moreover, the studies 
had to utilize a combination of Deep Learning and Transfer Learning techniques and specifically focus 
on datasets related to CLD. 

Conversely, the exclusion criteria filtered out articles not meeting these standards. Papers not written 
in English, or published as conference papers, book chapters, or other non-journal types, were excluded. 
Studies published before 2020, those not employing Transfer Learning methods, or those using datasets 
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unrelated to CLD, such as datasets focused on coffee beans, were also omitted from consideration. These 
criteria ensure a focused and relevant analysis of the most recent advancements in CLD classification. 

Table 1.  Comparative Analysis of Coffee Leaf Disease Recognition Methods 

Reference Year  Methodology  Dataset  Results  Weakness 
Zhuang 

[20]  
2020  VGG16 using transfer learning and 

fine-tuning 
Private dataset: 

4667 images  
97%  Small dataset and detection 

of only 3 diseases 
Wang et al 

[24] 
2022 Few-shot learning-based 

MobileNetV2 
Private dataset: 

1685 images 
96% Small dataset 

Yamashita 
and Leite 

[25] 

2022 Ensemble architecture  based on 
DL with three fine-tuned CNN 

(ResNet152, EfficientNetB0, 
VGG16) 

Private dataset: 
1300 images 

97.31% High complexity of the 
classification algorithm and 

a small dataset 

Nawaz et 
al [26] 

2022 MobileNetV2 using transfer 
learning 

RoCole dataset: 
(1560 images) 

[27] 

99.93% Classification into two 
classes (healthy and 

unhealthy) 
Javierto et 

al [28] 
2022 ResNet50 using transfer learning Private dataset: 

1747 images 
97.07% Small dataset 

Ahmad et 
al [29] 

2022 MobileNet and ResNet using 
transfer learning 

Private dataset: 
1200 images 

97.01% 
and 

99.89% 

Small dataset 

Yebasse et 
al[16] 

2023 DenseNet using transfer learning 
and fine-tuning 

Private dataset: 
37,939 images 

99.57% Detection of 3 diseases 

 
It can be seen from Table 1 that existing work on CLD detection has usually been performed on a 

small dataset with just three disease types, which neglects several diseases that affect coffee leaves. Also 
the performances achieved could be further enhanced, especially with the effective use of the transfer 
learning technique. This assumption will be clearly explained in our proposed methodology.  

Based on the literature, advances in agricultural technology, particularly in the realm of coffee-leaf 
disease detection studies, hold tremendous promise for revolutionizing crop management practices, 
enhancing disease prevention strategies, and ultimately improving agricultural sustainability and food 
security. Furthermore, integrating deep and machine learning processes with sensor data enables 
automated detection and classification of coffee leaf diseases. By training these algorithms on large 
datasets, including most CLD types, researchers can develop robust early disease detection models 
capable of identifying subtle disease symptoms and distinguishing between different disease types with 
high accuracy and at the earliest stages. These findings motivate our proposed method based on transfer 
learning for early CLD detection and efficient intervention. 

3. Method 

3.1. Transfer Learning 
Training CNN models for classification tasks require large-volume data, extensive computation time, 

and powerful GPUs, making it very challenging to implement. Transfer learning is an ideal solution to 
addressing these challenges. Transfer learning uses a pre-trained model on a large source dataset to solve 
a new, related task (target domain).  This approach improves efficiency compared to training a model 
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from scratch by capitalizing on the learned features from the source task. In order to gain a deeper 
understanding of transfer learning, one can refer to a recent survey on the topic by [30]. In transfer 
learning, a pre-trained model is often used to build a new model focused on a specific task with different 
data, as shown in Fig  2.  The newer model can resolve problems in few-shot learning. The objective 
behind this process is to share certain features across tasks. This is executed by using some of the standard 
features of the pre-trained model and developing new ones without the need to start from scratch. This 
eventually saves developers’ time and ensures the creation of flawless and highly accurate models. 

 
Fig. 2. Detailed architecture of the deep transfer learning based CLD classification method 

 In this study, the selected models are all pre-trained for image classification tasks on ImageNet, 
which is similar to our objective, although with different content. Hence, transfer learning is used as a 
domain adaptation process, given that the target and source applications are related but not exactly alike. 
Models trained on a source domain will be fine-tuned on a target domain, adapting the learned 
representations to the specific characteristics of the new data. Since the lower layers of deep neural 
networks are often responsible for learning generic features like edges, textures, and basic shapes, transfer 
learning allows them to use these learned features for our CLD-specific task, saving computation and 
resources when compared to starting from random weights. Furthermore, this adaptation permits 
effective feature extraction. 

3.2. Proposed method 
3.2.1. General overview 

As explained in Section 3.1, transfer learning is a few-shot learning method that ensures better and 
faster results. In transfer, learning addresses several key issues. These include how to apply different 
methods to distinct source-target domains and how they bridge different transfer knowledge. Hence, a 
powerful transfer learning key question is how to adapt a pre-trained model to perform a new and seen 
task. A basic model that has been pre-trained on large datasets may frequently be simply fine-tuned to 
facilitate model adaptation or transfer learning, as these models have been shown to generalize better 
than ones that have been randomly initialized [8]. A common approach to accelerate training is to use 
pre-trained networks as a backbone for new tasks. This involves adding specialized functionality to these 
pre-trained models, such as object detection or recognition modules [8]. In this research, we adopt the 
second method and then freeze weights and parameters of the backbone models without the top layers 
(see Fig. 2) 
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The proposed method was based on transfer learning applied to deep learning models and MobileNet 
to detect and classify 5 types of CLD. These involved Healthy Leaves and leaves affected by, Cercospora 
spots, Phoma disease, Miner disease, and Rust disease. The proposed method consisted of leveraging 
pre-trained backbones on a large dataset and fine-tuning them for the CLD tasks. The proposed process 
included several steps, as explained below (see Algorithm 1). 

Algorithm 1. The algorithm of our proposed method is based on the Transfer learning process 

Require: backabone model, JMuBEN dataset 

Ensure: New model adapted for CLD classification 

Ensure: Height Accuracy and Few-Shot pseudo code 

1- Load and Preprocess Image Data 

Batch size: 16 

Image size: (m, n) 

▷ Image size needs to be adjusted related to the backbone model input Data augmentation: Random flips and 
rotations (horizontal and vertical, 0.2 rotation) 

Image preprocessing: Normalization 

2- Create Base Model 

Base model: Freeze top layers 

Pre-trained weights: ImageNet 

3- Add Classification Head 

Global average pooling layer 

Dropout layer: Rate of 0.2 

Final dense layer: 5 outputs (matching number of classes) 

4- Compile Model 

Optimizer: Adam 

Learning rate: 0.0001 

Loss function: Categorical crossentropy 

Metrics: Accuracy 

5- Train Model Initial epochs: 10 

while epoch≤ 10 do: Early stopping: Monitor loss, the patience of 3 epochs 

end while 

6- Fine-Tune Model 

 Fine-tuning start layer: 100  

Fine-tuning learning rate: 0.00001 

Fine-tuning epochs: 5 

7- Evaluate on Test Data 
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3.2.2. Selected Backbones models 

Four pre-trained models (EfficientNetB0, ResNet50, MobiNetV1, and MobiNetV2) have been used 
in this work for feature extraction after applying transfer learning, as presented in Fig. 2. The selected 
models, in this study can be classified into two categories. 

3.2.2.1. Dense Deep Learning Model 

Some deep learning models can be large and computationally intensive, requiring substantial 
resources for training and inference. The complexity of these models often leads to higher accuracy, but 
deployment may be limited to resource-constrained devices. 

• EfficientNetB0 

EfficientNetB0 is a convolutional neural network (CNN) architecture designed for image 
classification tasks and was introduced in the study of [10]. Unlike traditional CNNs that prioritize 
depth or width, EfficientNetB0 uses compound scaling. This means that depth, width, and 
resolution are scaled uniformly using fixed coefficients [10]. This approach optimizes the model for 
both accuracy and efficiency. With only 18 convolutional layers, EfficientNetB0 is the smallest 
version of the EfficientNet family [10]. Each layer uses kernel sizes of 3x3 or 5x5 for efficient feature 
extraction. The model progressively increases filters (W) in each layer while decreasing resolution. 
Without significantly increasing the computational cost, this strategy increases the feature 
complexity as the network progresses. In this way, EfficientNetB0 offers an attractive solution for 
image classification tasks, as it achieves a high level of accuracy with a relatively small and efficient 
architecture (see Fig. 3). 

 
Fig. 3. Illustration of the EfficientNetB0 architecture 

• ResNet50 

is a variation of the ResNet model, boasts a structure comprising 48 convolutional layers, 
complemented by 1 Average Pool layer and 1 MaxPool layer (see Fig. 4). As a convolutional neural 
network, ResNet50 delves 50 layers deep. Renowned as a backbone for various computer vision 
tasks, ResNet, or Residual Networks, marked a significant breakthrough in neural network design 
by enabling the training of exceptionally deep networks, surpassing 150 layers. This innovative 
neural network concept was introduced by He et al. [31]. 

 
Fig. 4. Illustration of the Resnet50 architecture 

3.2.2.2. Lightweight convolutional neural networks 

MobileNets is a family of convolutional neural networks (CNNs). It is particularly suitable for use in 
mobile devices and other resource-constrained environments. MobileNets are not just limited to mobile 
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devices. Their lightweight nature makes them applicable to various edge computing tasks with limited 
processing power. They can be used for image classification, object detection, and other computer vision 
applications on these devices. 

• MobileNet-V1 

Due to its efficiency, it is a convolutional neural network (CNN) architecture specifically designed 
for mobile and embedded vision applications [32]. It achieves this by replacing the traditional 
convolution layers, which are computationally expensive, with depth-separable convolutions. 
Compared to a network using regular convolutions of equivalent depth, this substitution 
significantly reduces the number of parameters presented in Table. 2. Depth-separable convolutions 
divide the regular convolution process into two separate steps: the depth-wise convolution step and 
the pointwise convolution step. In the depth-wise convolution step, individual filters are applied to 
each input channel, performing a filtering operation on a per-channel basis. The pointwise 
convolution step then combines the depth convolution outputs using 1x1 convolution, creating 
new features. As a result, MobileNet-V1 makes use of separable depth convolution to achieve high 
performance in mobile and embedded vision tasks while maintaining a lightweight and efficient 
architecture. 

Table 2.  MobileNet-V1 Layers 

Input Operator t c n s 
2242 x 3 Conv2d - 32 1 2 
1122 x 32 bottleneck 1 16 1 1 
1122 x 16 bottleneck 6 24 2 2 
562 x 24 bottleneck 6 32 3 2 
282 x 32 bottleneck 6 64 2 2 
282 x 64 bottleneck 6 96 3 1 
142 x 96 bottleneck 6 160 3 2 
72 x 160 bottleneck 6 320 1 1 
72 x 320 Conv2d 1x1 - 1280 1 1 
72 x 1280 Avgpool 7x7  - 1 - 
1 x 1 x k Conv2d 1x1 - k -  

 
• MobileNet-V2 

MobileNet-V2 [33], as a significant advancement in mobile model performance. It builds on the 
success of MobileNet 1 by introducing a new inversed residual structure. The focus of this 
architecture is efficient processing for mobile devices. Unlike traditional residual blocks, 
MobileNet-V2 uses inverted residual blocks where the input and output have thin bottleneck layers. 
This design allows for more efficient processing while maintaining accuracy. Similar to MobileNet-
V1, MobileNet-V2 uses depth-separable convolutions. These convolutions are divided into depth 
and point convolution. The depth convolution step applies 3x3 kernels to each channel of the input 
image. The pointwise convolution follows this. In this step, the outputs of the depth-wise layer are 
combined by means of 1x1 convolutions to create new features. MobileNet-V2 starts with one fully 
convolutional layer, followed by 19 inverse residual convolutions (see Table. 3). For efficient feature 
extraction, each bottleneck uses depth-separable convolutions. The extracted features can then be 
used for image recognition. 
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Table 3.  MobileNet-V2 Layers 

Type/Stride Filter Shape Input Size 
Conv /s2 3 x 3 x 3 x 32 224 x 224 x 3 

Conv dw /s1 3 x 3 x 32 dw 112 x 112 x 32 
Conv / s1 1 x 1 x 32 x 64 112 x 112 x 32 

Conv dw / s2 3 x 3 x 64 dw 112 x 112 x 64 
Conv / s1 1 x1 x 64 x 128 56 x 56 x 64 

Conv dw /s1 3 x 3 x 128 dw 56 x 56 x 128 
Conv / s1 1 x 1 x 128 x128 56 x 56 x 128 

Conv dw / s2 3 x 3 x 128 dw 56 x 56 x 128 
Conv / s1 1 x 1 128 x 256 28 x 28 x 128 

Conv dw / s1 3 x 3 x 256 dw 28 x 28 x 256 
Conv / s1 1 x 1 x 256 x 256 28 x 28 x 256 

Conv dw / s2 3 x 3 x 256 dw 28 x 28 x 256 
Conv / s1 1 x 1 x 256 x 512 14 x 14 256 

5 x Conv dw / s1 
Conv / s1 

3 x 3 x 512 dw 14 x 14 x 512 
1 x 1 x 512 x 512 14 x 14 x 512 

Conv dw /s2 3 x 3 x 512 dw 14 x 14 x 512 
Conv / s1 1 x 1 x 512 x 1024 7 x 7 x 512 

Conv dw / s2 3 x 3 x 1024 dw 7 x 7 x 1024 
Conv / s1 1 x 1 x 1024 x 1024 7 x 7 x 1024 

Avg Pool / s1 Pool 7 x7 7 x 7 x 1024 
FC / s1 1024 x 1000 7 x 7 x 1024 

Softmax / s1 Classifier 1 x 1 x 1000 

 
3.2.3. Evaluation metrics 

The different deep learning models that are used in our CLD method are evaluated based on several 
metrics.  Adopted metrics involve the commonly used literature: accuracy, loss, recall, and F1_Score. 
Thus, traditional evaluation metrics such as accuracy (eq1), Loss (eq 2), Precision (eq3), Recall (eq4), 
and F1-Score (eq5) are used for each disease type to illustrate the performance of the proposed models. 
Precision measures the accuracy of the positive predictions made by the model, indicating the true 
positive results among all positive predictions. Recall measures the model's ability to identify correctly 
all relevant elements, indicating the proportion of true positive results among all actual positives. The 
F1-Score is the mean of Precision and Recall, presenting the balances between precision and recall in a 
single metric. It is especially useful for dealing with imbalanced datasets. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
   () 

𝐿(𝑦, 𝑝) = ∑ 𝑦𝑖𝑙𝑜𝑔(𝑝𝑖)   () 

where 𝑦 represents the true labels and 𝑃 denotes the predicted probabilities, is used to minimize 
errors during model training. The negative sign in the formula ensures that the loss decreases as the 
model improves. The summation, Σ𝑖, aggregates the loss over all classes, while 𝑌𝑖 specifically indicates 
the true label (0 or 1) for the 𝑖-th class. 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

(𝑇𝑃+𝐹𝑃)
   () 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

(𝑇𝑃+𝐹𝑁)
   () 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2×𝑃𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

(𝑃𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙)
   () 

With, FP = False Positive,  FN = False Negative , TP = True Positive. Emperical results of both 
dense models (EfficientNet, ResNet50) and Lightweight models (MobileNet-V1, MobileNet-V2) in the 
basis of these evaluation parameters are depicted in Table 3 and Table 4. 

3.3. Expremintation 
3.3.1. Dataset 

This study proposes a CLD classification method focusing on diseases ( Rust, Phoma, Cercospora, 
Miner) due to their prevalence and severity. All of those CLDs are present in the images of the JMuBEN 
and JMuBEN2 [34]. For this fact, we have chosen to evaluate our CLD classification method on 
JMuBEN and JMuBEN2 datasets. The JMuBEN dataset [34] is a valuable resource for researching coffee 
leaf disease detection and classification. It provides a large and diverse collection of images that can be 
used to train robust and accurate machine-learning models. The JMuBEN dataset was created by 
researchers at the University of S˜ao Paulo, Brazil, and is publicly available for download. JMuBEN is a 
collection of coffee leaf images affected by three different diseases: coffee rust (Hemileia vastatrix), 
Cercospora leaf spot (Cercospora coffeicola), and Phoma stem canker (Phoma tracheiphila). As well as, 
JMuBEN2 is a collection of coffee leaf images which are affected by the Miner disease and Healthy coffee 
leaf images. The images in the JMuBEN and JMuBEN2 datasets were collected from coffee farms in 
Brazil. The dataset includes 58,555 leaf images classified into five classes: Phoma, Cercospora, Rust, 
Healthy and Mining (Fig. 5 and Fig. 6). Each image has an annotation with information about the 
condition of the leaf and whether or not the disease is present. 

 
Fig. 5. Coffee leaf diseases available in the dataset 

The JMuBEN Arabica coffee leaf image dataset is a valuable resource for training and validating deep 
learning algorithms for detecting and classifying coffee plant diseases. Researchers have successfully used 
this dataset to develop machine learning models that have achieved a high accuracy in detecting and 
classifying multiple coffee leaf diseases. In this context, The JMuBEN dataset has been used in various 
studies [35]–[37]. The dataset is further split into 3 subsets for training, validation, and testing purposes. 
Of these images, 20% were used for testing and validation, and the other 80% were used for training. 
To improve the learning task, further data augmentation and segmentation are applied. 
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(a) (b) (c) (d) € 

Fig. 6. Samples of different coffee leaf disease classes: a) Healthy, b) Miner, c) Rust, d) Cercospora and e) 
Phoma 

3.3.2. Setups and Settings 

This section presents the used hyper-parameters and the variables that regulate network structure 
and/or training process. For instance, loss function minimization is performed using the Adam optimizer 
with a learning rate = 0.0001 (equation 6). 

𝜽𝑡+1 = 𝜽𝑡 − 𝜶. 𝒎̂𝑡/√𝑣𝑡̂ + 𝜺
́

   () 

Where 𝜽𝑡 represents the model’s parameters (weights and biases) at time step 𝑡, and 𝜽𝑡 + 1  is the 
updated parameter. The learning rate 𝛼 controls the magnitude of the update. 𝒎̂ is the estimated first 
moment (a smoothed version of the gradients), and 𝑣𝑡 is the estimated second moment (a smoothed 
version of the squared gradients). 𝜺, a small constant (typically 1 × 10−8), ensures numerical stability 
by preventing division by zero. This formula is commonly used in optimization algorithms like Adam to 
achieve adaptive learning rates. 

Also, in Table 4, we present the values of all of the experimental variable and parameter settings . 
For the softmax equation (Eq.7), given a vector z of real number, z1, z2,…Zn 

𝜎(𝑧)𝑖 =
𝑒2

∑ 𝑒2𝑛
𝑖=1

   () 

Table 4.  Experiment setting variables and parameters 

Variables Variable Definitions Used Values for models 
training 

Batch size The number of samples used for each training batch. 16 

Learning rate The initial learning rate setting. 0.0001 

Training epoch Total number of training iterations. 10 

Optimizer Optimizes  the parameters’ update iteratively using training 
data. 

Adam (Eq.1) 

Loss Determines the cross-entropy loss between ground truth and 
predictions labels. 

Categorical crossentropy (Eq.4) 

Evaluation metrics Metrics are employed to assess the accuracy of a classification. Accuracy (Eq.3) 

Output   
activation 
function 

Activation function used in the output layer of networks for 
multi-class classification problems 

Softmax (Eq.2) 
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3.3.3. Training and Validation Results 

The training process was performed on an NVIDIA T4 enterprise GPU. Training and validation 
accuracy and the loss of several models (EfficientNet) were plotted to illustrate the training process. The 
accuracy and loss graphs are depicted in Fig. 7. Curves show that the training process with transfer 
learning was very quick, and the model achieved good accuracy in just a few epochs. 

 
Fig. 7. EfficientNetB0 coupled with Transfer learning’s training and validation accuracy and loss 

3.3.4. Evaluation Results 
The performance evaluation of the models used to classify coffee leaf diseases is shown in this section. 

To evaluate their efficacy, we used both lightweight and dense models. The models' performance was 
assessed using three assessment metrics: F1-Score, Precision, and Recall.  

Table 5 shows the results for the dense models, providing detailed metrics for each disease class. The 
dense models were evaluated to determine their robustness and capability in accurately classifying the 
different types of coffee leaf disease. These models are designed to be more efficient in reducing 
computational resources while maintaining a high accuracy in disease classification.  

Table 5.  Results for dense models 

 EfficientNetB0 ResNet50 

Precision Recall F1-Score Precision Recall F1-Score 

Cercospora 1.00 1.00 1.00 1.00 1.00 1.00 

Healthy 1.00 1.00 1.00 1.00 1.00 1.00 

Rust 0.99 0.99 1.00 1.00 0.98 1.00 

Miner 1.00 1.00 1.00 1.00 1.00 1.00 

Phoma 1.00 1.00 1.00 0.99 1.00 1.00 

Accuracy  99.99  99.91 

Loss 1.6274e-5 0.2264 
 

Table 6 presents the performance metrics for the lightweight models. The results demonstrate how 
these models perform across different disease categories using the same evaluation metrics. 
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Table 6.  Results for lightweight models 

 MobileNet-V1 MobileNet-V2 

Precision Recall F1-Score Precision Recall F1-Score 

Cercospora 1.00 1.00 1.00 1.00 1.00 1.00 

Healthy 1.00 1.00 1.00 1.00 1.00 1.00 

Rust 1.00 0.98 0.99 0.99 1.00 1.00 

Miner 1.00 1.00 1.00 1.00 1.00 1.00 

Phoma 0.97 1.00 0.99 0.98 1.00 0.97 

Accuracy  99.52  99.62 

Loss 0.8512 0.0242 
 
According to Table 5 and Table 6, the used models coupled with transfer learning, whose framework 

was discussed in Section 3, were able to achieve a testing accuracy of 99.99%, 99.91%, and 99.52% for 
EfficientNetB0, ResNet50, and MobileNet, respectively, and loss was reduced to 0 for EfficientNetB0 
after being trained for just 10 epochs. Also, very satisfactory classification performance results were 
obtained with the MobileNetV1 and V2 models. These results prove that the model is computationally 
efficient for real-time detection. Hence, MobileNet, coupled with transfer learning, provides accurate 
research and rapid application of deep learning for CLD detection and classification, which is much 
needed to address disease propagation. From Table 5 and Table 6, we can see that EfficientNetB0 
outperformed the other two models in terms of accuracy on the test set. Furthermore, in this study, 
EfficientNetB0 was reported to be a successful model for use in coffee leaf disease classification. 

4. Results and Discussion 
In the following table we present a comparative performance of different models for the classification 

of coffee leaf disease on the JMuBEN and JMuBEN2 datasets, using metrics such as accuracy, loss, and 
number of training epochs for each CLD method. Table 7, the EfficientNetB0 model combined with 
transfer learning shows an exceptional accuracy of about 99.99% and a low loss of 1.627e-5 after only 10 
epochs of training. 

Table 7.  Comparison of our work with the literature 

Model Accuracy(%) Loss Training epochs 

EfficientNetB0 with transfer Learning 99.99 1.6274e-5 10 

ResNet50 with transfer Learning 99.91 0.2264 10 

MobileNet with transfer Learning 99.52 0.8512 10 

MobileNetV2 with transfer Learning 99.62 0.0242 10 

CLIP [38] 85 Unavailable  

CNN + Data Augmentation [39] 95 0.10 500 

CNN with MobileNet V2 architecture [24] 98.51 0.2482 96 

 



ISSN 2442-6571 International Journal of Advances in Intelligent Informatics 393 
Vol. 10, No. 3, August 2024, pp. 379-396 

 

 Mansouri et al. (A deep learning model for detection and classification…) 

Similarly, the ResNet50 and MobileNet models show very encouraging accuracies after using transfer 
learning: 99.91% and 99.52%, respectively. In contrast, the CLIP model referred to in [33] lags with an 
accuracy of 85%. 

Other models in the literature, including CNN + Data Augmentation [38] and CNN with MobileNet 
V2 architecture [39], show accuracies ranging from 95% to 98.51%. Moreover, the  good performance 
of our approach is achieved in just a few iterations, as the models efficiently learn the parameters needed 
for the new classification task in just 10 epochs, whereas models [38] and [39] perform training in 500 
and 96 epochs, respectively. 

These findings demonstrate that transfer learning is an effective strategy for early detection of coffee 
leaf disease, allowing timely implementation of control measures and prevention of disease spread.  In 
fact, deep learning models can analyze leaves’ images for an early detection of plant disease’s signs. The 
algorithms we have developed are an accurate means of detection that farmers can use to monitor their 
crops for signs of disease detection and then implement targeted interventions, such as crop rotation or 
pesticide application, to prevent the spread and minimize yield losses. By improving crop management 
practices and disease prevention strategies, deep learning models can help to increase agricultural 
productivity and ensure a stable food supply. 

5. Conclusion 
In summary, our research underscores the critical role of recent technological advances, particularly 

AI, in revolutionizing agriculture. Early detection and management of diseased coffee leaves is essential 
to ensure optimal crop health and yield. By exploring transfer learning techniques, we have developed a 
highly accurate and efficient method of detecting and classifying Coffee Leaf Diseases (CLDs) using 
deep learning models. Our proposed approach uses transfer learning on pre-trained models such as 
EfficientNetB0, ResNet50, MobileNetV1, and MobileNetV2, specifically tuned for CLD detection. Five 
types of coffee leaves are studied: healthy leaves, leaves affected by Phoma disease, leaves with Cercospora 
spots, leaves with Rust disease, and leaves with Miner disease. Our results highlight the superiority of 
the EfficientNetB0 model in terms of accuracy, suggesting its potential as a robust solution for coffee 
leaf classification. The implications of our research extend beyond the laboratory and offer practical 
applications for coffee growers worldwide. By integrating AI-based image recognition systems into 
agricultural practices, farmers can detect signs of disease and pest infestation in real-time, enabling timely 
intervention to mitigate crop damage and optimize yield. To facilitate the implementation of our deep 
learning model in the agricultural arena, further consideration should be given to data collection, model 
deployment and user interface design for a mobile application. In addition, discussing best practices for 
integrating the model into existing agricultural operations would guide future applications and promote 
sustainable agricultural practices. Furthermore, our research demonstrates the transformative potential 
of AI in agriculture and lays the foundation for future advances in managing crops and preventing disease. 
By taking advantage of cutting-edge technologies, we can pave the way for a more resilient and 
sustainable future for agriculture. 
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