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1. Introduction 
We are all too familiar with the daily struggles of commuting, especially during rush hour when 

reaching our destination on time seems like an insurmountable challenge. Even in the absence of 

accidents, strikes, or inclement weather, traffic congestion can add significant amounts of time and 

resources to our daily commute. INRIX, a transport consulting firm, estimates that major cities 

worldwide will lose billions of dollars annually due to traffic congestion [1]. Traffic congestion remains 

a significant challenge in urban areas worldwide, leading to increased travel times, fuel consumption, and 

environmental pollution. As cities grow and vehicle ownership rises, traditional [2] traffic management 

systems struggle to adapt to fluctuating demand and unexpected disruptions. Conventional traffic light 

control relies on fixed-time or rule-based adjustments [3]. This kind of system often fails to optimize 

flow in real-time, especially during peak hours or in response to incidents. Factors such as pedestrian 

movement, public transport coordination, and emergency vehicle prioritization further complicate traffic 

control. Current systems’ inefficiencies affect economic productivity and increase carbon emissions and 

commuter frustration [4]. Given the rapid advancements in artificial intelligence and sensor technology, 
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 Current traffic light systems follow predefined timing sequences, causing 

the light to turn green even when no cars are waiting, while the side road 

with waiting vehicles may still face a red light. Reinforcement learning can 

help by training an intelligent model to analyze real-time traffic conditions 

and dynamically adjust signal lights based on actual demand and necessity. 

If the traffic light becomes intelligent and autonomous, then it can 

significantly reduce the time wasted on commuting due to previously 

determined traffic light timing sequences. In our previous work, we used 

fuzzy logic to control the traffic light where the time was fixed but, in this 

paper, the waiting time becomes a variable that changes depending on other 

road variables like vehicles, pedestrians, and times. Moreover, we trained 

an agent in this work using reinforcement learning to optimize the traffic 

flow in junctions with traffic lights. The trained agent worked using the 

greedy method to improve traffic flow to maximize the rewards by changing 

the signals appropriately. We have two states and there are only two actions 

to take for the agent. The results of the training of the model are 

promising.  In normal situations, the average waiting time was 9.16 

seconds. After applying our fuzzy rules, the average waiting time was 

reduced to 0.26 seconds, and after applying reinforcement learning, it was 

0.12 seconds in a simulator. The average waiting time was reduced by 

97~98%. These models have the potential to improve real-world traffic 

efficiency by approximately 67~68%.  
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optimizing traffic light operations through intelligent and adaptive algorithms is urgently necessary to 

improve urban mobility, reduce congestion, and create more sustainable transportation networks. 

Improving existing traffic management systems is urgent, particularly in traffic light operations. Wasted 

time waiting for traffic lights to turn green is a common frustration for drivers, especially when there is 

little to no traffic between them [5]. The resulting irritation and anxiety can lead to reckless driving and 

accidents [6]. In addition to lost time waiting for traffic lights, traffic jams, and congestion are major 

sources of frustration for commuters. Providing real-time traffic information to motorists can help 

alleviate some of these issues. Although local radio stations provide traffic information, it is not always 

up-to-date and may not apply to all drivers [7]. Therefore, improved methods for regulating traffic lights 

and providing real-time, location-specific traffic information are urgently needed—traditional traffic 

light systems, such as fixed-timing and sensor-based adaptive systems. Current traffic systems often 

struggle with inefficiencies, including poor responsiveness to fluctuating traffic conditions. Fixed-time 

traffic signals are simple, cost-effective, and easy-to-implement systems. These systems don’t adjust to 

real-time traffic changes; they run on pre-programmed cycles. The systems have drawbacks such as poor 

scalability, expensive installation and maintenance, and an inability to forecast future traffic patterns 

accurately. Sensor-based traffic systems are vulnerable to false detections due to environmental 

conditions because they depend on sensor accuracy. On the other hand, reinforcement learning (RL)-

based systems  [8] learn optimal traffic light control policies through trial and error. The systems adapt 

dynamically based on current and predicted traffic conditions. RL overcomes traditional limitations by 

continuously improving and interacting with the environment. It provides scalability, real-time 

adaptation, and cost efficiency. It can reduce long-term infrastructure costs by minimizing the need for 

additional sensors. 

Automated or self-driving cars [9]–[12] are on the horizon, we are almost already there, but designing 

intelligent roads or traffic lights is still far. Traffic lights [13] have a significant role in the traffic flow 

and safety measures of the roads. Road networks must have traffic lights since they are essential to 

controlling traffic flow. They are intended to regulate which stream of traffic has priority by alternately 

stopping and allowing cars to pass through a junction. Long wait times and congestion can result from 

inefficient traffic signals, which can lower the effectiveness of the road system. As an illustration, 

improper traffic light timing might result in a backlog of vehicles, which can prolong travel times and 

cause delays. However, when traffic lights are improved, they can greatly increase traffic flow by 

minimizing delays and reducing congestion. The timing of traffic lights can be adjusted using various 

methods, such as using computer vision to count vehicles and implementing intelligent systems that use 

machine learning algorithms to predict traffic patterns and adjust the lights in real time. The placement 

and design of the lights should also be considered in addition to maximizing the timing of traffic lights. 

For instance, some junctions may benefit from roundabouts or four-way stops instead of using a traffic 

signal. Overall, effective traffic light design and optimization may significantly improve traffic flow, 

decrease delays, increase safety, and minimize negative environmental impacts. 

A lot of similar research has already been done. In our previous works [14], [15], we proposed fuzzy 

logic [16] to optimize the traffic light by getting information on the vehicles, pedestrians, and lane lines. 

Other research intrigued us to research intelligent traffic control systems. One work [17] proposed a 

method using three onboard cameras to support the driver with Advanced Safety Vehicle (ASV) 

Technology, where the authors are trying to develop a safe driving support system. This research paper 

from 2018 utilizes three different cameras to detect various elements on the road. One camera tracks the 

driver's appearance, while the other two track front-end pedestrians, running lanes, and approaching 

vehicles and pedestrians. The HOG feature is employed to detect pedestrians and vehicles, while edge 

detection and RANSAC are used for detecting lanes. Using information from all three cameras, the 

system determines whether or not to alert the driver based on the situation at hand. Furthermore, the 

onboard camera system can detect road signs and make automatic decisions in real-time. To improve 

detection accuracy, the authors used genetic algorithms to enhance the matching process and narrow 

the search range by color extraction. Additionally, neural networks were used to confirm the results of 

the template-matching process. Specifically, this research focused on detecting the stop sign, which is 

known to cause accidents due to driver negligence [18]. Radio Frequency Identification (RFID) 
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technology has been utilized [19] in several research studies exploring intelligent traffic control systems. 

In the paper, the authors describe how they installed RFID readers to track vehicles and collect their 

electronic product code (EPC) data via the RFID tags attached to the vehicles. This data is then used 

for decision-making and traffic control purposes within the system. 

A novel method [20] for a large-scale traffic signal re-timing system that uses vehicle trajectories as 

input, reducing congestion and energy consumption without relying on vehicle detectors, is proposed. 

The system uses a probabilistic time-space diagram to reconstruct traffic states and update parameters. 

A real-world test in Birmingham, Michigan, showed a 20% decrease in delay and a 30% reduction in 

stops at signalized intersections. This scalable, sustainable, and efficient solution could be applied to all 

fixed-time signalized intersections. Changing the traffic signal by giving priority to emergency vehicles 

based on the traffic density is proposed by Vani et al. [21]. In this paper, the authors utilized cameras in 

traffic systems to monitor and quantify the volume of vehicles, allowing for the determination of traffic 

density. Additionally, the camera system was designed to recognize emergency vehicles with sirens and 

grant them priority by adjusting the traffic light to green. To process the images, the authors employed 

a masking algorithm that focuses on the relevant portion of the image while ignoring extraneous details. 

Furthermore, the authors used Visual Basic programming to regulate the traffic light duration based on 

the number of vehicles on the road; Bhilawade and Ragha [22] propose a method to detect road accidents 

and violations of vehicle movement using sensors and embedded technology. The goal is to minimize 

time wasted in heavy traffic jams, reduce waiting time at road junctions, assist emergency vehicles in 

navigating traffic, and detect stolen vehicles. The results of the research were published in a journal in 

2018. The system employs a combination of RFID and GPS-based automatic lane clearance to prioritize 

emergency vehicles. By integrating sensors and technology, the system can quickly determine the 

presence of traffic congestion and make real-time decisions to optimize traffic flow.  

Another study [23], presents a new method called Active Control of Traffic Signals (ACTS) using 

the Non-Dominated Sorting Genetic Algorithm. The model considers multiple objectives, such as 

minimizing average delay time and vehicle stops per cycle. The method reduces average vehicle delay by 

almost half compared to the current solution, promoting faster traffic flow and reducing congestion. To 

ensure normal traffic operation and reduce congestion in urban intersections, Zhang et al. [24] propose 

a modified Webster function for signal timing at intersections based on signal cycle and green light 

duration. The method reduces intersection delay by 15.64% using a modified genetic algorithm. Another 

work, Wang et al. [25], proposes a traffic light timing optimization method called EP-D3QN, which 

uses double dueling deep Q-network, MaxPressure, and Self-organizing traffic lights (SOTL) to control 

traffic flows. The method dynamically adjusts traffic light duration based on rules and lane pressure. 

Each intersection corresponds to an agent, with traffic light phases varying between 0-60 seconds. The 

agent's reward is the difference between the waiting time of all vehicles in two consecutive signal cycles. 

Experimental results show EP-D3QN improves traffic efficiency in light and heavy traffic flow scenarios. 

Many previous studies have utilized onboard cameras or focused on specific areas, such as detecting 

humans, lanes, or vehicles. Some research has been based on sensors, while others have been based on 

image processing. Current traffic light optimization faces several critical gaps. The current system lacks 

real-time adaptability, inefficiency in multi-intersection coordination, and limited use of predictive 

analytics. It has high infrastructure and maintenance costs and an inability to handle unpredictable 

events. Traditional sensor-based systems struggle to adapt to unexpected congestion, accidents, or special 

events. while reinforcement learning and AI-driven models can proactively forecast traffic trends and 

adjust signal timing. Traffic light systems are also isolated from other smart transportation 

infrastructures, such as connected vehicles, GPS data, or public transit systems. Traditional traffic lights 

do not consider fuel consumption and emissions when optimizing signal timings, resulting in energy 

inefficiency and environmental impact. However, this particular study is focused on using fuzzy logic and 

reinforcement learning [25] methods to train an agent to control the traffic light and experiment in a 

simulator.  Our research focuses on optimizing traffic flow by analyzing vehicle density at connected 

intersections. We count the number of vehicles and calculate their waiting times to minimize delays. 

For instance, if one road has no vehicles while another has waiting vehicles, the traffic signal dynamically 
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adjusts to prioritize the waiting traffic. Additionally, the signal changes to prevent excessive delays if the 

waiting time exceeds a certain threshold. This approach enables the agent to be aware of its environment 

and make real-time decisions, similar to how a human would assess traffic conditions. We utilize cameras 

for situational awareness, employing computer vision to observe traffic flow. A trained RL-based agent 

then processes this information and optimally adjusts the traffic signals to improve efficiency. The 

primary goal of this research is to train an agent to maximize the traffic flow in minimum time and 

develop an intelligent system that can efficiently control traffic lights based on real-time traffic 

conditions. This is an extended version of our previous research, exploring how computer vision can 

enhance the current traffic light management systems. Our approach integrates a trained agent with 

computer vision to assess the environment, making real-time decisions based on the recognition of 

vehicles, pedestrians, and lane markings. This system optimizes traffic flow by adapting to varying 

conditions. As autonomous vehicles become more prevalent, our system could facilitate communication 

between vehicles and traffic infrastructure (V2I) [26], allowing for smarter traffic management. 

Additionally, the system could prioritize pedestrian safety by adjusting signal timings based on specific 

situations. For example, if an elderly person is crossing the street slowly, the system can extend the signal 

duration to accommodate them. The system can suggest alternative routes in an accident or roadblock 

by leveraging infrastructure-to-infrastructure (I2I) communication. By maximizing traffic flow, our 

system has the potential to significantly reduce congestion, lower pollution levels, and decrease driver 

frustration, ultimately contributing to safer and more efficient roadways. 

2. Method 

2.1. Overview of Research Design and Proposed Methods 
In our previous works [14], [15], we proposed a method where high-resolution cameras were installed 

at various junctions to collect real-time traffic data, which included vehicles, pedestrians, and lanes. The 

collected data was analyzed to identify unnecessary waiting times. Next, a set of self-made fuzzy rules was 

developed to optimize the signal lights. The rules were then applied in a simulator to determine the 

optimization results. The results were satisfactory.  

In this research, we proposed to train an intelligent agent to maximize the traffic flow in a minimum 

time. Here we divided our work into two parts, one is previously introduced Fuzzy logic but with an 

updated waiting time equation where the waiting time depends on the variables, and the second part is 

the reinforcement learning method to train an agent. In both cases, we used the simulator Simulation 

of Urban Mobility (SUMO) [27]. Simulation of Urban Mobility (SUMO) is an open-source, multi-

modal traffic simulation software designed to model and analyze road traffic, public transportation, and 

pedestrian mobility in urban environments. SUMO enables the simulation of large-scale traffic networks, 

incorporating elements such as vehicles, traffic lights, pedestrians, and public transit systems. It allows 

for modeling microscopic (individual vehicle) and macroscopic (aggregate flow) traffic models, providing 

insights into traffic flow, congestion patterns, emissions, and the impact of various traffic management 

strategies. SUMO supports dynamic simulation, enabling real-time adjustments based on external data, 

and offers flexibility for evaluating smart traffic control systems and autonomous vehicle integration. 

Additionally, SUMO interfaces with various external tools and data sources, making it a widely used 

platform for intelligent transportation systems (ITS) and urban mobility solutions. The challenges of 

implementing fuzzy logic in real-time and conducting experiments in sensitive areas of road safety have 

led us to use simulators to obtain better results and understand the optimal traffic light situations for 

future real-time implementation.  

In our setup, we simulated a junction consisting of two roads (ROAD A and ROAD B), as shown 

in Fig. 1 using the SUMO network format (net.xml). The simulation was conducted with a specific 

number of vehicles, defined through vehicle demand and traffic flow parameters (e.g., maxSpeed, 

departureTime, and route). We utilized SUMO’s Traffic Light Control (TLC) model to simulate the 

signal phases and timings, which were adjusted under different scenarios. In the first scenario, we applied 

a general situation with a fixed signal phase, using default parameters for signal timings (e.g., greenTime, 

yellowTime, and redTime) without modifying the traffic light phases. 
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In the second scenario, we implemented a dynamic control approach based on the traffic conditions. 

The traffic light phases were modified according to the number of vehicles (vehicleCount) on each road 

and their waiting times (waitingTime). We dynamically calculated the green light duration using 

parameters like the total waiting time of vehicles at the junction and traffic flow, enabling better road 

capacity utilization. 

We introduced a reinforcement learning agent for the third scenario that controlled the traffic light 

phases. The agent was trained using a reward function designed to maximize traffic flow (e.g., by 

maximizing the throughput rate or minimizing vehicle waiting times) based on state-action pairs. The 

agent adjusted the traffic light phases, learning optimal traffic control strategies through trial and error, 

thus improving the system's overall efficiency. Key parameters for the agent’s learning process included 

learning rate (alpha), discount factor (gamma), and exploration-exploitation balance (epsilon). This 

method taught the agent to optimize traffic flow based on real-time conditions. 

2.2. Experimenting with Fuzzy Logic 
To optimize the traffic lights, we applied our self-made fuzzy logic in a scenario, where there is only 

one junction with two roads, shown in Fig. 1. We used the simulator SUMO. A SUMO network file 

describes the roads and intersections that the simulated cars run along or through on the traffic-related 

portion of a map. A directed graph with a rough scale is a SUMO network. Nodes, which are sometimes 

referred to as "junctions" in context, are used to depict intersections, while "edges" are typically 

represented by roads or streets. While Netgenerate provides a new map with straightforward shapes, 

Netconvert assists in converting various formats into SUMO network files. In this file's map, sumo 

executes its simulation. Most other SUMO programs read these files to produce or import data that has 

to be mapped onto a road network. The study created a network of two roadways so that it could be 

tested in a simulator.  

 

Fig. 1. Two roads Junction 

We defined them as main road A, and side road as B. Additionally, the study implemented pre-

determined timing sequences for the signal lights to replicate real-life conditions. This means that the 

timing of the signals was fixed, regardless of the presence or absence of vehicles. The signal lights 

followed predetermined instructions, mimicking a normal situation. The traffic light program allowed 

for the customization of signal durations and states. The duration specified how long a signal light would 

remain before transitioning to another, while the state determined the specific configuration of the signal 

lights. This approach enabled the researchers to analyze the timing required to manage traffic flow in 

the network effectively. After gathering information about the system without any optimization rules, 

the study proceeded to implement optimization rules or Fuzzy logic to investigate the waiting time of 

vehicles at the junction. Specifically, we used fuzzy inference systems (FIS) to dynamically adjust the 

signal phases based on two main inputs: traffic flow and vehicle waiting time. The inputs were fuzzified 

using membership functions that described different traffic conditions such as 'Low', 'Medium', and 

'High' for both vehicles count and waiting time. These fuzzy rules were integrated into the SUMO 

simulation by modifying the traffic light controller (TLC) settings, allowing real-time changes in the 

signal phases based on the fuzzy logic output. The system continuously evaluated the input conditions 
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and applied the appropriate fuzzy rule to determine the control action (i.e., the green, yellow, or red 

phases). The computation of the fuzzy logic was carried out within the simulation framework using the 

fuzzy control algorithm, which processed the inputs, applied the rules, and then de-fuzzified the result 

to determine the actual signal phase duration. 

The rules for traffic light optimization are: 

Rule 1: 𝑉𝑉𝐵𝐵 > 2𝑉𝑉𝐴𝐴; Here, 𝑉𝑉𝐵𝐵 is the total vehicle Count for Road B; 𝑉𝑉𝐴𝐴 is the total vehicle count for 

Road A; If the B road’s vehicles count double that of road A, then the signal light will change 

for road B. 

Rule 2: 𝑊𝑊𝑊𝑊 > 𝑇𝑇𝑇𝑇; Here, 𝑊𝑊𝑏𝑏 are Vehicles Waiting Time for Road B; 𝑇𝑇𝑤𝑤 is a waiting time; If road B’s 

vehicle's waiting time is more than the 𝑇𝑇𝑤𝑤 then the signal light will change. 

Rule 3: 𝐸𝐸𝑏𝑏 > 0&&𝐸𝐸𝑎𝑎 = 0; Here, 𝐸𝐸𝑏𝑏 is an emergency Vehicles Count for Road B; 𝐸𝐸𝑏𝑏 is Emergency 

Vehicles Count for Road A; If there are no emergency vehicles on Road A and there is one on 

Road B, then the signal light will change. 

Rule 4: 𝑃𝑃𝑏𝑏 > 4&& 𝑊𝑊𝑝𝑝 > 𝑇𝑇𝑤𝑤;  Here, 𝑃𝑃𝑏𝑏 are the pedestrians Count for Road B; 𝑊𝑊𝑝𝑝 is a waiting time 

for Pedestrians; and 𝑇𝑇𝑤𝑤 𝑖𝑖𝑖𝑖 𝑎𝑎 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡; The last rule for traffic light optimization is that if 

the pedestrians' counts are equal or more than four in the crosswalk and their waiting time is 

more than 𝑇𝑇𝑤𝑤 then the signal light will change. 

To calculate the waiting time (𝑇𝑇𝑤𝑤), assuming that the traffic signal allocates equal time to both roads, 

the waiting time for side road B vehicles can be estimated as follows; 

𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑑𝑑𝐴𝐴/𝑉𝑉𝑠𝑠 ∗ 𝑉𝑉𝐴𝐴   (1) 

𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑑𝑑𝐵𝐵/𝑉𝑉𝑠𝑠 ∗ 𝑉𝑉𝐵𝐵   (2) 

here, 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 are the clearing times for road 𝐴𝐴 and 𝐵𝐵. 𝑑𝑑𝐴𝐴, and 𝑑𝑑𝐵𝐵 are the distance to cover for 

the road 𝐴𝐴, and 𝐵𝐵. 𝑉𝑉𝑠𝑠 is the average speed of the vehicles for each road and 𝑉𝑉𝐴𝐴, and 𝑉𝑉𝐵𝐵 are the total 

vehicle counts for both roads. To calculate the waiting time, we also need to calculate the flow rate for 

each road. 

Calculating the flow rate for road B: 

𝑅𝑅𝐵𝐵 = 𝑉𝑉𝐵𝐵/𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐   (3) 

Calculating the flow rate for road A: 

𝑅𝑅𝐴𝐴 = 𝑉𝑉𝐴𝐴/𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐   (4) 

Calculating the total flow rate: 

𝑅𝑅𝐴𝐴 = 𝑉𝑉𝐴𝐴/𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐   (5) 

Calculating the time allocated for road A: 

𝑇𝑇𝐴𝐴 = 𝑅𝑅𝐴𝐴/𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∗ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐   (6) 

Calculating the time allocated for road B: 

𝑇𝑇𝐵𝐵 = 𝑅𝑅𝐵𝐵/𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∗ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐   (7) 

Yellow Light's Duration Calculation: 

𝑇𝑇𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 �𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚
𝐴𝐴𝑑𝑑𝑑𝑑𝑑𝑑

� ;   (8) 
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Example: If the maximum speed of a car or the lane is 60km/h, which is equal to 16.67m/s. The 

commonly seen decelerating acceleration for vehicles varies depending on the context and conditions 

but is typically around 3.5 to 4.5 m/s² [28], [29]. Studies have shown that drivers generally decelerate at 

a rate of approximately 0.3 g (2.94 m/s²) to 0.4 g (3.92 m/s²) when approaching an intersection or stop 

sign under normal conditions. This rate is often selected for driver comfort and control during 

deceleration. Let’s assume the decelerating acceleration is 4.5m/s2 then the duration of Tyellow is  3.7 

≈ 4 seconds. 

Calculating average waiting time for side road B vehicles during each cycle: 

𝑇𝑇𝑤𝑤 = 𝑇𝑇𝐴𝐴 + 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑇𝑇𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 − 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐   (9) 

2.3. Using an Agent to control Traffic Light 
Even though we got some better results using fuzzy logic experiments, it has some drawbacks. For 

example, scaling fuzzy logic controllers to larger, more complex traffic networks can be challenging and 

may lead to computational inefficiencies. It needs ongoing maintenance and adjustment because it 

cannot evolve like reinforcement learning. In highly dynamic or nonlinear traffic environments, 

traditional control approaches like fuzzy logic may face challenges in effectively optimizing traffic signal 

timings. Fuzzy logic relies on expert knowledge and predefined rules to make decisions, which may not 

adequately capture traffic patterns' complex and evolving nature. In contrast, reinforcement learning 

(RL) offers a more adaptive and data-driven approach. RL algorithms learn optimal control policies 

through trial and error interactions with the environment, allowing them to adapt to changing traffic 

conditions and learn complex strategies for traffic signal control. By continuously learning from feedback, 

RL algorithms can dynamically adjust signal timings based on real-time traffic conditions, potentially 

leading to better performance in highly dynamic or nonlinear traffic environments compared to 

traditional fuzzy logic control. Thus, we adapted another experiment with reinforcement learning to 

train an agent to control the traffic light. 

Fig. 2  shows the proposed idea for the agent to control the traffic light. The objective of the trained 

agent is to maximize the flow of traffic in a minimum time. The states are divided into two categories: 

the moving state 𝑆𝑆𝑚𝑚 and the stopped state Ss. Because either vehicles are moving or stopped in a signal 

or may be due to accidents or other problems. The possible actions that could be taken for traffic signals 

are green light Ag or red light 𝐴𝐴𝑟𝑟, We did not consider the yellow light because it is the preprocess of 

red light. The rewards are given for each transition from one state to another while taking a particular 

action. 

 

Fig. 2. Proposed idea for training an agent. Two probable states (Moving state, Stopped state) and two actions 

(Green Light, Red Light) 

Formally, the Markov decision process (MDP) [30] can be defined as follows: 

1. State Space: 𝑆𝑆 = 𝑆𝑆𝑚𝑚, 𝑆𝑆𝑠𝑠  

2. Action Space: 𝐴𝐴 = 𝐴𝐴𝑔𝑔,𝐴𝐴𝑟𝑟 
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3. Transition Probability: 𝑃𝑃(𝑠𝑠,𝑎𝑎, 𝑠𝑠′)  =  𝑃𝑃(𝑠𝑠′ | 𝑠𝑠,𝑎𝑎)) 

• When taking action 𝐴𝐴𝑔𝑔, the probability of transitioning from 𝑆𝑆𝑠𝑠 to 𝑆𝑆𝑚𝑚 is high, and the 

probability of staying in 𝑆𝑆𝑠𝑠 is low. 

• When taking action 𝐴𝐴𝑟𝑟, the probability of staying in 𝑆𝑆𝑠𝑠 is high, and the probability of 

transitioning from 𝑆𝑆𝑚𝑚 to 𝑆𝑆𝑠𝑠 is low 

4. Reward Function: 𝑅𝑅(𝑠𝑠,𝑎𝑎, 𝑠𝑠′)  =  𝑟𝑟 

• When transitioning from 𝑆𝑆𝑚𝑚 to 𝑆𝑆𝑠𝑠 while taking action 𝐴𝐴𝑟𝑟, the reward is negative, as it causes 

traffic to stop. 

• When transitioning from 𝑆𝑆𝑠𝑠 to 𝑆𝑆𝑚𝑚 while taking action 𝐴𝐴𝑔𝑔, the reward is positive, as it causes 

traffic to flow. 

• Every other transition is associated with a reward of zero (0). 

Firstly we used the Deep Q-Network (DQN) [31] to train an agent to maximize the traffic flow. The 

DQN algorithm uses a neural network, known as the Q-network, to approximate the Q-function. The 

same basic idea of estimating and updating Q-values for state-action pairings serves as the basis for DQN. 

Through repeated updates, DQN tries to find the optimal course of action. The DQN algorithm depends 

on the Bellman equation [32], which combines the immediate reward and the discounted maximum Q-

value of the next state to represent the optimum Q-value.  

DQN, a deep learning extension of Q-learning, utilizes a neural network to approximate the Q-

values, allowing it to handle high-dimensional state spaces more effectively than traditional Q-learning. 

This "model-free" approach can deal with problems that involve uncertain transitions and rewards 

without the need for an environmental model. 

In a traffic environment, the state space can be defined by variables representing the traffic lights, 

where each variable indicates whether the corresponding direction has a red or green light. The DQN 

agent interacts with this environment through steps and resets, updating the state according to the 

chosen action and receiving rewards based on the traffic conditions. The reward system might grant 

positive rewards for time steps without traffic jams and negative rewards for traffic jams. 

The agent's behavior is governed by the Q-network, learning rate, discount factor, and exploration 

rate. Actions are chosen either by exploring with a certain probability or by selecting the action with the 

highest Q-value in the current state. The learning process involves updating the Q-value for the current 

state-action pair using the reward and the maximum Q-value for the next state, guided by the Bellman 

equation. The equation 10 [33], represents the Q-value equation. 

𝑄𝑄(𝑠𝑠,𝑎𝑎) = 𝐸𝐸 �𝑅𝑅 + 𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾(𝑠𝑠′,𝑎𝑎′) |𝑠𝑠,𝑎𝑎
𝑎𝑎′

�   (10) 

Here, 𝑄𝑄(𝑠𝑠,𝑎𝑎) represents the Q-value of the state-action pair (𝑠𝑠, 𝑎𝑎), which is the expected cumulative 

reward for taking action 𝑎𝑎 in state 𝑠𝑠; 𝑅𝑅 is the immediate reward obtained after taking action 𝑎𝑎 in state 

𝑠𝑠; 𝛾𝛾 (gamma) is the discount factor, which determines the relative importance of future rewards 

compared to immediate rewards. It is a value between 0 and 1; 𝑚𝑚𝑚𝑚𝑚𝑚𝑎𝑎′𝑄𝑄(𝑠𝑠′,𝑎𝑎′) represents the maximum 

Q-value over all possible actions 𝑎𝑎′ in the next state 𝑠𝑠′. 

The predicted cumulative rewards for each potential action in a given condition are represented by 

the Q-function. Inputting the state, the network generates a Q-value for each action. The agent selects 

the action that possesses the highest Q-value. We created a replay memory buffer to store the agent's 

experiences in each episode. Each experience is defined as a tuple state, action, reward, next_state, and 

done. Here, the state represents the current state, and action is the action taken; two actions can be 

taken in our research: reward is the immediate reward received, next_state is the resulting state and done 
indicates if the episode terminated. The Q-network created a neural network with weights that take the 

state as input and output Q-values for all possible actions that can be taken. To improve the stability, a 
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target network was used to compute the target Q-values during training and updated frequently. For 

each episode, the agent chooses an action according to the greedy policy to increase the rewards, the 

action with the highest Q-value. Then, the action is executed in the environment, the next state is 

observed and rewarded, and the experiences are stored. Then, combining the experience replay and a 

target network to find the problems of sample correlation and non-stationary targets, respectively. For 

effectiveness, the target network provides more stable target Q-values for training. Through this process, 

the DQN algorithm learned an optimal policy for the conjunction to maximize the traffic flow by 

maximizing the cumulative rewards over time, even in complex environments with high-dimensional 

state spaces. Fig. 3  shows the architecture of the proposed DQN. This architecture consists of four 

layers. 

• Input Layer: Receives the state representation as input. The size of this layer is determined by the 

problem's state space (state_size). 

• Hidden Layer 1: The first hidden layer of neurons. Each neuron in this layer performs a linear 

transformation on the input data followed by a nonlinear activation function (e.g., ReLU). 

• Hidden Layer 2: The second hidden layer, similar to Hidden Layer 1. It further processes the 

information extracted from the previous layer. 

• Output Layer: Produces the Q-values for each action in the action space (action_size). The output 

of this layer is used to select the action with the highest Q-value 

At the beginning of the training, the model was working well, but as the number of epochs increases, 

the loss starts to increase at a significant rate, showing signs of over-fitting to the training data becomes 

evident in the model. It is becoming too complex and is fitting the noise in the data rather than the 

underlying patterns. Even though after 20,000 epochs, the loss starts to decline again, which indicates 

that the model is starting to generalize better to new, unseen data 

 

Fig. 3. The architecture of the proposed Deep Q-Network. The input is the state size and the output layer 

consists of two possible actions (Red light or Green Light) 

3. Results and Discussion 
Our results are divided into two sections, reflecting our experimental methodology. The first section 

presents the outcomes from the experiment using Fuzzy Logic, and the second section details the results 

from the experiment using reinforcement learning. 

To validate our methods, we performed a series of experiments comparing the performance of the 

proposed reinforcement learning-based traffic control system with traditional traffic signal control 
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strategies, including fixed-time and fuzzy logic-based controllers. The comparison was based on several 

performance metrics, such as traffic flow, waiting time, and congestion levels. Additionally, we tested 

the system under various traffic densities to evaluate its adaptability in different real-world scenarios. 

The results showed a significant improvement in traffic flow and a reduction in waiting times when 

using our reinforcement learning approach, validating its effectiveness in managing traffic. To test the 

system's robustness, we simulated a range of traffic scenarios, including variations in vehicle arrival rates. 

The system was subjected to these dynamic conditions to evaluate how well it maintained optimal traffic 

flow and adjusted the signal timings accordingly. 

We also conducted a sensitivity analysis to assess how sensitive the model’s performance was to 

changes in key parameters, such as the reward function, learning rate, and discount factor. The analysis 

revealed that while the agent's performance was generally stable across a range of parameter values, certain 

configurations led to improved learning efficiency and faster convergence. For instance, a moderate 

learning rate and discount factor resulted in a good balance between exploration and exploitation, 

enhancing the model’s ability to adapt to dynamic traffic conditions. 

3.1. Results with the Fuzzy Logic 
The results we obtained from our previous experiment [15] are presented in “Fig. 4”. The graph 

depicts the total and average waiting times for traffic under two different scenarios: a normal case and 

an optimized case using fuzzy logic. The x-axis represents the simulation steps, while the y-axis measures 

the waiting time in seconds. The solid red line indicates the total waiting time in the normal scenario, 

showing significant fluctuations and peaks, which suggest periods of high congestion. The average 

waiting time for the normal scenario, represented by the red dashed line, is approximately 9.16 seconds. 

This relatively high average waiting time highlights the inefficiency in traffic flow management in the 

normal scenario. 

 

Fig. 4. Comparison between normal situation and optimized with the fuzzy logic situation 

Conversely, the solid blue line represents the total waiting time in the optimized scenario. This line 

remains significantly lower and more stable compared to the normal case, indicating a more efficient 

traffic flow with fewer instances of congestion. The average waiting time for the optimized scenario, 

marked by the blue dashed line, is around 0.26 seconds, which is notably lower than in the normal case. 

This stark contrast in average waiting times between the two scenarios underscores the effectiveness of 

fuzzy logic optimization in minimizing traffic waiting times and improving overall traffic management 

efficiency.  

In summary, the graph demonstrates that the optimized scenario using fuzzy logic substantially 

reduces both total and average waiting times, leading to a more efficient and smoother traffic flow 

compared to the normal scenario. 
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3.2. Results with the DQN algorithm 
Fig. 5 shows the graph of model loss (y-axis) versus epochs (x-axis) during the training of a DQN 

algorithm. At the beginning of the graph, the loss is almost 0, which indicates that the model is 

performing well on the training data. However, as the number of epochs increases, the loss starts to 

increase at a significant rate, peaking at around 15,000 epochs. This suggests that the model is starting 

to over-fit the training data, which is becoming too complex and fitting the noise in the data rather than 

the underlying patterns. After 20,000 epochs, the loss starts to decline again, which could indicate that 

the model is starting to generalize better to new, unseen data. 

 

Fig. 5. Model Loss for the DQN algorithm 

The Fig. 6 shows the confusion matrix for the DQN algorithm. The x-axis represents the predicted 

labels (predicted state of the traffic). The y-axis represents the true labels (actual state of the traffic). The 

values in the matrix are normalized, meaning they represent proportions rather than raw counts. 

 

Fig. 6. Confusion Matrix for the DQN algorithm 

The Confusion Matrix represents: 

• True Positive (Bottom-right, [1,1]): This represents the proportion of instances where the traffic 

was actually moving, and the algorithm correctly predicted it as moving. The value is close to 0.9, 

indicating that the algorithm is very good at recognizing when traffic is moving. 
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• True Negative (Top-left, [0,0]): This represents the proportion of instances where the traffic was 

actually stopped, and the algorithm correctly predicted it as stopped. The value is slightly above 0.7, 

indicating that the algorithm has a decent performance in recognizing when traffic is stopped. 

• False Positive (Top-right, [0,1]): This represents the proportion of instances where the traffic was 

stopped, but the algorithm incorrectly predicted it as moving. The value is just below 0.3, suggesting 

there are some cases where the algorithm incorrectly predicts the traffic as moving when it is 

stopped. 

• False Negative (Bottom-left, [1,0]): This represents the proportion of instances where the traffic 

was moving, but the algorithm incorrectly predicted it as stopped. The value is very low, indicating 

that it is rare for the algorithm to predict the traffic as stopped when it is moving incorrectly. 

The analysis of these metrics implies several conclusions. A high true positive rate indicates that the 

algorithm effectively predicts when traffic moves, which is crucial for minimizing congestion and 

optimizing traffic flow. The moderate true negative rate shows the algorithm's capability to correctly 

identify stopped traffic, which is important for recognizing when to change the light to green to alleviate 

traffic jams. The low false negative rate is a positive aspect as it avoids unnecessary stops that could cause 

delays. However, the presence of a false positive rate indicates instances where the traffic is stopped, but 

the algorithm predicts it as moving, potentially leading to slight inefficiencies by delaying the switch to 

a green light. Overall, the confusion matrix suggests that the DQN algorithm is quite effective in 

maximizing traffic flow by accurately predicting traffic states and adjusting the traffic lights accordingly. 

Nevertheless, there is room for improvement in reducing false positives to enhance further the 

algorithm's efficiency in managing stopped traffic situations. This could be achieved by fine-tuning the 

model, increasing the training data, or incorporating additional features into the state representation. 

Following the completion of our training, we proceeded to apply our model for traffic light control, 

which yielded noteworthy outcomes. Vehicles experienced significantly reduced wait times, with an 

average waiting time of merely 0.12 seconds. In contrast, in a normal situation where traffic light 

sequences are predetermined, the average waiting time was 9.16 seconds. The Fig. 7  illustrates a 

graphical representation of these two scenarios and their corresponding waiting times. The red line 

signifies traffic lights controlled by our agent, while the blue line represents traffic lights operating based 

on predetermined timing sequences. It is important to note that achieving these results in real-time 

scenarios may pose challenges; nonetheless, this experimentation underscores the potential for 

optimizing traffic light control through reinforcement learning techniques. 

 

Fig. 7. Comparison between normal and trained agents in traffic light control 

3.3. Potential Real-World Impact and Summary of the Results 
When considering the application of the experiment conducted in the SUMO simulator to a real-

time scenario, several factors must be considered. Here are some points to consider for estimating the 

potential percentage effect. 
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• Model Accuracy: The accuracy of the SUMO model in representing real-world traffic conditions is 

crucial. If the model accurately captures the dynamics of real traffic, the results in the real world 

could closely match the simulation. However, any discrepancies in the model could reduce the 

effectiveness. 

• Environmental Variability: Real-world environments are more variable and less predictable than 

simulations. Weather conditions, driver behavior, accidents, and road construction can significantly 

impact traffic flow. These variables are often simplified or omitted in simulations. 

• System Latency and Responsiveness: The real-time traffic management system's latency and 

responsiveness could differ from the simulation. Delays in sensor data processing or traffic signal 

updates could affect performance. 

• Compliance and Enforcement: The effectiveness of traffic optimization algorithms depends on 

drivers' compliance with traffic signals. In real-world scenarios, driver behavior is less predictable, 

and non-compliance could reduce the system's effectiveness. 

• Scalability: The system's scalability from a limited scope simulation to a real-world application with 

a much larger and more complex network can introduce additional challenges and potential 

inefficiencies. 

Given these factors, it is reasonable to expect that the efficiency improvements seen in the simulation 

will be reduced when implemented in the real world.  

We calculated the potential real-world impact with Equation (11). 

𝑅𝑅𝑖𝑖 = 𝑆𝑆𝑖𝑖 ∗ 𝐴𝐴𝑓𝑓   (11) 

Where 𝑅𝑅𝑖𝑖 for estimated Real-World Improvement; 𝑆𝑆𝑖𝑖 for simulation Improvement, which is the 

percentage improvement observed in the simulation; and 𝐴𝐴𝑓𝑓 is an adjustment factor, which is a factor 

less than 1 to account for real-world inefficiencies. 

𝑆𝑆𝑖𝑖 = �𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝐴𝐴𝐴𝐴𝐴𝐴.𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)−𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂.𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝐴𝐴𝐴𝐴𝐴𝐴.𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)

� × 100     (12) 

𝑆𝑆𝑖𝑖 = �9.16−0.12
9.16

� × 100 ≈ 98.69%    

Assume an adjustment factor of 0.7 (which accounts for a 30% reduction in effectiveness due to real-

world factors: 𝑅𝑅𝑅𝑅 =  98.69 × 0.7 69.08 ≈  69.08% or 69%). The overall results are shown in Table 1. 

Table 1.  Summary of the results of different experiments 

Summary of the Experiment Results 

Situations in a Simulator 

Average Waiting Time in Simulator 

(seconds) 

Potential Real-World 

Impact (Improvement %) 

Normal Situation 9.16 - 

Optimized with Fuzzy Logic 0.26 68% 

Optimized with Reinforcement Learning 0.12 69% 

 

3.4. Summary of the results 
The total number of vehicles processed in all three cases is 70; the numbers are fixed to understand 

different situations better. To clear all the vehicles in the simulator, the three situations took Normal 

Situation: 263 seconds, Fuzzy Logic Based Situation: 156 seconds, and RL-based Situation: 150 seconds. 

We calculated the traffic flow rate with Equation (13). The summary of the results is shown in Table 2. 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑐𝑐𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑉𝑉𝑉𝑉ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

× 3600   (13) 
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Table 2.  The summary of the results 

Method Average Waiting 
Time (seconds) 

Total Time 
(seconds) 

Total Vehicles 
Processed  

Traffic Flow 
(vehicles/hour) 

Normal 9.16 263 70  958.17 

Fuzzy Logic 0.26 156 70 1615.38 

RL-based Control 0.12 150 70 1680 

 

We visualize these results with a graph, shown in Fig. 8, illustrating the effectiveness of different 

traffic light control methods in optimizing traffic flow over the span of one hour. The Reinforcement 

Learning (RL)-based approach demonstrates the highest efficiency, allowing a maximum traffic flow of 

1,680 vehicles per hour. Following closely behind, the Fuzzy Logic-based method achieves a slightly 

lower traffic flow, managing 1,615 vehicles per hour. In contrast, the traditional traffic light control 

system, which operates based on predefined timing sequences without any adaptive adjustments, results 

in the lowest traffic flow, averaging only 958.17 vehicles per hour. This comparison highlights the 

superiority of adaptive and intelligent traffic control systems in managing congestion and improving 

overall traffic efficiency. 

 

Fig. 8. Traffic flow comparison among normal situation, Fuzz logic based situaion, and RL-based Situation 

3.5. Discussion 
In a simulator like SUMO, experiments can be controlled and optimized to yield ideal results. 

However, predicting the exact average waiting time in the real world based solely on the simulation's 

average waiting time in SUMO (Simulation of Urban MObility) is challenging because of the numerous 

variables and complexities involved in real-world traffic, such as weather, accidents, human behavior, 

and infrastructure limitations. For instance, the simulation may rely on certain assumptions, such as 

idealized traffic patterns, uniform driver behavior, or perfect sensor accuracy, which may not hold true 

in real-world scenarios. These assumptions can lead to discrepancies between simulated and real-world 

results. Additionally, the simulation environment may have limitations, such as simplified road networks, 

lack of real-time dynamic traffic updates, or insufficient modeling of external factors like weather 

conditions or emergencies. Potential sources of error, such as computational inaccuracies or incomplete 

data inputs, should also be acknowledged, as they can impact the reliability of the simulation results. 

While simulation might work well for a small or controlled environment, scaling it to larger, more 

complex urban networks requires addressing issues like increased computational load, system latency, 

and the integration of diverse traffic management systems. Additionally, system latency is another critical 

factor, as real-world traffic systems demand near-instantaneous responses to dynamic conditions, which 
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may be difficult to achieve with current technology. Compliance issues also arise, as real-world 

deployments must adhere to regulatory standards and ensure interoperability with existing infrastructure 

and vehicles. Furthermore, the success of real-world implementations heavily depends on the 

development and deployment of robust V2I and V2V [34]  communication systems, which are essential 

for enabling real-time data exchange and coordination between vehicles and infrastructure. These 

systems must be reliable, secure, and capable of handling high volumes of data under varying conditions. 

Real-world implementation requires robust vehicle-to-infrastructure (V2I) and vehicle-to-vehicle (V2V) 

[34] communication systems, which are not yet fully developed. Scaling from a simulation to a real-

world network also introduces challenges, including managing diverse traffic flows and unpredictable 

driver behaviors. But, the simulation's average waiting time can provide a reference point or baseline for 

understanding potential performance. Careful consideration of these factors and robust testing and 

incremental deployments can help bridge the gap between simulation and real-world performance. The 

improvements seen in simulations provide a strong foundation and justification for further research and 

real-world trials, potentially leading to more efficient and intelligent traffic management systems. For 

future research, We aim to integrate computer vision and agent control systems. The trained agent 

would manage traffic lights based on live video feeds, observing both vehicles and pedestrians on the 

road. Additionally, we plan to incorporate emergency vehicles and account for the random behaviors of 

different vehicles. We also intend to simulate real-world traffic conditions using synthesized and 

simulator data to understand the agent's behavior better and improve its decision-making in varied traffic 

scenarios. This approach could significantly enhance traffic light optimization systems. 

4. Conclusion 
In our previous works, we focused on real-world scenarios, but due to limitations, we changed our 

research into a simulator where we applied our fuzzy logic to control the traffic lights, which improved 

the waiting time from 9.16 to 0.26 seconds. However, fuzzy logic cannot adapt to the environment; it 

only focuses on some logic and heavily depends on the data. Thus, we changed our approach and applied 

an RL-based method where we trained a model to control the traffic lights based on the environment. 

We trained an agent to control the traffic light to maximize the traffic flow in a minimum time. We 

used the reinforcement learning algorithm, DQN to train the agent to learn with a greedy policy where 

the agent tries to maximize the reward by taking actions. We trained our model based on one junction 

with two roads. There were only two states, and only two actions could be taken. Trained agents trained 

in reinforcement learning algorithms showed promising results. In this case, we see better results; it 

reduces waiting time from 9.16 seconds to 0.12 seconds. By enabling traffic lights to learn and adapt to 

dynamic road conditions, RL-based systems can offer more efficient and flexible traffic management 

than traditional, pre-programmed systems. These RL agents can continuously adjust traffic signal 

timings based on real-time data, such as vehicle density, pedestrian movement, and the presence of 

emergency vehicles, ensuring that traffic flow remains optimal and reduces congestion. One of the key 

benefits of using RL for traffic light optimization is its ability to handle complex, ever-changing traffic 

patterns. RL in traffic light systems could significantly reduce waiting times for vehicles and pedestrians, 

improving overall traffic efficiency. This reduction in waiting times can ease congestion and reduce fuel 

consumption and emissions, contributing to more sustainable urban transportation. Furthermore, by 

optimizing traffic signal timings, RL could help mitigate common urban problems such as traffic 

bottlenecks, inefficient intersection management, and the risk of accidents. The strength of the 

methodology lies in its use of state-of-the-art technology, which has the potential to reduce traffic 

congestion in real-time significantly. The system’s ability to adapt dynamically and optimize traffic light 

control through reinforcement learning represents a promising advancement in traffic management. 

However, a limitation of the current approach is that it remains unrealistic for immediate deployment 

in real-world settings due to the complexities involved, such as the need for robust infrastructure and 

real-time data collection. Despite this, expanding our research to create a real-world simulator could 

offer valuable insights, allowing the agent to learn more effectively through trial and error. Furthermore, 

by combining the reinforcement learning agent with computer vision capabilities, the system could 

utilize camera footage to analyze traffic situations more accurately. This integration would enable the 
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agent to make more informed decisions based on the current road conditions, improving the adaptability 

and performance of the system in real-world scenarios. Acknowledging these strengths and limitations 

helps in recognizing the potential for future research improvements, which could lead to more practical 

and effective traffic light optimization solutions. The trained model successfully controls the traffic light 

in a minimum time but has some problems due to greedy policy, which is inappropriate for the real 

world; thus, we used mathematical equations to adjust the time to calculate the improvement of real-

world impact.  In our future work, we will experiment with more data from the real world to estimate 

the authentic impact that can improve traffic light management systems. The study explores 

reinforcement learning's potential in optimizing traffic light systems to reduce congestion and improve 

traffic flow. It shows promising results in reducing vehicle waiting times in simulations. However, real-

world implementation presents challenges like advanced communication systems and traffic pattern 

variability. Future research should explore integrating computer vision with reinforcement learning for 

more accurate decision-making. While the current study lays a strong foundation for future work in 

traffic management, addressing the limitations and expanding on the findings could lead to significant 

improvements in urban transportation systems. Future investigations should focus on resolving real-

world implementation challenges, improving system adaptability, and exploring new ways to integrate 

emerging technologies for more efficient traffic control. 
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