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ABSTRACT

Time series data analysis is crucial for real-world applications. While deep
learning has advanced in this field, it still faces challenges, such as limited
or poor-quality data. In areas like computer vision, data augmentation has
been widely used and highly effective in addressing similar issues. However,
these techniques are not as commonly explored or applied in the time series
domain. This paper addresses the gap by evaluating basic data augmentation

techniques using MLP, CNN, and Transformer architectures, prioritized
for their alignment with state-of-the-art trends in time series analysis
rather than traditional RNN-based methods. The goal is to expand the use
of data augmentation in time series analysis. The paper proposed EMixup,
which adapts the Mixup method from image processing to time series data.
This adaptation involves mixing samples while aiming to maintain the
data's temporal structure and integrating target contributions into the loss
function. Empirical studies show that EMixup improves the performance
of time series models across various architectures (improving 23/24
forecasting cases and 12/24 classification cases). It demonstrates broad
applicability and strong results in tasks like forecasting and classification,
highlighting its potential utility across diverse time series applications.
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1. Introduction

Time series analysis is vital for forecasting and classification in various sectors. Forecasting uses
historical data to predict future outcomes, crucial for economic, stock market, and weather predictions.
Classification identifies categories based on past data, which is important in medical diagnosis and
financial pattern detection. This analysis helps in informed decision-making and trend anticipation. Deep
learning has significantly improved time series forecasting and classification by effectively handling
complex temporal data. Key models include Multi-Layer Perceptron (MLP), such as the LTSF-Linear
[1], which are effective in Long-term time series forecasting (LTSF). Convolutional Neural Networks
(CNN) like TimesNet [2] introduce novel 2D-variation modeling for enhanced adaptability. Recurrent
Neural Networks (RNN) like TRUST [3], which is a new framework for trustworthy uncertainty
propagation for time-series analysis. Transformers, exemplified by iTransformer [4], offer new ways to
capture temporal dynamics while reducing complexity.

Deep learning's success in time series analysis often hinges on having large amounts of labeled data
to prevent overfitting and ensure robustness, a challenging demand in real-world scenarios where data
labeling is costly and time-consuming. In computer vision, data augmentation techniques like rotation
and cropping expand datasets and improve model performance. However, applying similar strategies to
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time series data, such as adding noise or warping, is more complex and needs to be explored. These
methods must be carefully tailored to maintain crucial time series characteristics like trends and
seasonality, highlighting the need for a nuanced understanding of specific data and tasks to ensure
augmentations enhance rather than distort the data.

While time-series data augmentation was historically less focused than other modalities like image
data, it is now receiving increasing attention [5]. This paper discusses time-series augmentation with
basic methods involving value perturbation (jittering, scaling) and simple structure-based
transformations like window slicing and sequence morphing (permutation). Advanced techniques
include decomposition methods like STL, and populational generation using GANs and statistical
models to create synthetic data.

Historically, time series data augmentation research has been skewed towards classification tasks,
with less emphasis on forecasting. Moreover, basic augmentation techniques commonly applied in other
domains have yet to be as thoroughly explored or implemented in time series analysis. Recognizing these
gaps, this paper aims to extend the breadth of time series data augmentation research by addressing
classification and forecasting tasks across various contemporary emerging deep learning. We prioritized
CNN, MLP, and Transformer architectures over RNNs due to their alignment with SOTA time series
trends (DLinear for simplicity, TimesNet for 2D periodicity, iTransformer for global dependencies),
computational efficiency via parallelization and simple network (DLinear), and superior handling of
long-term dependencies. Transformers’ self-attention and CNN5’ local pattern extraction address RNNs’
sequential bottlenecks and memory constraints, ensuring scalability and accuracy in long-horizon tasks.
In this study, we conduct a comprehensive experiment applying basic augmentation techniques to
classification and forecasting tasks. In our study, we investigate the application of the Mixup
augmentation strategy, traditionally used in image processing, to blend time series samples. Our goal is
to preserve the inherent temporal structure of the time series as much as possible while integrating
contributions from the targets into the loss function, making the strategy suitable for various time series
tasks. Furthermore, this adaptation leads to the introduction of EMixup, an enhanced version of Mixup
designed to further improve model generalization capabilities for time series data.

The main contributions of this paper are as follows:

*  We empirically study basic time series data augmentation and Mixup techniques for forecasting
tasks. This study evaluates the efficacy of these augmentations across a spectrum of state-of-the-
art (SOTA) models, including MLP, CNN, and Transformer architectures.

*  This research explores the application of basic time series data augmentation and Mixup strategies
for classification challenges. We evaluate the performance of these techniques using various state-
of-the-art models, including MLPs, CNNs, and Transformers.

*  We propose the EMixup method tailored to meet the requirements of time series data in both
classification and forecasting contexts. It improves baseline performance across various cases and
frequently achieves the best results among basic augmentation methods

2. Related Work
2.1. Deep Learning Models for Time Series

Recent advancements in deep learning have significantly impacted the field of time series, with
various models demonstrating remarkable performance across several benchmarks. Among these MLP-
based models, the research [6] demonstrates the effectiveness of simple MLP architectures for financial
time series forecasting. It finds that MLP can achieve competitive, accurate predictions and may even
outperform more complex models like Transformers and RNNs in certain time series tasks. Other
notable MLP-based approaches include LTSF-DLinear and LTSF-Nlinear [1], which contribute
variations to traditional MLP structures to improve forecasting reliability. RNN-based models continue
to excel in handling sequential data, with innovations like [7], which explore how multi-objective
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evolutionary algorithms can enhance LSTM networks by optimally selecting key features, thus balancing
complexity and forecasting accuracy for efficient time series analysis. Another variant [3] proposes a new
framework (TRUST) for RNN architecture models, which introduces a Gaussian prior over network
parameters and propagates the first two moments of the variational distribution to estimate uncertainty
in time-series analysis. It also demonstrates robustness against noise and adversarial attacks. CNN-based
models have also evolved to address time series tasks. [8] presents SIGAN-CNN, which leverages CNNs
within a GAN for time series data augmentation, particularly beneficial for limited datasets. The
generated data is then used with CNN-based classifiers to enhance the accuracy of time series
classification. TimesNet [2] addresses the problem by modeling time series data as 2D-variation tensors,
effectively capturing and analyzing complex temporal variations to achieve state-of-the-art results across
various time series analysis tasks. Transformer-based models have brought significant innovations to the
field. The TimesFM [9] is a pretrained Transformer utilizing a decoder-only structure and input
patching for effective zero-shot time-series forecasting. The MultiPatchFormer [10] is a Transformer-
based architecture employing multi-scale temporal patches and channel-wise attention to model complex
dependencies in multivariate time-series forecasting. Moreover, the iTransformer [4] effectively utilizes
attention and feed-forward networks on inverted dimensions of time series data to improve the accuracy
and efficiency of time series forecasting.

2.2. Time Series Augmentation Methods

Basic augmentation techniques are essential for enhancing the robustness and performance of deep
learning models when working with time series data. Techniques such as adding noise, permutation,
scaling, and warping are essential for diversifying training scenarios, thereby helping models generalize
better when encountering new data during training. Authors in [11] demonstrate that these techniques
significantly enhance model training across various time series classification tasks. Additionally, in the
realm of time series frequency components, [12] developed Random Noise Boxes (RNB), a novel
technique for spectrogram classification, and [13] introduced Stratified Fourier Coefficients
Combination (SFCC) to enhance time series datasets for deep neural networks. TF-FC explores the
integration of both time and frequency domain techniques [14], which fuses time and frequency
augmentations for enhanced time series representation. Advanced augmentation methods, including
decomposition-based methods, statistical generative models, and learning methods, provide
sophisticated approaches to enrich time series data. Decomposition-based methods isolate and augment
different temporal components, such as trend and seasonality, which can be recombined to enhance
model training. These methods have proven effective in complex real-world applications for forecasting,
significantly improving predictive accuracy, as seen in the work by [15], [16]. Additionally, learning-
based augmentation methods leverage deep learning models such as [17], [18] to generate new training
samples, effectively improving model performance across diverse time series tasks. Mixup augmentation
[19] has seen significant advancements since its introduction, with researchers proposing various
extensions and improvements to address limitations like slow convergence, sensitivity to
hyperparameters, and potential over-smoothing or under-representation of certain classes. Notable
advancements include [20], Decoupled Mixup [21] for a better discrimination-smoothness trade-off,
[22] for enhancing feature diversity and reducing over-reliance on filters, and GuidedMixup [23] that
guides the mixing process. Additionally, Mixup has been successfully applied to various computer vision
tasks beyond image classification [24], such as object detection [25] and robust image-denoising [26],
demonstrating its versatility and effectiveness across diverse domains. Recent studies have explored
adapting Mixup augmentation, initially proposed for image data, to time series data for classification and
forecasting tasks. Methods like Mixup++ and LatentMixup++ [27] perform interpolations in the raw
time series data and latent space of models, demonstrating improvements in classification tasks. An
empirical study [28] also demonstrated that mix-based augmentations improve performance on
physiological time series classification without requiring extensive tuning. For forecasting, techniques
like TSMix [29] averaging standardized combinations of multiple actual univariate time series to generate
augmented samples. These methods extend Mixup for time series by addressing challenges through
novel interpolation strategies in time and latent spaces.
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3. Method
3.1. Enhanced Mixup Technique

This research focuses on data augmentation techniques for time series analysis, particularly on
forecasting and classification tasks. Fig. 1 shows an overview of the Enhanced Mixup Technique.
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Fig. 1. Overview of the Enhanced Mixup Technique. Two time series, Xa and xb are first modified by a GNM to
add variability while maintaining structural integrity. They are then combined using Mixup to create X,
further GNM processing to result in Xfinal. A vertical flip is occasionally applied to xa and xb with probability
P to increase diversity

While data augmentation has thrived in other domains, such as computer vision, yielding significant
improvements in model performance, there is a notable lack of comprehensive studies on augmentation
techniques tailored explicitly for time series, especially in forecasting. To address this gap, we conduct a
comprehensive empirical study, experimenting with various augmentation methods proposed in the past
and adapting them for classification and forecasting tasks. Through detailed experiments, we
demonstrate the limitations and instability of traditional augmentation techniques, which can sometimes
lead to decreased model performance. As a more promising alternative, we propose a modifications
Mixup augmentation, showcasing its stability and broad applicability across diverse time series datasets.
Our experiments encompass recent SOTA models and emerging architectures in time series analysis,
such as MLP, CNN, and Transformer-based models, going beyond the commonly studied RNN-based
models. Our study spans 8 datasets, evaluating the impact of different augmentation techniques on model
performance.

3.2. Mixup and Enhaced Mixup

Time series analysis involves input sequences X=(x1, x2, X3, ..., X1) where x: represents the value at
time step ¢ and T is the time series length, applicable in both univariate (xc is scalar) and multivariate
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Cee——
(vector xc € R¥, where F is number of variables at time #) contexts. The outputs vary: forecasting aims
to predict future values, outputting a sequence Y =( X141, X742, X143, ..., X1+h) for a horizon b, whereas
classification determines a class label for the sequence, resulting in an output § from a set of classes y
€{(1, 2, 3, ..., C}, often expressed as a probability distribution using a softmax function. Thus, while both
tasks start from time-indexed sequences, they diverge in their predictive outputs, focusing on future data
points in forecasting and class labels in classification.

Mixup is a data augmentation technique that generates synthetic training samples by combining pairs
of samples: X = Axa + (1-A)xp and labels: § = Aya + (1-A)yb , where A~Beta(a,a) controls the interpolation
strength. Mixup enhances generalization by regularizing models through synthetic samples, but it risks
disrupting the temporal structure in time series and may violate sequential dependencies or create
unrealistic samples.

We introduce Enhanced Mixup (EMixup), an adaptation of the computer vision Mixup technique
for time series, designed to preserve temporal structure while diversifying training data and avoiding
degradation from basic augmentation methods. EMixup addresses the Mixup’s inability to protect
temporal structure in time series by using a highly skewed Beta distribution, which prioritizes one sample
to minimize distortion. While this reduces sample diversity, techniques like the Generating Noise
Module (GNM) are introduced to compensate, enhance diversity, and generate realistic synthetic data.
The application of the loss function makes EMixup a robust adaptation for time series forecasting and
classification tasks. Enhanced Mixup integrates Mixup into time series for forecasting and classification,
ensuring simplicity and accessibility as a basic augmentation method. Fig. 2 shows a Comparison of
Symmetric and Skewed Beta Distributions.
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Fig. 2. Comparison of Symmetric and Skewed Beta Distributions. The top panel shows a symmetric Beta
distribution (a=0.5, 3=0.5), in contrast to the skewed distribution (=40, #=0.5) in the bottom panel. In
the skewed model, P(X>0.96)=0.93 suggests a high probability of drawing values close to 1, while the
symmetric model has probabilities P(X<0.04) and P(X>0.96) both around 0.13

The EMixup method, illustrated in Fig. 1, begins by processing two time series (xa and xb) through
the GNM to add noise without significantly disrupting their structure. These noise-enhanced samples
are then mixed using the Mixup technique (with highly skewed beta distribution) to create %, which
undergoes further GNM processing to produce Xfna. Additionally, a vertical flip is applied to (xa or/and
xb) with probability P to enhance diversity. This process comprises five key steps:
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Step 1. During training, two time series samples (xa and xv) are selected and may undergo a vertical
flip with probability P, producing x'a and x's. This technique enhances model robustness by
exposing it to reversed trends, broadening pattern recognition without additional data. Vertical
flipping preserves temporal structure while altering patterns as trend directionality, aiding in
learning invariant features. By using a small P, it diversifies training data while minimizing
distributional changes and retaining essential series characteristics.

Step 2. Noise variables €, and €b are added to the series x'a and x'b (vertically flipped or not), resulting
in x'a and x'b. This is achieved using the GNM, which processes a batch of inputs with dimensions
B (batch size), T (length of time steps), and F (number of features). The GNM generates noise for
each feature f'at every time step ¢, applying it uniformly across the entire batch B. Noise for each
feature is drawn from a normal distribution Nf (=0, 6?=(s*G¢ )?), where Gt represents the mean
standard deviation of the feature across the batch, and s is a scaling factor used to adjust the noise
intensity. By leveraging the inherent variability of the training batch, the GNM ensures noise is
proportional to natural fluctuations, preserving essential characteristics while preventing overfitting
to overly smooth or noise-free data (see Fig. 3). This approach enhances model robustness by
simulating real-world variations, diversifying data presentations, and subtly altering temporal
dynamics without significantly disrupting the overall distribution.

Step 3. We apply Mixup techniques to generate mixed samples X = Ax'a + (1-A)x'b. To preserve the
characteristics of x'» and prevent the destruction of the time series integrity, we modify the
symmetric Beta distribution used to draw A. Particularly, we employ a skewed Beta distribution,
which favors values of A close to 1.0. It minimizes the influence of xb and maintains the primary
structure of xa. As shown in Fig. 2, the comparison between a symmetric Beta distribution
Beta(a=0.5, 3=0.5) and the skewed distribution Beta(a=40, 2=0.5) shows a significant difference:
while the probability P(X>0.96) in the skewed model is approximately 0.93, indicating strong
preservation of x a features, the P(X<0.04) and P(X>0.96) of the Beta(a=0.5, 2=0.5) are almost 0.13.
This method perverse the most original time series structure, which is critical for accurate analysis
and prediction, while minimizing the risk of introducing unrealistic, distorted samples that could
degrade model performance. However, prioritizing structure preservation may limit sample
diversity. To address this, we propose that GNM enhance the diversity of generated samples.
Overall, the skewed Beta distribution balances time series preservation with controlled variability.

Step 4. The mixed samples X then pass through the GNM to further diversify the mixed samples.
This additional processing step enhances the robustness and variability of the dataset, ensuring that
the Mixup-generated samples are not only blended but also introduce variations that enrich the
training set. Refer to Fig. 3 for a comparison between EMixup and the original Mixup.

Step 5. For the target, both forecasting and classification, we implement the mix operation in the
loss function Linal = AL(§, ya)+(1-A)L(y, yb), where § is the inference result from the model, ya and
yb are the targets of the training sample. The loss function L can be cross-entropy loss for the
classification, and L can be mean squared error for the forecasting task. This formulation captures
the essential role of A in determining the significance of each sample in the mixed data.

3 illustrates the impact of different Mixup variations. The top-left shows a Mixup with A = 0.5.

From t = 0 to 2, the mixed sample follows series B downward while series A trends upward. From t =
2.5 to0 3.2, the mixed sample follows series A downward, while series B trends upward. In this case, the
mixed sample lacks consistency, depending on the dominant magnitude of series A and B at different
time steps, and its behavior differs from A and B, resulting in an unrealistic sample. The top-right shows
that A = 0.95 (A is very high, P(X>0.96) = 0.93) increases the likelihood of preserving a mixed sample
very similar to series A. The bottom-left demonstrates that adding noise from GNM distorts the sample
slightly but still resembles series A. The bottom-right illustrates diversity achieved by applying a vertical
flip, showing a result similar to A but inverted.
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Fig. 3. Variations in Mixup with Different A, Noise Addition, and Vertical Flip. Top left: A=0.5 results in an
even mix of two time series. Top right: A=0.95 emphasizes features from one time series. Bottom left: Adds
noise from a GNM to the A=0.5 mix, enhancing variability. Bottom right: Incorporates a vertical flip before

a A=0.5 Mixup and noise addition, increasing diversity

EMixup distinguishes itself from a standard Mixup through several key adaptations for time series
data. Unlike the symmetric Beta distribution in the standard Mixup, EMixup employs a highly skewed
distribution, favoring the dominance of one original time series to preserve the temporal structure. It
introduces GNM for controlled, feature-specific noise addition before and after mixing, enhancing
robustness. EMixup also incorporates a vertical flip (with a small probability) for increased data diversity
and modifies the loss function to integrate the contributions of targets based on the mixing ratio. These
modifications tailor EMixup for effective application in both time series forecasting and classification
tasks, unlike the primarily image-focused standard Mixup.

3.3. Experimental Setup

We implement test cases in these experiments following the Time Series Library (TSlib) [2]. There
are key configurations: DLinear comprises two single-layer linear networks, each with neurons equal to
the forecast horizon, modeling trend, and remainder components. This setup is consistent for both
forecasting and classification. TimesNet analyzes the frequency domain, selecting the top-k (k = 5 for
forecasting, task-specific for classification) significant frequencies. It uses an embedding layer, followed
by two TimeBlocks [2] (each with two Inception Blocks containing six CNN layers), and uses a MLP
layer for forecasting or classification. iTransformer uses two blocks for encoder and three blocks for
classification. In the forecasting task, we use a 15% Vflip rate in EMixup, unlike the classification task
which uses no Vflip. The noise scaling factor s is set to 0.01. These experiments evaluate time series
augmentation by assessing improvements across models and datasets, and identifying augmentations
with the most consistent performance gains.

In the domain of time series, various deep learning models have been tailored to leverage the unique
characteristics of sequential data. Three recently notable models that have been developed are DLinear,
TimesNet, and iTransformer. Each model corresponds to one of the base architectures in deep learning:
MLP, CNN, and Transformer, respectively, showcasing difterent approaches to handle time-dependent
patterns. DLinear is a time series forecasting model utilizing the MLP architecture to effectively learn
relationships in time series through dense layers, adjusting traditional MLP structures to emphasize
temporal dynamics. TimesNet, leveraging CNNs, introduces the TimesBlock module to transform 1D
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time series into 2D, enabling complex pattern modeling through 2D convolutions and achieving state-
of-the-art results in various forecasting tasks. iTransformer adapts the Transformer architecture for time
series forecasting, using an inverted structure to treat time series as tokens and leveraging attention
mechanisms and Transformer components to forecast high-dimensional multivariate series effectively.

In our time series forecasting experiments, we utilize four datasets [30]: ETTh1, ETTh2, ETTml,
and ETTm2, which consist of electricity transformer temperature data from two counties in China
collected over two years to study the effects of data granularity on forecasting. ETTh1 and ETTh2
provide hourly data, while ETTm1 and ETTm2 offer minute-level granularity. We adopt a multivariate

forecasting method, targeting multiple variables such as oil temperature and six power load features (see
Table 1).

Table 1. Experiment Datasets for Time Series Forecasting and Classification. Forecasting uses 96 historical data
points to predict 192 future steps, and classification involves predicting diverse classes

Forecasting Data Classification Data
Additional Target Input  Prediction Input
Dataset Features Variable Length Length Dataset Length Features Num Classes
ETThl 6 features  Oil tempe. 96 192 Handwriting 152 3 26
ETTh2 6 features  Oil tempe. 96 192 Heartbeat 405 61 2
ETTml 6 features  Oil tempe. 96 192 SelfRegulationSCP1 896 6 2
ETTm2 6 features  Qil temper. 96 192 SelfRegulationSCP2 1152 7 2

The datasets are split into 12 months for training, 4 months for validation, and 4 months for testing.
In classification, we utilize four datasets from the UEA [31] time series classification repository:
Handwriting, Heartbeat, SelfRegulationSCP1, and SelfRegulationSCP2. The Handwriting dataset
contains three-dimensional accelerometer data from smartwatch-recorded handwriting motions. The
Heartbeat dataset features heart sound recordings from both healthy and cardiac patients, analyzed using
spectrograms. SelfRegulationSCP1 and SelfRegulationSCP2 provide EEG data from healthy subjects
and an ALS patient (see Table 1).

4, Results and Discussion

These experiments aim to evaluate time series augmentation techniques from two angles: general
enhancements across diverse models and scenarios and an analysis to pinpoint augmentations that
consistently outperform others. Based on Fig. 4, it is clear that our proposed EMixup method generally
excels in comparison to other methods. It demonstrates a remarkable capacity to improve performance
broadly, topping the charts in the number of improved and best cases. In Fig. 4, improved cases indicate
where an augmentation technique enhanced model performance, while best cases show a technique that
outperformed all others to achieve the highest improvement.

The study assesses data augmentation techniques for time series forecasting using ETTh1, ETTh2,
ETTml, and ETTm2 datasets, employing DLinear (MLP-based), TimesNet (CNN-based), and
iTransformer (Transformer-based) models. Each model's performance is evaluated using Mean Squared
Error (MSE) and Mean Absolute Error (MAE), with results organized in Table 2 showing improvements
over baseline values are underlined, and the most effective techniques are bolded. This approach allows
for a detailed comparison of how different augmentation methods enhance forecasting accuracy across
various sophisticated models. Overall, EMixup enhances performance across various models and datasets,
improving the baseline in most test cases. The only exception is its performance on the ETTm2 dataset
with the iTransformer model regarding MSE. Techniques such as window warping and window slicing
fail to improve all datasets and models. Permutation exhibits similar behavior, except in the ETTh1
dataset. It is understood that these techniques may disrupt the temporal structure of time series, making
them unsuitable for LTSF, which relies heavily on time step dependencies. Conversely, EMixup is
designed to minimally impact and preserve the temporal structure as much as possible while generating
diverse training data. Other techniques, such as horizontal flip, vertical flip, scaling, and jitter, also
improve the performance but are still less effective than EMixup. For example, vertical flip may improve
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outcomes on ETTm1 and ETTm2 but perform poorly on ETTh2. Despite having a minor probability
of using vertical flip, EMixup consistently shows strong performance across all these datasets. Mixup
results in improvements in 19 cases, similar to Horizontal flip in 17 cases, but Horizontal flip
demonstrates superior outcomes to Mixup.

Performance of Augmentation Technigues Across Tasks
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Fig. 4. Improvement of Different Augmentations on Model Performance. The bar chart shows the number of
improved and best cases for each technique in forecasting and classification tasks. EMixup emerges as the
majority winner, demonstrating its robustness across various datasets, models, and metrics

Furthermore, EMixup most frequently achieves superior performance, gaining the highest results
11 times compared to other techniques. Horizontal flip in second place, achieving top results 9 times,
but not improving as many cases as EMixup (23 cases). This experiment shows that EMixup, based on
the Mixup concept but modified for time series, aims to preserve the characteristics of time series data
as much as possible while diversifying the training data (skewed Mixup ratio distribution, adding noise
following the variance of the training batch, and minimal use of vertical flip). It is also noteworthy that
EMixup remains active throughout training. In contrast, Mixup is activated only 50% of the time, as It
can generate non-realistic samples, whereas our design maintains the integrity of the time series data.

The study employs a detailed comparative analysis of data augmentation techniques on time series
classification using Handwriting, Heartbeat, SelfRegulationSCP1, and SelfRegulationSCP2 datasets.

We employ three advanced models: DLinear, TimesNet, and iTransformer, which were chosen for
their distinct methods of processing time series data. We evaluate the effectiveness of each model and
augmentation technique using Accuracy and F1-score, with the results detailed in Table 3. The most
successful strategies are highlighted in bold, and improvements are underlined. This setup evaluates the
effects of augmentation methods on model performance across various datasets, providing key insights
into their effectiveness and adaptability. In classification, these augmentation strategies exhibit a distinct
set of dynamics. Techniques such as vertical flipping and scaling are less effective, suggesting that their
application might be too simplistic or disruptive for complex classification patterns. In contrast,
permutation shows a slight improvement. These techniques also exhibit strong specificity to particular
datasets; for instance, vertical flipping performs well on the SelfRegulationSCP2 dataset but poorly on
the Handwriting and Heartbeat datasets. Other augmentations yield better results in terms of
generalization and peak performance, with only minor differences among them, ranging from 10 to 12
improved cases and 3 to 4 best cases per augmentation.
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Table 2. Time Series Forecasting Augmentation Techniques on Forecasting Dataset: Evaluation across DLinear
(MLP), TimesNet (CNN), and iTransformer (Transformer) using MSE and MAE. Enhancements over
baseline are underlined; most significant ones are bolded

Model DLinear TimesNet iTransformer

Metric MSE MAE MSE MAE MSE MAE
Baseline 0.444866 0.440218 0.439870 0.442437 0.448541 0.441158
Jitter 1.40E-06 2.86E-06 1.66E-04 4.60E-04 -1.58E-06 -2.98E-07
— Hflip -3.19E-04 1.81E-05 1.23E-03 -6.14E-04 -6.71E-03 -4.90E-03
"ﬁ Vlip 3.66E-03 4.27E-03 1.00E-02 7.05E-03 -6.67E-03 -5.64E-03
E Scaling 9.82E-04 1.35E-03 -6.03E-04 -1.78E-04 -2.72E-04 -1.03E-04
Window_warp 1.99E-02 1.51E-02 2.55E-02 1.81E-02 1.98E-02 1.10E-02
Window_slice 6.78E-02 4.24E-02 3.63E-02 2.04E-02 2.71E-02 1.68E-02
Permutation -6.75E-05 6.58E-04 -3.43E-03 3.26E-03 -1.42E-03 -7.45E-04
Mixup 9.02E-04 9.81E-04 -6.74E-04 -1.23E-03 -2.53E-03 -2.15E-03
EMixup (our) -7.06E-04 -1.08E-03 -6.06E-04 -9.51E-04 -1.27E-03 -1.69E-03
Baseline 0.481671 0.479034 0.396757 0.410084 0.381267 0.399462
Jitter 2.71E-05 1.90E-05 1.32E-03 1.84E-03 -1.49E-04 -4.39E-05
Hflip -4.99E-04 4.75E-04 -1.41E-02 -9.38E-03 8.36E-04 -1.52E-03
Vlip 1.14E-02 9.34E-03 3.19E-02 1.06E-02 2.57E-03 -1.37E-03
E Scaling 3.84E-03 2.50E-03 -3.00E-03 -8.36E-04 -6.89E-05 6.99E-05
E Window_warp 1.56E-03 2.47E-03 1.81E-04 3.62E-03 2.49E-03 1.89E-03
Window_slice 7.87E-03 7.76E-03 1.23E-02 1.27E-02 1.30E-02 1.01E-02
Permutation 1.40E-02 9.60E-03 4.93E-03 -8.80E-04 2.43E-03 5.62E-04
Mixup -1.06E-02 -5.54E-03 -5.06E-04 -1.13E-03 -2.36E-03 -1.91E-03
EMixup (our) -2.46E-02 -1.28E-02 -4.46E-03 -4.36E-03 -1.24E-03 -2.16E-03
Baseline 0.381856 0.391023 0.403705 0.410090 0.380991 0.395193
Jitter 1.50E-05 9.83E-06 -6.65E-04 -1.11E-04 -7.03E-06 3.19E-05
Hflip -2.23E-04 -9.23E-04 -1.66E-02 -1.34E-02 4.15E-04 -3.72E-03
— Vflip -4.36E-04 4.72E-05 -1.05E-02 -5.40E-03 8.86E-03 2.52E-03
E Scaling 4.30E-04 6.68E-04 -5.46E-04 1.87E-04 -2.43E-04 -1.82E-04
E Window_warp 7.26E-02 4.80E-02 3.82E-02 2.87E-02 6.29E-02 3.90E-02
Window_slice 8.58E-02 5.05E-02 6.99E-02 3.85E-02 6.08E-02 3.77E-02
Permutation 4.54E-02 3.41E-02 1.25E-03 7.82E-03 1.98E-02 1.73E-02
Mixup 3.78E-05 6.32E-05 6.15E-03 -2.57E-04 -1.74E-03 -2.92E-03
EMixup (our) -8.29E-04 -7.96E-04 -1.76E-02 -1.26E-02 -2.38E-03 -4.56E-03
Baseline 0.284225 0.361074 0.258918 0.308863 0.253002 0.312666
Jitter 2.72E-05 3.47E-05 1.99E-03 9.84E-04 -4.28E-05 -1.19E-04
Hflip 4.50E-03 3.79E-03 -9.89E-03 -3.49E-03 -5.44E-03 -4.20E-03
~ Vlip 1.67E-04 2.17E-03 -9.50E-03 -3.07E-03 -5.98E-04 -1.69E-03
E Scaling 3.25E-03 3.25E-03 4.50E-03 2.91E-03 -2.26E-04 -1.45E-04
E Window_warp 2.87E-03 4.16E-03 3.99E-03 5.23E-03 3.65E-03 4.32E-03
Window_slice 6.45E-04 1.34E-03 1.30E-02 1.00E-02 6.10E-03 5.44E-03
Permutation 6.94E-03 7.72E-03 7.07E-04 -1.81E-04 1.48E-03 2.06E-03
Mixup -4.39E-03 -2.97E-03 -4.20E-03 -2.56E-03 -6.14E-04 -6.55E-04
EMixup (our) -2.49E-02 -2.35E-02 -5.40E-03 -1.59E-03 1.14E-03 -1.06E-03

EMixup continues to perform well with the Handwriting and SelfRegulationSCP2 datasets, and
despite showing no improvement in the SelfRegulationSCP1 dataset, it still achieves the second-best
performance compared to other techniques. EMixup records 12 improved cases and 3 best cases, slightly
less efficient than window warping, which has 12 improved cases and 4 best cases. The analysis of
augmentation techniques across forecasting and classification tasks highlights distinct preferences and
efficacies. Techniques such as EMixup demonstrate broad applicability and robust performance across
both task types, suggesting their utility in diverse machine learning scenarios. On the other hand, task-
specific variations are notable; for instance, window warping and window slice are more effective i;l
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classification than forecasting, indicating their suitability for some specific tasks only. This highlights
the need for strategically selecting augmentation techniques that enhance specific task characteristics,
ensuring optimal model performance and generalization.

Table 3. Time Series Classification Augmentation Techniques on classification datasets: Evaluation across
DLinear (MLP), TimesNet (CNN), and iTransformer (Transformer) using Accuracy and F1-score.
Enhancements over baseline are underlined; most significant ones are bolded

Model DLinear TimesNet iTransformer
Metric ACC F1 ACC F1 ACC F1
Baseline 18.9412% 15.3887% 30.9412% 27.8433% 21.5294% 18.6035%
a0 Jitter 0.0000% -0.0358% 0.2353% 0.4150% -0.2353% -0.2712%
g Hflip -4.4706% -4.9565% -3.8824% -4.5906% -4.3529% -5.5322%
§ Vflip -9.5294% -8.2334% -11.6471% -12.3302% -8.4706% -9.4189%
'8 Scaling 0.2353% 0.2789% -0.8235% -0.2425% 0.0000% 0.0240%
f Window_warp -4.8235% -5.6240% 0.3529% 0.2820% -3.6471% 5.3001%
Window_slice -1.5294% -3.0908% 2.0000% 1.3596% -3.2941% -5.0463%
Permutation -3.1765% -3.1572% -3.4118% -2.8838% -1.7647% -2.4659%
Mixup 0.3529% 0.3693% -0.5882% -0.3561% 0.1176% -0.6718%
EMixup (our) 0.0000% 0.2080% 0.4706% 0.4057% 1.5294% 1.1307%
Baseline 68.7805% 63.3356% 74.1463% 65.1863% 74.1463% 66.0734%
Jitter 0.4878% 0.0791% 2.4390% 0.0875% 2.4390% 1.2833%
Hflip 0.9756% 1.4528% -0.9756% 0.0368% -3.4146% -2.5243%
§ Vflip -0.4878% 0.7722% -1.4634% -5.0474% 0.9756% -0.5090%
-g Scaling 0.9756% 0.1414% -1.9512% -3.1382% 0.0000% 0.0000%
g Window_warp 2.9268% 0.2099% 0.0000% -5.2180% -0.4878% -0.8584%
an Window_slice 3.4146% -0.7767% -5.3659% -4.0673% 0.0000% 0.0000%
Permutation 5.8537% 2.7327% -0.4878% 0.8733% -2.4390% -0.9373%
Mixup 2.9268% -2.7796% -0.4878% -1.9101% -1.9512% -24.1470%
EMixup (our) 4.3902% 1.4576% 1.9512% -0.9324% -7.3171% -6.9484%
Baseline 88.0546% 88.0407% 91.4676% 91.4576% 92.8328% 92.8244%
— Jitter 0.0000% 0.0050% -3.7543% -3.7559% 0.0000% -0.0037%
é Hflip 0.3413% 0.3443% -4.0956% -4.1003% 0.0000% 0.0030%
g Vflip -5.8020% -5.7983% -12.9693% -13.0236% -3.0717% -3.0835%
'g Scaling -1.0239% -1.0440% -3.7543% -3.7617% 0.0000% 0.0000%
'?0 Window_warp 5.1195% 5.1269% -5.8020% -5.9996% 0.0000% -0.0080%
é’ Window_slice 3.7543% 3.7605% -1.7065% -1.7110% 0.0000% -0.0037%
< Permutation 4.4369% 4.4500% -3.4130% -3.4080% -0.6826% -0.6977%
» Mixup 0.6826% 0.6918% -4.4369% -4.4452% -5.8020% -5.7975%
EMixup (our) -0.3413% -0.3390% -1.3652% -1.3557% -3.0717% -3.0634%
Baseline 52.7778% 52.6008% 51.1111% 51.0143% 52.2222% 52.1986%
g Jitter 0.0000% -0.1532% -2.2222% -2.2837% 0.0000% 0.0000%
Q Hflip 1.6667% 1.8437% 1.6667% 1.4332% 4.4444% 4.0303%
(g Vflip 4.4444% 4.0312% -1.1111% -2.6462% 3.3333% 3.2690%
E Scaling -0.5556% -0.3844% -1.1111% -1.0205% -1.1111% -1.2389%
?0 Window_warp 1.1111% 1.2525% 2.7778% 2.6328% 2.7778% 2.6886%
é" Window_slice 1.1111% 1.2753% 0.5556% 0.3989% 3.3333% 3.2690%
- Permutation -1.6667% -2.1008% -1.6667% -2.5643% 2.7778% 2.8000%
» Mixup 0.5556% 0.7326% 0.5556% 0.6508% -2.2222% -18.8653%
EMixup (our) 0.5556% 0.7268% 2.7778% 1.0626% -1.6667% -17.6425%

5. Conclusion

This study has systematically explored the effectiveness of various data augmentation techniques in
time series analysis, focusing on forecasting and classification tasks. We designed comprehensive
experiments to evaluate augmentation techniques from two primary perspectives: their ability to enhance
performance across various models, data and their effectiveness in outperforming other methods. The
proposed EMixup offers several practical benefits for real-world time series analysis, demonstrating broad
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applicability across various models, diverse datasets (power management, ...), and tasks. Its relatively
simple implementation makes it accessible to practitioners, and its ability to generate synthetic data and
enhances model robustness by incorporating a Generating Noise Module. While EMixup appears scalable
to high-dimensional time series due to its noise generation process and does not impact inference time
for real-time applications, it exhibits potential limitations such as sensitivity to hyperparameter settings,
including the skewed Beta distribution, and a possible reduction in the diversity of synthetic samples
due to the emphasis on preserving original time series structure. Furthermore, the risk of introducing
unrealistic patterns and the need for dataset-specific tuning, should be considered for effective
deployment. Further research is needed to fully assess its scalability to large datasets and to develop
learnable hyperparameters (adaptive Beta distribution).
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