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1. Introduction 
Time series analysis is vital for forecasting and classification in various sectors. Forecasting uses 

historical data to predict future outcomes, crucial for economic, stock market, and weather predictions. 

Classification identifies categories based on past data, which is important in medical diagnosis and 

financial pattern detection. This analysis helps in informed decision-making and trend anticipation. Deep 

learning has significantly improved time series forecasting and classification by effectively handling 

complex temporal data. Key models include Multi-Layer Perceptron (MLP), such as the LTSF-Linear 

[1], which are effective in Long-term time series forecasting (LTSF). Convolutional Neural Networks 

(CNN) like TimesNet [2] introduce novel 2D-variation modeling for enhanced adaptability. Recurrent 

Neural Networks (RNN) like TRUST [3], which is a new framework for trustworthy uncertainty 

propagation for time-series analysis. Transformers, exemplified by iTransformer [4], offer new ways to 

capture temporal dynamics while reducing complexity.  

Deep learning's success in time series analysis often hinges on having large amounts of labeled data 

to prevent overfitting and ensure robustness, a challenging demand in real-world scenarios where data 

labeling is costly and time-consuming. In computer vision, data augmentation techniques like rotation 

and cropping expand datasets and improve model performance. However, applying similar strategies to 
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 Time series data analysis is crucial for real-world applications. While deep 

learning has advanced in this field, it still faces challenges, such as limited 

or poor-quality data. In areas like computer vision, data augmentation has 

been widely used and highly effective in addressing similar issues. However, 

these techniques are not as commonly explored or applied in the time series 

domain. This paper addresses the gap by evaluating basic data augmentation 

techniques using MLP, CNN, and Transformer architectures, prioritized 

for their alignment with state-of-the-art trends in time series analysis 

rather than traditional RNN-based methods. The goal is to expand the use 

of data augmentation in time series analysis. The paper proposed EMixup, 

which adapts the Mixup method from image processing to time series data. 

This adaptation involves mixing samples while aiming to maintain the 

data's temporal structure and integrating target contributions into the loss 

function. Empirical studies show that EMixup improves the performance 

of time series models across various architectures (improving 23/24 

forecasting cases and 12/24 classification cases). It demonstrates broad 

applicability and strong results in tasks like forecasting and classification, 

highlighting its potential utility across diverse time series applications.  
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time series data, such as adding noise or warping, is more complex and needs to be explored. These 

methods must be carefully tailored to maintain crucial time series characteristics like trends and 

seasonality, highlighting the need for a nuanced understanding of specific data and tasks to ensure 

augmentations enhance rather than distort the data. 

While time-series data augmentation was historically less focused than other modalities like image 

data, it is now receiving increasing attention [5]. This paper discusses time-series augmentation with 

basic methods involving value perturbation (jittering, scaling) and simple structure-based 

transformations like window slicing and sequence morphing (permutation). Advanced techniques 

include decomposition methods like STL, and populational generation using GANs and statistical 

models to create synthetic data. 

Historically, time series data augmentation research has been skewed towards classification tasks, 

with less emphasis on forecasting. Moreover, basic augmentation techniques commonly applied in other 

domains have yet to be as thoroughly explored or implemented in time series analysis. Recognizing these 

gaps, this paper aims to extend the breadth of time series data augmentation research by addressing 

classification and forecasting tasks across various contemporary emerging deep learning. We prioritized 

CNN, MLP, and Transformer architectures over RNNs due to their alignment with SOTA time series 

trends (DLinear for simplicity, TimesNet for 2D periodicity, iTransformer for global dependencies), 

computational efficiency via parallelization and simple network (DLinear), and superior handling of 

long-term dependencies. Transformers’ self-attention and CNNs’ local pattern extraction address RNNs’ 

sequential bottlenecks and memory constraints, ensuring scalability and accuracy in long-horizon tasks. 

In this study, we conduct a comprehensive experiment applying basic augmentation techniques to 

classification and forecasting tasks. In our study, we investigate the application of the Mixup 

augmentation strategy, traditionally used in image processing, to blend time series samples. Our goal is 

to preserve the inherent temporal structure of the time series as much as possible while integrating 

contributions from the targets into the loss function, making the strategy suitable for various time series 

tasks. Furthermore, this adaptation leads to the introduction of EMixup, an enhanced version of Mixup 

designed to further improve model generalization capabilities for time series data. 

The main contributions of this paper are as follows: 

• We empirically study basic time series data augmentation and Mixup techniques for forecasting 

tasks. This study evaluates the efficacy of these augmentations across a spectrum of state-of-the-

art (SOTA) models, including MLP, CNN, and Transformer architectures. 

• This research explores the application of basic time series data augmentation and Mixup strategies 

for classification challenges. We evaluate the performance of these techniques using various state-

of-the-art models, including MLPs, CNNs, and Transformers. 

• We propose the EMixup method tailored to meet the requirements of time series data in both 

classification and forecasting contexts. It improves baseline performance across various cases and 

frequently achieves the best results among basic augmentation methods 

2. Related Work 

2.1. Deep Learning Models for Time Series 
Recent advancements in deep learning have significantly impacted the field of time series, with 

various models demonstrating remarkable performance across several benchmarks. Among these MLP-

based models, the research [6] demonstrates the effectiveness of simple MLP architectures for financial 

time series forecasting. It finds that MLP can achieve competitive, accurate predictions and may even 

outperform more complex models like Transformers and RNNs in certain time series tasks. Other 

notable MLP-based approaches include LTSF-DLinear and LTSF-Nlinear [1], which contribute 

variations to traditional MLP structures to improve forecasting reliability. RNN-based models continue 

to excel in handling sequential data, with innovations like [7],  which explore how multi-objective 
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evolutionary algorithms can enhance LSTM networks by optimally selecting key features, thus balancing 

complexity and forecasting accuracy for efficient time series analysis. Another variant [3] proposes a new 

framework (TRUST) for RNN architecture models, which introduces a Gaussian prior over network 

parameters and propagates the first two moments of the variational distribution to estimate uncertainty 

in time-series analysis. It also demonstrates robustness against noise and adversarial attacks. CNN-based 

models have also evolved to address time series tasks. [8] presents SIGAN-CNN, which leverages CNNs 

within a GAN for time series data augmentation, particularly beneficial for limited datasets. The 

generated data is then used with CNN-based classifiers to enhance the accuracy of time series 

classification. TimesNet [2] addresses the problem by modeling time series data as 2D-variation tensors, 

effectively capturing and analyzing complex temporal variations to achieve state-of-the-art results across 

various time series analysis tasks. Transformer-based models have brought significant innovations to the 

field. The TimesFM [9] is a pretrained Transformer utilizing a decoder-only structure and input 

patching for effective zero-shot time-series forecasting. The MultiPatchFormer [10] is a Transformer-

based architecture employing multi-scale temporal patches and channel-wise attention to model complex 

dependencies in multivariate time-series forecasting. Moreover, the iTransformer [4] effectively utilizes 

attention and feed-forward networks on inverted dimensions of time series data to improve the accuracy 

and efficiency of time series forecasting. 

2.2. Time Series Augmentation Methods 
Basic augmentation techniques are essential for enhancing the robustness and performance of deep 

learning models when working with time series data. Techniques such as adding noise, permutation, 

scaling, and warping are essential for diversifying training scenarios, thereby helping models generalize 

better when encountering new data during training. Authors in [11] demonstrate that these techniques 

significantly enhance model training across various time series classification tasks. Additionally, in the 

realm of time series frequency components, [12] developed Random Noise Boxes (RNB), a novel 

technique for spectrogram classification, and [13] introduced Stratified Fourier Coefficients 

Combination (SFCC) to enhance time series datasets for deep neural networks. TF-FC explores the 

integration of both time and frequency domain techniques [14], which fuses time and frequency 

augmentations for enhanced time series representation. Advanced augmentation methods, including 

decomposition-based methods, statistical generative models, and learning methods, provide 

sophisticated approaches to enrich time series data. Decomposition-based methods isolate and augment 

different temporal components, such as trend and seasonality, which can be recombined to enhance 

model training. These methods have proven effective in complex real-world applications for forecasting, 

significantly improving predictive accuracy, as seen in the work by [15], [16]. Additionally, learning-

based augmentation methods leverage deep learning models such as [17], [18] to generate new training 

samples, effectively improving model performance across diverse time series tasks. Mixup augmentation 

[19] has seen significant advancements since its introduction, with researchers proposing various 

extensions and improvements to address limitations like slow convergence, sensitivity to 

hyperparameters, and potential over-smoothing or under-representation of certain classes. Notable 

advancements include [20], Decoupled Mixup [21] for a better discrimination-smoothness trade-off, 

[22] for enhancing feature diversity and reducing over-reliance on filters, and GuidedMixup [23] that 

guides the mixing process. Additionally, Mixup has been successfully applied to various computer vision 

tasks beyond image classification [24], such as object detection [25] and robust image-denoising [26], 

demonstrating its versatility and effectiveness across diverse domains. Recent studies have explored 

adapting Mixup augmentation, initially proposed for image data, to time series data for classification and 

forecasting tasks. Methods like Mixup++ and LatentMixup++ [27] perform interpolations in the raw 

time series data and latent space of models, demonstrating improvements in classification tasks. An 

empirical study [28] also demonstrated that mix-based augmentations improve performance on 

physiological time series classification without requiring extensive tuning. For forecasting, techniques 

like TSMix [29] averaging standardized combinations of multiple actual univariate time series to generate 

augmented samples. These methods extend Mixup for time series by addressing challenges through 

novel interpolation strategies in time and latent spaces. 
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3. Method 

3.1. Enhanced Mixup Technique 
This research focuses on data augmentation techniques for time series analysis, particularly on 

forecasting and classification tasks. Fig. 1 shows an overview of the Enhanced Mixup Technique. 

 

Fig. 1. Overview of the Enhanced Mixup Technique. Two time series, xa and xb are first modified by a GNM to 

add variability while maintaining structural integrity. They are then combined using Mixup to create  x̃, 

further GNM processing to result in x̃final. A vertical flip is occasionally applied to xa and xb with probability 

P to increase diversity 

While data augmentation has thrived in other domains, such as computer vision, yielding significant 

improvements in model performance, there is a notable lack of comprehensive studies on augmentation 

techniques tailored explicitly for time series, especially in forecasting. To address this gap, we conduct a 

comprehensive empirical study, experimenting with various augmentation methods proposed in the past 

and adapting them for classification and forecasting tasks. Through detailed experiments, we 

demonstrate the limitations and instability of traditional augmentation techniques, which can sometimes 

lead to decreased model performance. As a more promising alternative, we propose a modifications 

Mixup augmentation, showcasing its stability and broad applicability across diverse time series datasets. 

Our experiments encompass recent SOTA models and emerging architectures in time series analysis, 

such as MLP, CNN, and Transformer-based models, going beyond the commonly studied RNN-based 

models. Our study spans 8 datasets, evaluating the impact of different augmentation techniques on model 

performance. 

3.2. Mixup and Enhaced Mixup 
Time series analysis involves input sequences X=(x1, x2, x3, ..., xT) where xt represents the value at 

time step t and T is the time series length, applicable in both univariate (xt is scalar) and multivariate 
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(vector xt ∈ RF

, where F is number of variables at time t) contexts. The outputs vary: forecasting aims 

to predict future values, outputting a sequence Ŷ =( x̂T+1, x̂T+2, x̂T+3, ..., x̂T+h) for a horizon h, whereas 

classification determines a class label for the sequence, resulting in an output ŷ from a set of classes ŷ 

∈{1, 2, 3, ..., C}, often expressed as a probability distribution using a softmax function. Thus, while both 

tasks start from time-indexed sequences, they diverge in their predictive outputs, focusing on future data 

points in forecasting and class labels in classification. 

Mixup is a data augmentation technique that generates synthetic training samples by combining pairs 

of samples: x̃ = λxa + (1-λ)xb  and labels: ỹ = λya + (1-λ)yb , where λ∼Beta(α,α) controls the interpolation 

strength. Mixup enhances generalization by regularizing models through synthetic samples, but it risks 

disrupting the temporal structure in time series and may violate sequential dependencies or create 

unrealistic samples. 

We introduce Enhanced Mixup (EMixup), an adaptation of the computer vision Mixup technique 

for time series, designed to preserve temporal structure while diversifying training data and avoiding 

degradation from basic augmentation methods. EMixup addresses the Mixup’s inability to protect 

temporal structure in time series by using a highly skewed Beta distribution, which prioritizes one sample 

to minimize distortion. While this reduces sample diversity, techniques like the Generating Noise 

Module (GNM) are introduced to compensate, enhance diversity, and generate realistic synthetic data. 

The application of the loss function makes EMixup a robust adaptation for time series forecasting and 

classification tasks. Enhanced Mixup integrates Mixup into time series for forecasting and classification, 

ensuring simplicity and accessibility as a basic augmentation method. Fig. 2 shows a Comparison of 

Symmetric and Skewed Beta Distributions. 

 

Fig. 2. Comparison of Symmetric and Skewed Beta Distributions. The top panel shows a symmetric Beta 

distribution (α=0.5, β=0.5), in contrast to the skewed distribution (α=40, β=0.5) in the bottom panel. In 

the skewed model, P(X>0.96)≈0.93 suggests a high probability of drawing values close to 1, while the 

symmetric model has probabilities P(X<0.04) and P(X>0.96) both around 0.13 

The EMixup method, illustrated in Fig. 1, begins by processing two time series (xa and xb) through 

the GNM to add noise without significantly disrupting their structure. These noise-enhanced samples 

are then mixed using the Mixup technique (with highly skewed beta distribution) to create x̃, which 

undergoes further GNM processing to produce x̃final. Additionally, a vertical flip is applied to (xa or/and 

xb) with probability P to enhance diversity. This process comprises five key steps: 
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• Step 1. During training, two time series samples (xa and xb) are selected and may undergo a vertical 

flip with probability P, producing x'a and x'b. This technique enhances model robustness by 

exposing it to reversed trends, broadening pattern recognition without additional data. Vertical 

flipping preserves temporal structure while altering patterns as trend directionality, aiding in 

learning invariant features. By using a small P, it diversifies training data while minimizing 

distributional changes and retaining essential series characteristics. 

• Step 2. Noise variables εa and εb are added to the series x'a and x'b (vertically flipped or not), resulting 

in x

*

a and x

*

b. This is achieved using the GNM, which processes a batch of inputs with dimensions 

B (batch size), T (length of time steps), and F (number of features). The GNM generates noise for 

each feature f at every time step t, applying it uniformly across the entire batch B. Noise for each 

feature is drawn from a normal distribution Nf (μ=0, σ2

=(s*σ̅f )

2

), where σ̅f represents the mean 

standard deviation of the feature across the batch, and s is a scaling factor used to adjust the noise 

intensity. By leveraging the inherent variability of the training batch, the GNM ensures noise is 

proportional to natural fluctuations, preserving essential characteristics while preventing overfitting 

to overly smooth or noise-free data (see Fig. 3). This approach enhances model robustness by 

simulating real-world variations, diversifying data presentations, and subtly altering temporal 

dynamics without significantly disrupting the overall distribution. 

• Step 3. We apply Mixup techniques to generate mixed samples x̃ = λx*

a + (1-λ)x*

b. To preserve the 

characteristics of x

*

a and prevent the destruction of the time series integrity, we modify the 

symmetric Beta distribution used to draw λ.  Particularly, we employ a skewed Beta distribution, 

which favors values of λ close to 1.0. It minimizes the influence of x

*

b and maintains the primary 

structure of x

*

a. As shown in Fig. 2, the comparison between a symmetric Beta distribution 

Beta(α=0.5, β=0.5) and the skewed distribution Beta(α=40, β=0.5) shows a significant difference: 

while the probability P(X>0.96) in the skewed model is approximately 0.93, indicating strong 

preservation of x

*

a features, the P(X<0.04) and P(X>0.96) of the Beta(α=0.5, β=0.5) are almost 0.13. 

This method perverse the most original time series structure, which is critical for accurate analysis 

and prediction, while minimizing the risk of introducing unrealistic, distorted samples that could 

degrade model performance. However, prioritizing structure preservation may limit sample 

diversity. To address this, we propose that GNM enhance the diversity of generated samples. 

Overall, the skewed Beta distribution balances time series preservation with controlled variability. 

• Step 4. The mixed samples x̃ then pass through the GNM to further diversify the mixed samples. 

This additional processing step enhances the robustness and variability of the dataset, ensuring that 

the Mixup-generated samples are not only blended but also introduce variations that enrich the 

training set. Refer to Fig. 3 for a comparison between EMixup and the original Mixup. 

• Step 5. For the target, both forecasting and classification, we implement the mix operation in the 

loss function Lfinal = λL(ŷ, ya)+(1-λ)L(ŷ, yb), where ŷ is the inference result from the model, ya and 

yb are the targets of the training sample. The loss function L can be cross-entropy loss for the 

classification, and L can be mean squared error for the forecasting task. This formulation captures 

the essential role of λ in determining the significance of each sample in the mixed data. 

Fig. 3 illustrates the impact of different Mixup variations. The top-left shows a Mixup with λ = 0.5. 

From t = 0 to 2, the mixed sample follows series B downward while series A trends upward. From t = 

2.5 to 3.2, the mixed sample follows series A downward, while series B trends upward. In this case, the 

mixed sample lacks consistency, depending on the dominant magnitude of series A and B at different 

time steps, and its behavior differs from A and B, resulting in an unrealistic sample. The top-right shows 

that λ = 0.95 (λ is very high, P(X>0.96) ≈ 0.93) increases the likelihood of preserving a mixed sample 

very similar to series A. The bottom-left demonstrates that adding noise from GNM distorts the sample 

slightly but still resembles series A. The bottom-right illustrates diversity achieved by applying a vertical 

flip, showing a result similar to A but inverted. 
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Fig. 3. Variations in Mixup with Different λ, Noise Addition, and Vertical Flip. Top left: λ=0.5 results in an 

even mix of two time series. Top right: λ=0.95 emphasizes features from one time series. Bottom left: Adds 

noise from a GNM to the λ=0.5 mix, enhancing variability. Bottom right: Incorporates a vertical flip before 

a λ=0.5 Mixup and noise addition, increasing diversity 

EMixup distinguishes itself from a standard Mixup through several key adaptations for time series 

data. Unlike the symmetric Beta distribution in the standard Mixup, EMixup employs a highly skewed 

distribution, favoring the dominance of one original time series to preserve the temporal structure. It 

introduces GNM for controlled, feature-specific noise addition before and after mixing, enhancing 

robustness. EMixup also incorporates a vertical flip (with a small probability) for increased data diversity 

and modifies the loss function to integrate the contributions of targets based on the mixing ratio. These 

modifications tailor EMixup for effective application in both time series forecasting and classification 

tasks, unlike the primarily image-focused standard Mixup. 

3.3. Experimental Setup 
We implement test cases in these experiments following the Time Series Library (TSlib) [2]. There 

are key configurations: DLinear comprises two single-layer linear networks, each with neurons equal to 

the forecast horizon, modeling trend, and remainder components. This setup is consistent for both 

forecasting and classification. TimesNet analyzes the frequency domain, selecting the top-k (k = 5 for 

forecasting, task-specific for classification) significant frequencies. It uses an embedding layer, followed 

by two TimeBlocks [2] (each with two Inception Blocks containing six CNN layers), and uses a MLP 

layer for forecasting or classification. iTransformer uses two blocks for encoder and three blocks for 

classification. In the forecasting task, we use a 15% Vflip rate in EMixup, unlike the classification task 

which uses no Vflip. The noise scaling factor s is set to 0.01. These experiments evaluate time series 

augmentation by assessing improvements across models and datasets, and identifying augmentations 

with the most consistent performance gains. 

In the domain of time series, various deep learning models have been tailored to leverage the unique 

characteristics of sequential data. Three recently notable models that have been developed are DLinear, 

TimesNet, and iTransformer. Each model corresponds to one of the base architectures in deep learning: 

MLP, CNN, and Transformer, respectively, showcasing different approaches to handle time-dependent 

patterns. DLinear is a time series forecasting model utilizing the MLP architecture to effectively learn 

relationships in time series through dense layers, adjusting traditional MLP structures to emphasize 

temporal dynamics. TimesNet, leveraging CNNs, introduces the TimesBlock module to transform 1D 
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time series into 2D, enabling complex pattern modeling through 2D convolutions and achieving state-

of-the-art results in various forecasting tasks. iTransformer adapts the Transformer architecture for time 

series forecasting, using an inverted structure to treat time series as tokens and leveraging attention 

mechanisms and Transformer components to forecast high-dimensional multivariate series effectively. 

In our time series forecasting experiments, we utilize four datasets [30]: ETTh1, ETTh2, ETTm1, 

and ETTm2, which consist of electricity transformer temperature data from two counties in China 

collected over two years to study the effects of data granularity on forecasting. ETTh1 and ETTh2 

provide hourly data, while ETTm1 and ETTm2 offer minute-level granularity. We adopt a multivariate 

forecasting method, targeting multiple variables such as oil temperature and six power load features (see 

Table 1).  

Table 1.  Experiment Datasets for Time Series Forecasting and Classification. Forecasting uses 96 historical data 

points to predict 192 future steps, and classification involves predicting diverse classes 

Forecasting Data Classification Data 

Dataset 

Additional 

Features 

Target 

Variable 

Input 

Length 

Prediction 

Length 

Dataset 

Input 

Length 

Features Num Classes 

ETTh1 6 features Oil tempe. 96 192 Handwriting 152 3 26 

ETTh2 6 features Oil tempe. 96 192 Heartbeat 405 61 2 

ETTm1 6 features Oil tempe. 96 192 SelfRegulationSCP1 896 6 2 

ETTm2 6 features Oil temper. 96 192 SelfRegulationSCP2 1152 7 2 

The datasets are split into 12 months for training, 4 months for validation, and 4 months for testing. 

In classification, we utilize four datasets from the UEA [31] time series classification repository: 

Handwriting, Heartbeat, SelfRegulationSCP1, and SelfRegulationSCP2. The Handwriting dataset 

contains three-dimensional accelerometer data from smartwatch-recorded handwriting motions. The 

Heartbeat dataset features heart sound recordings from both healthy and cardiac patients, analyzed using 

spectrograms. SelfRegulationSCP1 and SelfRegulationSCP2 provide EEG data from healthy subjects 

and an ALS patient (see Table 1). 

4. Results and Discussion 
These experiments aim to evaluate time series augmentation techniques from two angles: general 

enhancements across diverse models and scenarios and an analysis to pinpoint augmentations that 

consistently outperform others. Based on Fig. 4, it is clear that our proposed EMixup method generally 

excels in comparison to other methods. It demonstrates a remarkable capacity to improve performance 

broadly, topping the charts in the number of improved and best cases. In Fig. 4, improved cases indicate 

where an augmentation technique enhanced model performance, while best cases show a technique that 

outperformed all others to achieve the highest improvement. 

The study assesses data augmentation techniques for time series forecasting using ETTh1, ETTh2, 

ETTm1, and ETTm2 datasets, employing DLinear (MLP-based), TimesNet (CNN-based), and 

iTransformer (Transformer-based) models. Each model's performance is evaluated using Mean Squared 

Error (MSE) and Mean Absolute Error (MAE), with results organized in Table 2 showing improvements 

over baseline values are underlined, and the most effective techniques are bolded. This approach allows 

for a detailed comparison of how different augmentation methods enhance forecasting accuracy across 

various sophisticated models. Overall, EMixup enhances performance across various models and datasets, 

improving the baseline in most test cases. The only exception is its performance on the ETTm2 dataset 

with the iTransformer model regarding MSE. Techniques such as window warping and window slicing 

fail to improve all datasets and models. Permutation exhibits similar behavior, except in the ETTh1 

dataset. It is understood that these techniques may disrupt the temporal structure of time series, making 

them unsuitable for LTSF, which relies heavily on time step dependencies. Conversely, EMixup is 

designed to minimally impact and preserve the temporal structure as much as possible while generating 

diverse training data. Other techniques, such as horizontal flip, vertical flip, scaling, and jitter, also 

improve the performance but are still less effective than EMixup. For example, vertical flip may improve 
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outcomes on ETTm1 and ETTm2 but perform poorly on ETTh2. Despite having a minor probability 

of using vertical flip, EMixup consistently shows strong performance across all these datasets. Mixup 

results in improvements in 19 cases, similar to Horizontal flip in 17 cases, but Horizontal flip 

demonstrates superior outcomes to Mixup. 

 

Fig. 4. Improvement of Different Augmentations on Model Performance. The bar chart shows the number of 

improved and best cases for each technique in forecasting and classification tasks. EMixup emerges as the 

majority winner, demonstrating its robustness across various datasets, models, and metrics 

 Furthermore, EMixup most frequently achieves superior performance, gaining the highest results 

11 times compared to other techniques. Horizontal flip in second place, achieving top results 9 times, 

but not improving as many cases as EMixup (23 cases). This experiment shows that EMixup, based on 

the Mixup concept but modified for time series, aims to preserve the characteristics of time series data 

as much as possible while diversifying the training data (skewed Mixup ratio distribution, adding noise 

following the variance of the training batch, and minimal use of vertical flip). It is also noteworthy that 

EMixup remains active throughout training. In contrast, Mixup is activated only 50% of the time, as It 

can generate non-realistic samples, whereas our design maintains the integrity of the time series data. 

The study employs a detailed comparative analysis of data augmentation techniques on time series 

classification using Handwriting, Heartbeat, SelfRegulationSCP1, and SelfRegulationSCP2 datasets. 

We employ three advanced models: DLinear, TimesNet, and iTransformer, which were chosen for 

their distinct methods of processing time series data. We evaluate the effectiveness of each model and 

augmentation technique using Accuracy and F1-score, with the results detailed in Table 3. The most 

successful strategies are highlighted in bold, and improvements are underlined. This setup evaluates the 

effects of augmentation methods on model performance across various datasets, providing key insights 

into their effectiveness and adaptability. In classification, these augmentation strategies exhibit a distinct 

set of dynamics. Techniques such as vertical flipping and scaling are less effective, suggesting that their 

application might be too simplistic or disruptive for complex classification patterns. In contrast, 

permutation shows a slight improvement. These techniques also exhibit strong specificity to particular 

datasets; for instance, vertical flipping performs well on the SelfRegulationSCP2 dataset but poorly on 

the Handwriting and Heartbeat datasets. Other augmentations yield better results in terms of 

generalization and peak performance, with only minor differences among them, ranging from 10 to 12 

improved cases and 3 to 4 best cases per augmentation.  
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Table 2.  Time Series Forecasting Augmentation Techniques on Forecasting Dataset: Evaluation across DLinear 

(MLP), TimesNet (CNN), and iTransformer (Transformer) using MSE and MAE. Enhancements over 

baseline are underlined; most significant ones are bolded 

ET
Th

1 

Model DLinear TimesNet iTransformer 
Metric MSE MAE MSE MAE MSE MAE 

Baseline 0.444866 0.440218 0.439870 0.442437 0.448541 0.441158 

Jitter 1.40E-06 2.86E-06 1.66E-04 4.60E-04 -1.58E-06 -2.98E-07 

Hflip -3.19E-04 1.81E-05 1.23E-03 -6.14E-04 -6.71E-03 -4.90E-03 

Vflip 3.66E-03 4.27E-03 1.00E-02 7.05E-03 -6.67E-03 -5.64E-03 
Scaling 9.82E-04 1.35E-03 -6.03E-04 -1.78E-04 -2.72E-04 -1.03E-04 

Window_warp 1.99E-02 1.51E-02 2.55E-02 1.81E-02 1.98E-02 1.10E-02 

Window_slice 6.78E-02 4.24E-02 3.63E-02 2.04E-02 2.71E-02 1.68E-02 

Permutation -6.75E-05 6.58E-04 -3.43E-03 3.26E-03 -1.42E-03 -7.45E-04 

Mixup 9.02E-04 9.81E-04 -6.74E-04 -1.23E-03 -2.53E-03 -2.15E-03 

EMixup (our) -7.06E-04 -1.08E-03 -6.06E-04 -9.51E-04 -1.27E-03 -1.69E-03 

ET
Th

2 

Baseline 0.481671 0.479034 0.396757 0.410084 0.381267 0.399462 

Jitter 2.71E-05 1.90E-05 1.32E-03 1.84E-03 -1.49E-04 -4.39E-05 

Hflip -4.99E-04 4.75E-04 -1.41E-02 -9.38E-03 8.36E-04 -1.52E-03 

Vflip 1.14E-02 9.34E-03 3.19E-02 1.06E-02 2.57E-03 -1.37E-03 

Scaling 3.84E-03 2.50E-03 -3.00E-03 -8.36E-04 -6.89E-05 6.99E-05 

Window_warp 1.56E-03 2.47E-03 1.81E-04 3.62E-03 2.49E-03 1.89E-03 

Window_slice 7.87E-03 7.76E-03 1.23E-02 1.27E-02 1.30E-02 1.01E-02 

Permutation 1.40E-02 9.60E-03 4.93E-03 -8.80E-04 2.43E-03 5.62E-04 

Mixup -1.06E-02 -5.54E-03 -5.06E-04 -1.13E-03 -2.36E-03 -1.91E-03 

EMixup (our) -2.46E-02 -1.28E-02 -4.46E-03 -4.36E-03 -1.24E-03 -2.16E-03 

ET
Tm

1 

Baseline 0.381856 0.391023 0.403705 0.410090 0.380991 0.395193 

Jitter 1.50E-05 9.83E-06 -6.65E-04 -1.11E-04 -7.03E-06 3.19E-05 

Hflip -2.23E-04 -9.23E-04 -1.66E-02 -1.34E-02 4.15E-04 -3.72E-03 

Vflip -4.36E-04 4.72E-05 -1.05E-02 -5.40E-03 8.86E-03 2.52E-03 

Scaling 4.30E-04 6.68E-04 -5.46E-04 1.87E-04 -2.43E-04 -1.82E-04 

Window_warp 7.26E-02 4.80E-02 3.82E-02 2.87E-02 6.29E-02 3.90E-02 

Window_slice 8.58E-02 5.05E-02 6.99E-02 3.85E-02 6.08E-02 3.77E-02 

Permutation 4.54E-02 3.41E-02 1.25E-03 7.82E-03 1.98E-02 1.73E-02 

Mixup 3.78E-05 6.32E-05 6.15E-03 -2.57E-04 -1.74E-03 -2.92E-03 

EMixup (our) -8.29E-04 -7.96E-04 -1.76E-02 -1.26E-02 -2.38E-03 -4.56E-03 

ET
Tm

2 

Baseline 0.284225 0.361074 0.258918 0.308863 0.253002 0.312666 

Jitter 2.72E-05 3.47E-05 1.99E-03 9.84E-04 -4.28E-05 -1.19E-04 

Hflip 4.50E-03 3.79E-03 -9.89E-03 -3.49E-03 -5.44E-03 -4.20E-03 
Vflip 1.67E-04 2.17E-03 -9.50E-03 -3.07E-03 -5.98E-04 -1.69E-03 

Scaling 3.25E-03 3.25E-03 4.50E-03 2.91E-03 -2.26E-04 -1.45E-04 

Window_warp 2.87E-03 4.16E-03 3.99E-03 5.23E-03 3.65E-03 4.32E-03 

Window_slice 6.45E-04 1.34E-03 1.30E-02 1.00E-02 6.10E-03 5.44E-03 

Permutation 6.94E-03 7.72E-03 7.07E-04 -1.81E-04 1.48E-03 2.06E-03 

Mixup -4.39E-03 -2.97E-03 -4.20E-03 -2.56E-03 -6.14E-04 -6.55E-04 

EMixup (our) -2.49E-02 -2.35E-02 -5.40E-03 -1.59E-03 1.14E-03 -1.06E-03 

 

EMixup continues to perform well with the Handwriting and SelfRegulationSCP2 datasets, and 

despite showing no improvement in the SelfRegulationSCP1 dataset, it still achieves the second-best 

performance compared to other techniques. EMixup records 12 improved cases and 3 best cases, slightly 

less efficient than window warping, which has 12 improved cases and 4 best cases. The analysis of 

augmentation techniques across forecasting and classification tasks highlights distinct preferences and 

efficacies. Techniques such as EMixup demonstrate broad applicability and robust performance across 

both task types, suggesting their utility in diverse machine learning scenarios. On the other hand, task-

specific variations are notable; for instance, window warping and window slice are more effective in 
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classification than forecasting, indicating their suitability for some specific tasks only. This highlights 

the need for strategically selecting augmentation techniques that enhance specific task characteristics, 

ensuring optimal model performance and generalization. 

Table 3.  Time Series Classification Augmentation Techniques on classification datasets: Evaluation across 

DLinear (MLP), TimesNet (CNN), and iTransformer (Transformer) using Accuracy and F1-score. 

Enhancements over baseline are underlined; most significant ones are bolded 

H
an

dw
rit

in
g 

Model DLinear TimesNet iTransformer 
Metric ACC F1 ACC F1 ACC F1 

Baseline 18.9412% 15.3887% 30.9412% 27.8433% 21.5294% 18.6035% 

Jitter 0.0000% -0.0358% 0.2353% 0.4150% -0.2353% -0.2712% 

Hflip -4.4706% -4.9565% -3.8824% -4.5906% -4.3529% -5.5322% 

Vflip -9.5294% -8.2334% -11.6471% -12.3302% -8.4706% -9.4189% 

Scaling 0.2353% 0.2789% -0.8235% -0.2425% 0.0000% 0.0240% 

Window_warp -4.8235% -5.6240% 0.3529% 0.2820% -3.6471% 5.3001% 

Window_slice -1.5294% -3.0908% 2.0000% 1.3596% -3.2941% -5.0463% 

Permutation -3.1765% -3.1572% -3.4118% -2.8838% -1.7647% -2.4659% 

Mixup 0.3529% 0.3693% -0.5882% -0.3561% 0.1176% -0.6718% 

EMixup (our) 0.0000% 0.2080% 0.4706% 0.4057% 1.5294% 1.1307% 

H
ea

rt
be

at
 

Baseline 68.7805% 63.3356% 74.1463% 65.1863% 74.1463% 66.0734% 

Jitter 0.4878% 0.0791% 2.4390% 0.0875% 2.4390% 1.2833% 
Hflip 0.9756% 1.4528% -0.9756% 0.0368% -3.4146% -2.5243% 

Vflip -0.4878% 0.7722% -1.4634% -5.0474% 0.9756% -0.5090% 

Scaling 0.9756% 0.1414% -1.9512% -3.1382% 0.0000% 0.0000% 

Window_warp 2.9268% 0.2099% 0.0000% -5.2180% -0.4878% -0.8584% 

Window_slice 3.4146% -0.7767% -5.3659% -4.0673% 0.0000% 0.0000% 

Permutation 5.8537% 2.7327% -0.4878% 0.8733% -2.4390% -0.9373% 

Mixup 2.9268% -2.7796% -0.4878% -1.9101% -1.9512% -24.1470% 

EMixup (our) 4.3902% 1.4576% 1.9512% -0.9324% -7.3171% -6.9484% 

Se
lfR

eg
ul

at
io

nS
CP

1 

Baseline 88.0546% 88.0407% 91.4676% 91.4576% 92.8328% 92.8244% 

Jitter 0.0000% 0.0050% -3.7543% -3.7559% 0.0000% -0.0037% 

Hflip 0.3413% 0.3443% -4.0956% -4.1003% 0.0000% 0.0030% 

Vflip -5.8020% -5.7983% -12.9693% -13.0236% -3.0717% -3.0835% 

Scaling -1.0239% -1.0440% -3.7543% -3.7617% 0.0000% 0.0000% 

Window_warp 5.1195% 5.1269% -5.8020% -5.9996% 0.0000% -0.0080% 

Window_slice 3.7543% 3.7605% -1.7065% -1.7110% 0.0000% -0.0037% 

Permutation 4.4369% 4.4500% -3.4130% -3.4080% -0.6826% -0.6977% 

Mixup 0.6826% 0.6918% -4.4369% -4.4452% -5.8020% -5.7975% 

EMixup (our) -0.3413% -0.3390% -1.3652% -1.3557% -3.0717% -3.0634% 

Se
lfR

eg
ul

at
io

nS
CP

2 

Baseline 52.7778% 52.6008% 51.1111% 51.0143% 52.2222% 52.1986% 

Jitter 0.0000% -0.1532% -2.2222% -2.2837% 0.0000% 0.0000% 

Hflip 1.6667% 1.8437% 1.6667% 1.4332% 4.4444% 4.0303% 
Vflip 4.4444% 4.0312% -1.1111% -2.6462% 3.3333% 3.2690% 

Scaling -0.5556% -0.3844% -1.1111% -1.0205% -1.1111% -1.2389% 

Window_warp 1.1111% 1.2525% 2.7778% 2.6328% 2.7778% 2.6886% 

Window_slice 1.1111% 1.2753% 0.5556% 0.3989% 3.3333% 3.2690% 

Permutation -1.6667% -2.1008% -1.6667% -2.5643% 2.7778% 2.8000% 

Mixup 0.5556% 0.7326% 0.5556% 0.6508% -2.2222% -18.8653% 

EMixup (our) 0.5556% 0.7268% 2.7778% 1.0626% -1.6667% -17.6425% 

5. Conclusion 
This study has systematically explored the effectiveness of various data augmentation techniques in 

time series analysis, focusing on forecasting and classification tasks. We designed comprehensive 

experiments to evaluate augmentation techniques from two primary perspectives: their ability to enhance 

performance across various models, data and their effectiveness in outperforming other methods. The 

proposed EMixup offers several practical benefits for real-world time series analysis, demonstrating broad 
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applicability across various models, diverse datasets (power management, …), and tasks. Its relatively 

simple implementation makes it accessible to practitioners, and its ability to generate synthetic data and 

enhances model robustness by incorporating a Generating Noise Module. While EMixup appears scalable 

to high-dimensional time series due to its noise generation process and does not impact inference time 

for real-time applications, it exhibits potential limitations such as sensitivity to hyperparameter settings, 

including the skewed Beta distribution, and a possible reduction in the diversity of synthetic samples 

due to the emphasis on preserving original time series structure. Furthermore, the risk of introducing 

unrealistic patterns and the need for dataset-specific tuning, should be considered for effective 

deployment. Further research is needed to fully assess its scalability to large datasets and to develop 

learnable hyperparameters (adaptive Beta distribution). 

Declarations 
Author contribution. The first author has a significant contribution on this research, and other authors 

have contributed equally for different parts of this paper. All authors read and approved the final paper. 

Funding statement. This research did not receive any specific grant from funding agencies in the public, 

commercial, or not-for-profit sectors. 

Conflict of interest. The authors declare no conflict of interest. 

Additional information. No additional information is available for this paper. 

Data and Software Availability Statements 
The source code is available at https://github.com/khoanta-ai/TS_EMixup. 

References 
[1] A. Zeng, M. Chen, L. Zhang, and Q. Xu, “Are Transformers Effective for Time Series Forecasting?,” Proc. 

AAAI Conf. Artif. Intell., vol. 37, no. 9, pp. 11121–11128, Jun. 2023, doi: 10.1609/aaai.v37i9.26317. 

[2] H. Wu, T. Hu, Y. Liu, H. Zhou, J. Wang, and M. Long, “TimesNet: Temporal 2D-Variation Modeling 

for General Time Series Analysis,” 11th Int. Conf. Learn. Represent. ICLR 2023, pp. 1–23, Oct. 2022. 

[Online]. Available at: https://arxiv.org/pdf/2210.02186. 

[3] D. Dera, S. Ahmed, N. C. Bouaynaya, and G. Rasool, “TRustworthy Uncertainty Propagation for 

Sequential Time-Series Analysis in RNNs,” IEEE Trans. Knowl. Data Eng., vol. 36, no. 2, pp. 1–13, Feb. 

2023, doi: 10.1109/TKDE.2023.3288628. 

[4] Y. Liu et al., “iTransformer: Inverted Transformers Are Effective for Time Series Forecasting,” 12th Int. 
Conf. Learn. Represent. ICLR 2024, pp. 1–25, Oct. 2023. [Online]. Available at: 

https://arxiv.org/pdf/2310.06625. 

[5] Z. Wang et al., “A Comprehensive Survey on Data Augmentation,” arXiv, pp. 1–20, May 2024. [Online]. 

Available at: https://arxiv.org/pdf/2405.09591. 

[6] A. Lazcano, M. A. Jaramillo-Morán, and J. E. Sandubete, “Back to Basics: The Power of the Multilayer 

Perceptron in Financial Time Series Forecasting,” Mathematics, vol. 12, no. 12, p. 1920, Jun. 2024, doi: 

10.3390/math12121920. 

[7] R. Espinosa, F. Jiménez, and J. Palma, “Embedded feature selection in LSTM networks with multi-

objective evolutionary ensemble learning for time series forecasting,” arXiv, pp. 1–25, Dec. 2023. [Online]. 

Available at: https://arxiv.org/pdf/2312.17517. 

[8] W. Chen and J. Li, “SIGAN-CNN: Convolutional Neural Network Based Stepwise Improving Generative 

Adversarial Network for Time Series Classification of Small Sample Size,” IEEE Access, vol. 12, pp. 85499–

85510, 2024, doi: 10.1109/ACCESS.2024.3413948. 

[9] A. Das, W. Kong, R. Sen, and Y. Zhou, “A decoder-only foundation model for time-series forecasting,” 

Proc. Mach. Learn. Res., vol. 235, pp. 10148–10167, Oct. 2023. [Online]. Available at: 

https://arxiv.org/pdf/2310.10688. 

[10] V. Naghashi, M. Boukadoum, and A. B. Diallo, “A multiscale model for multivariate time series 

forecasting,” Sci. Rep., vol. 15, no. 1, p. 1565, Dec. 2025, doi: 10.1038/S41598-024-82417-4. 

https://github.com/khoanta-ai/TS_EMixup
https://doi.org/10.1609/aaai.v37i9.26317
https://arxiv.org/pdf/2210.02186
https://doi.org/10.1109/TKDE.2023.3288628
https://arxiv.org/pdf/2310.06625
https://arxiv.org/pdf/2405.09591
https://doi.org/10.3390/math12121920
https://arxiv.org/pdf/2312.17517
https://doi.org/10.1109/ACCESS.2024.3413948
https://arxiv.org/pdf/2310.10688
https://doi.org/10.1038/s41598-024-82417-4


ISSN 2442-6571 International Journal of Advances in Intelligent Informatics 239 

 Vol. 11, No. 2, May 2025, pp. 227-240 
 

 Nguyen et al. (Enhanced mixup for improved time series analysis) 

[11] B. Liu, Z. Zhang, and R. Cui, “Efficient Time Series Augmentation Methods,” in 2020 13th International 
Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), Oct. 2020, 

pp. 1004–1009, doi: 10.1109/CISP-BMEI51763.2020.9263602. 

[12] W. Yang, J. Yuan, and X. Wang, “SFCC: Data Augmentation with Stratified Fourier Coefficients 

Combination for Time Series Classification,” Neural Process. Lett., vol. 55, no. 2, pp. 1833–1846, Apr. 

2023, doi: 10.1007/s11063-022-10965-9. 

[13] M. Goubeaud, N. Gmyrek, F. Ghorban, L. Schelkes, and A. Kummert, “Random Noise Boxes: Data 

Augmentation for Spectrograms,” in 2021 IEEE International Conference on Progress in Informatics and 
Computing (PIC), Dec. 2021, pp. 24–28, doi: 10.1109/PIC53636.2021.9687058. 

[14] W. Zhao and L. Fan, “Time-series representation learning via Time-Frequency Fusion Contrasting,” 

Front. Artif. Intell., vol. 7, p. 1414352, Jun. 2024, doi: 10.3389/frai.2024.1414352. 

[15] Y. Deng, R. Liang, D. Wang, A. Li, and F. Xiao, “Decomposition-based Data Augmentation for Time-

series Building Load Data,” in Proceedings of the 10th ACM International Conference on Systems for Energy-
Efficient Buildings, Cities, and Transportation, Nov. 2023, pp. 51–60, doi: 10.1145/3600100.3623727. 

[16] B. Kalina, J.-H. Lee, and K.-T. Na, “Enhancing Portfolio Performance through Financial Time-Series 

Decomposition-Based Variational Encoder-Decoder Data Augmentation,” Symmetry (Basel)., vol. 16, no. 

3, p. 283, Feb. 2024, doi: 10.3390/sym16030283. 

[17] X. Wu, D. Zhang, G. Li, X. Gao, B. Metcalfe, and L. Chen, “Data augmentation for invasive brain–

computer interfaces based on stereo-electroencephalography (SEEG),” J. Neural Eng., vol. 21, no. 1, p. 

016026, Feb. 2024, doi: 10.1088/1741-2552/ad200e. 

[18] L. Wang, L. Zeng, and J. Li, “AEC-GAN: Adversarial Error Correction GANs for Auto-Regressive Long 

Time-Series Generation,” Proc. AAAI Conf. Artif. Intell., vol. 37, no. 8, pp. 10140–10148, Jun. 2023, doi: 

10.1609/aaai.v37i8.26208. 

[19] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz, “Mixup: Beyond Empirical Risk Minimization,” 

6th Int. Conf. Learn. Represent. ICLR 2018 - Conf. Track Proc., pp. 1–13, Oct. 2017, 2025. [Online]. 

Available at: https://arxiv.org/pdf/1710.09412. 

[20] A. N. E. Xplorer and A. F. Ramework, “iGraphMix: Input Graph Mixup Method For Node Classification,” 

arXiv, pp. 1–11, 2023, [Online]. Available at: 

https://openreview.net/forum?id=a2ljjXeDcE&noteId=a2ljjXeDcE. 

[21] Z. Liu, S. Li, G. Wang, C. Tan, L. Wu, and S. Z. Li, “Harnessing Hard Mixed Samples with Decoupled 

Regularizer,” in Advances in Neural Information Processing Systems, 2022, no. DM, pp. 1–23, [Online]. 

Available at: http://arxiv.org/abs/2203.10761. 

[22] M. Kang, M. Kang, and S. Kim, “Catch-Up Mix: Catch-Up Class for Struggling Filters in CNN,” Proc. 
AAAI Conf. Artif. Intell., vol. 38, no. 3, pp. 2705–2713, Mar. 2024, doi: 10.1609/aaai.v38i3.28049. 

[23] M. Kang and S. Kim, “GuidedMixup: An Efficient Mixup Strategy Guided by Saliency Maps,” Proc. AAAI 
Conf. Artif. Intell., vol. 37, no. 1, pp. 1096–1104, Jun. 2023, doi: 10.1609/aaai.v37i1.25191. 

[24] S. Hong, Y. Yoon, H. Joo, and J. Lee, “GBMix: Enhancing Fairness by Group-Balanced Mixup,” IEEE 
Access, vol. 12, pp. 18877–18887, 2024, doi: 10.1109/ACCESS.2024.3358275. 

[25] J. Maurya, K. R. Ranipa, O. Yamaguchi, T. Shibata, and D. Kobayashi, “Domain Adaptation using Self-

Training with Mixup for One-Stage Object Detection,” in 2023 IEEE/CVF Winter Conference on 
Applications of Computer Vision (WACV), Jan. 2023, pp. 4178–4187, doi: 

10.1109/WACV56688.2023.00417. 

[26] D. Ryou, I. Ha, H. Yoo, D. Kim, and B. Han, “Robust Image Denoising Through Adversarial Frequency 

Mixup,” in 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Jun. 2024, 

pp. 2723–2732, doi: 10.1109/CVPR52733.2024.00263. 

[27] K. Aggarwal and J. Srivastava, “Embarrassingly Simple Mixup for Time-series,” arXiv, pp. 1–11, Apr. 

2023. [Online]. Available at: https://arxiv.org/pdf/2304.04271. 

https://doi.org/10.1109/CISP-BMEI51763.2020.9263602
https://doi.org/10.1007/s11063-022-10965-9
https://doi.org/10.1109/PIC53636.2021.9687058
https://doi.org/10.3389/frai.2024.1414352
https://doi.org/10.1145/3600100.3623727
https://doi.org/10.3390/sym16030283
https://doi.org/10.1088/1741-2552/ad200e
https://doi.org/10.1609/aaai.v37i8.26208
https://arxiv.org/pdf/1710.09412
https://openreview.net/forum?id=a2ljjXeDcE&noteId=a2ljjXeDcE
http://arxiv.org/abs/2203.10761
https://doi.org/10.1609/aaai.v38i3.28049
https://doi.org/10.1609/aaai.v37i1.25191
https://doi.org/10.1109/ACCESS.2024.3358275
https://doi.org/10.1109/WACV56688.2023.00417
https://doi.org/10.1109/CVPR52733.2024.00263
https://arxiv.org/pdf/2304.04271


240 International Journal of Advances in Intelligent Informatics   ISSN 2442-6571 

 Vol. 11, No. 2, May 2025, pp. 227-240 

 

 

 Nguyen et al. (Enhanced mixup for improved time series analysis) 

[28] P. Guo, H. Yang, and A. Sano, “Empirical Study of Mix-based Data Augmentation Methods in 

Physiological Time Series Data,” in 2023 IEEE 11th International Conference on Healthcare Informatics 
(ICHI), Jun. 2023, pp. 206–213, doi: 10.1109/ICHI57859.2023.00037. 

[29] L. N. Darlow, A. Joosen, M. Asenov, Q. Deng, J. Wang, and A. Barker, “TSMix: time series data 

augmentation by mixing sources,” in Proceedings of the 3rd Workshop on Machine Learning and Systems, 
May 2023, pp. 109–114, doi: 10.1145/3578356.3592584. 

[30] H. Zhou et al., “Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting,” 

Proc. AAAI Conf. Artif. Intell., vol. 35, no. 12, pp. 11106–11115, May 2021, doi: 10.1609/aaai.v35i12.17325. 

[31] A. Bagnall et al., “The UEA multivariate time series classification archive, 2018,” arXiv, pp. 1–36, Oct. 

2018. [Online]. Available at: https://arxiv.org/pdf/1811.00075. 

 

 

 

 

 

  

https://doi.org/10.1109/ICHI57859.2023.00037
https://doi.org/10.1145/3578356.3592584
https://doi.org/10.1609/aaai.v35i12.17325
https://arxiv.org/pdf/1811.00075

	1. Introduction
	2. Related Work
	2.1. Deep Learning Models for Time Series
	2.2. Time Series Augmentation Methods

	3. Method
	3.1. Enhanced Mixup Technique
	3.2. Mixup and Enhaced Mixup
	3.3. Experimental Setup

	4. Results and Discussion
	5. Conclusion
	Declarations
	Data and Software Availability Statements
	References


