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1. Introduction 
Light Field (LF) imaging is a technology that records both the spatial and angular information of 

light rays. With the development of commercial LF cameras, LF imaging has attracted increasing 

attention in industry and academia. LF imaging  [1] has emerged as a technology that allows for 

capturing richer information about a scene. Unlike conventional photography, LF cameras can collect 

not only the accumulated intensity at each pixel but also light rays from different directions. Due to this 

angular information, LF photography can achieve effects that are difficult to obtain in conventional 

photography, such as 3D scene reconstruction [2], [3], depth estimation [4], object view synthesis [5], 

and digital refocusing [6]. 

Acquiring LF is a challenging task because plenoptic cameras [7], [8] have a limited number of 

sensors that are a trade-off between angular and spatial resolution. Earlier LF imaging technology uses 

a camera array [9] to capture LF images in a single shot or may employ a single camera with a computer-

controlled gantry [10] to capture multiple shots in a time-sequential manner. The former method can 

capture high-angular-resolution LF images by assembling a large number of cameras, whereas the latter 
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 Light Field Angular Super-Resolution (LFASR) is a critical task that 

enables applications such as depth estimation, refocusing, and 3D scene 

reconstruction. Acquiring LFASR from Plenoptic cameras has an inherent 

trade-off between the angular and spatial resolution due to sensor 

limitations. To address this challenge, many learning-based LFASR 

methods have been proposed; however, the reconstruction problem of LF 

with a wide baseline remains a significant challenge. In this study, we 

proposed an end-to-end learning-based geometry-aware network using 

multiple representations.  A multi-scale residual network with varying 

receptive fields is employed to effectively extract spatial and angular 

features, enabling angular resolution enhancement without compromising 

spatial fidelity.  Extensive experiments demonstrate that the proposed 

method effectively recovers fine details with high angular resolution while 

preserving the intricate parallax structure of the light field. Quantitative 

and qualitative evaluations on both synthetic and real-world datasets 

further confirm that the proposed approach outperforms existing state-of-

the-art methods. This research improves the angular resolution of the light 

field without reducing spatial sharpness, supporting applications such as 

depth estimation and 3D reconstruction. The method is able to preserve 

parallax details and structure with better results than current methods. 
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acquisition method is only suitable for static scenes. These acquisition methods are expensive and bulky, 

making them unsuitable for practical or commercial purposes. To mitigate this problem, researchers 

have explored learning-based methods, often referred to as novel view synthesis or angular super-

resolution, which aim to reconstruct dense angular views from a sparse set of high-spatial-resolution 

inputs [11], [12]. Learning- based LFASR methods are divided into categories (i) depth-dependent and 

(ii) non-depth-dependent methods. Depth-dependent methods usually stand on the two-stage 

framework work, i.e., they first estimate disparity or depth information to synthesize novel views, and 

then refine and blend novel views through different strategies  [13], [14]. Although depth-dependent 

methods have achieved promising performance, they are still struggling to handle the repeat patterns. 

texture less regions, and non-Lambertian surfaces, where the scene depth cannot be predicted accurately. 

Non-depth-based methods are more attractive for LF images that do not adhere to the Lambertian 

assumption. These methods directly establish the mapping from sparsely sampled LFs to densely 

sampled ones by circumventing disparity information. 

  In this study, our primary objective is to reconstruct light fields (LFs) in the angular domain under 

wide baseline conditions using two main modules: (i) a multi-representation LF reconstruction module 

and (ii) a geometry-aware refinement module. The reconstruction module comprises two parallel 

reconstruction pipelines. The first reconstruction pipeline employs a multi-scale residual network with 

varying receptive fields as a depth estimation network to extract dense features from Sub-Aperture 

Images (SAIs). The estimated depth maps are passed to a warping module to synthesize initial 

intermediate views. The second reconstruction pipeline utilizes a 3D U-Net architecture to extract 

angular features from Micro-Images (MIs). The outputs of both streams are concatenated and passed 

through a convolutional layer to generate high-angular-resolution LF views. Notably, the depth 

estimation module is embedded in the physical warping process, as ground-truth disparity maps are 

unavailable. The key contributions of our proposed approach are as : 

• to exploit the structural characteristics of LFs by leveraging multiple LF representations. 

• to design a depth estimation network using a multi-scale residual structure to extract a wide range 

of spatial features from SAIs. 

• to develop a 3D U-Net architecture to extract angular features from MIs, capturing spatial-angular 

correlations to reconstruct high angular resolution LFs. 

• to extensive experiments on both synthetic and real-world datasets demonstrate that the proposed 

method outperforms state-of-the-art techniques in both qualitative and quantitative evaluations. 

The remainder of this paper is organized as follows. Section II briefly reviews the related work, and 

Section III, provides the main components of the proposed method. In Section IV, we present extensive 

experiments, results, and ablation studies to demonstrate the effectiveness of our approach. Finally, we 

conclude our paper in Section 

The goal of an LFASR (also known as LF view synthesis or reconstruction) is to reconstruct a dense 

sampled LF from a sparse set of input views. Recent ASR methods are broadly classified into two 

categories: non-depth-based methods and depth-based methods. A brief review is presented in this 

section. 

In non-depth-based methods, priors are used to reconstruct dense sample LF by using signal 

processing techniques.  Shi et al. [15] used the continuous Fourier spectrum for LF reconstruction based 

on sparsity. In this technique, boundary and diagonal views were used to synthesize the novel views.  

Vagharshakyan et al.[16] designed a novel technique based on the concept of LF sparsification. The 

shearlet transform was used as the sparse transform, and a restoration technique was proposed for LF 

reconstruction.  These approaches always need a large number of input images with a specific sampling 

pattern.  The drastic success of deep learning techniques in LF image processing also brought a 

revolution in LF angular SR.  Yeung et al. [17] presented an alternating convolution of a spatial angular 

network to reconstruct the densely sampled LF.  Wu et al. [9] presented a ‘blur-restoration-deblur’ 
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framework for angular SR.  Meng et al. [18] presented a deep high-dimensional dense residual network 

with 4D convolution for LF reconstruction. Wang et al. [19] proposed a general disentangling 

mechanism and developed a DistgASR network for LF angular SR using four groups of disentangling 

blocks. Each block separately processes spatial, angular, and EPI information, enabling effective synthesis 

of dense LF views. Liu et al. [20] propose an efficient network that learns LF feature representation 

from SAIs and upsamples MIs to synthesize the dense LF views. A U-Net architecture is used to exploit 

spatial–angular correlations (SAC), and a pixel shuffle operator rearranges the expanded features for 

angular upsampling. However, it is difficult for non-depth-based methods to incorporate the 

complementary information without alignment among different views, resulting in limited performance. 

Saleem et al. [21] presented a Residual Channel Attention LF (RCA-LF) network for view synthesis, 

utilizing residual channel attention blocks to enhance feature extraction and restore textures. The 

architecture employs stacked 2D convolutions with channel attention mechanisms to efficiently learn 

inter-view relationships. However, it lacks explicit depth information utilization, limiting its 

performance in challenging scenes.  Saleem et al. [11] present an LF view synthesis method leveraging 

deep residual feature extraction and channel attention mechanisms. This framework integrates dual-

feature extraction with MIs up-sampling to improve spatial-angular detail and maintain parallax 

consistency. While achieving state-of-the-art performance, it faces challenges in computational 

efficiency and effectively handling large disparities. Wang et al. [22] uses a residual channel attention 

mechanism to enhance feature extraction and a classification up-sampling module to improve 

reconstruction precision. The architecture combines residual attention groups with a classification-

guided up-sampling strategy to adaptively refine angular information and address occlusion challenges. 

However, the method may face limitations in handling extremely sparse angular inputs or generalizing 

across diverse LF datasets. Wang et al. [23] introduce ViewFormer, a Transformer-based framework for 

LFASR that incorporates view-specific queries to encode both content and spatial coordinates of dense 

target views. By leveraging a Transformer encoder-decoder architecture and view interpolation, it enables 

dynamic feature enhancement guided by angular positions. The method achieves state-of-the-art 

performance on both synthetic and real-world LF datasets, outperforming prior CNN-based approaches. 

To address the challenge of incomplete Spatial-Angular Correlation (SAC) feature extraction in LFASR, 

this paper [24] introduces a Deformable Convolutional Network (DCN) that adaptively samples distant 

correlated pixels. A Multi-Maximum-Offsets Fusion (MMOF) strategy is proposed to further enhance 

offset accuracy, enabling more precise SAC extraction. The approach significantly improves LF 

reconstruction quality over existing CNN- and attention-based methods with limited receptive fields. 

Liu et al. [25] introduce an efficient progressive disentangling block (PDistgB) that selectively 

disentangles LF features in a domain-specific manner through channel-wise splitting. Additionally, 

angular-domain Transformers are employed to exploit global angular correlations. The proposed method 

achieves state-of-the-art performance while significantly reducing inference cost compared to 

conventional disentangling strategies. In this study, Liu et al. [10] propose a convolutional Transformer-

based framework comprising GLCTNet for global-local feature extraction, DDNet for deep deblurring, 

and TFNet for texture-aware fusion. Experimental results confirm that the proposed method effectively 

enhances LF reconstruction quality, particularly in preserving structure and suppressing artifacts, with 

demonstrated benefits for downstream tasks like depth estimation. Daichuan et al.[26] introduce edge-

aware LFASR that enhances edge-feature extraction and utilization by combining Sobel-based edge-

magnitude maps with a neural network for complete edge representation. A multi-level attention 

mechanism fuses edge, spatial, and angular features to preserve global structure while refining local edges. 

Additionally, an edge-aware loss function guides the reconstruction process. Experimental results 

demonstrate improved PSNR and reduced edge distortion on both real and synthetic datasets, validating 

the method's effectiveness. 

In this method, the depth of the scene is first estimated, and the input images are warped to novel 

views based on the depth map. The warped images are then blended in different ways to achieve the final 

novel views. Kalantari et al.[27] employs two sequential CNNs to estimate disparity and color values. 

Their proposed method ignores the correlations between the warped views, leading to limited 

reconstruction quality and inability to fully exploit the angular information inherent in LF data. Wanner 
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et al.  [28] used EPIs for disparity estimation and then generated novel views of the scene in a variational 

framework. Shi et al. [29] employed pixel-based reconstruction and feature-based modules to construct 

densely sampled views using the estimated depth maps. Meng et al. [30] used two DenseNets to compute 

the scene depth, a warping confidence map, and a refinement network to synthesize the target views. 

Wu et al. [31] used a CNN-based network to evaluate sheared EPIs, where the sheared value is correlated 

with the depth. Jin et al. [32] employed a CNN-based depth estimation module and blending to 

reconstruct a high-angular-resolution LF. Zhou et al. [33] proposed an encoder-decoder network to 

estimate the disparity for synthesizing novel views through warping. They utilized a modified ResNet50 

to extract expressive representations and employed three subnetworks for disparity estimation, noise 

filtering, and view rendering. Lui et al.  [34] propose a method comprising two modules: (i) Multi-

Representation View Reconstruction (MRVR), and (ii) Geometry-Assisted Refinement (GAR). The 

MRVR module extracts dense features from SAIs, MIs, and Pseudo Video Sequences (PVS) through 

distinct pipelines built on conventional convolutional networks. These pipelines construct a Dense LF 

Image (DLFI) stack that encapsulates comprehensive spatial–angular and geometric cues. The GAR 

module further refines this stack via a geometry-aware network operating on a bidirectional view 

structure, effectively reinforcing angular consistency and significantly elevating the fidelity of LFVS. 

Zubair et al. [35]extended Liu’s framework by replacing the traditional CNN in the SAI branch with 

deformable convolutions for disparity estimation. The use of flexible offsets in deformable convolutions 

enables the precise modeling of depth variations across views, significantly improving the quality of 

synthesized views. They use depth-wise separable convolutions for efficient feature extraction from MIs 

and lightweight refinement in the GAR module. 

Chen et al. [36] introduce a Cross-Shaped Transformer Network (CSTNet) architecture with a 

Multiplane-based Cross-view Interaction Mechanism (MCIM) for LFASR. By leveraging Multiplane 

Feature Fusion (MPFF) and a plane selection strategy inspired by MPI transparency, it enables efficient 

and geometry-aware view synthesis. Experimental results confirm that CSTNet outperforms existing 

methods across both real and synthetic LF benchmarks. 

Propose a method comprising two modules: (i) Multi-Representation View Reconstruction 

(MRVR), and (ii) Geometry-Assisted Refinement (GAR). The MRVR module extracts dense features 

from SAIs, MIs, and Pseudo Video Sequences (PVS) through distinct pipelines built on conventional 

convolutional networks. These pipelines construct a Dense LF Image (DLFI) stack that encapsulates 

comprehensive spatial–angular and geometric cues. The GAR module further refines this stack via a 

geometry-aware network operating on a bidirectional view structure, effectively reinforcing angular 

consistency and significantly elevating the fidelity of LFVS. Zubair et al. [35] 

2. Method 
LF is a parameterization of two plane parameters, angular (𝑈𝑈;  𝑉𝑉) and spatial (𝑋𝑋 ;  𝑌𝑌). 

𝑈𝑈 and 𝑉𝑉 represent the angular dimension, while 𝑋𝑋 and 𝑌𝑌 represent the spatial dimension of LF. For 

high angular resolution LF, we represent the LF as 𝐿𝐿 ( 𝑉𝑉 ;  𝑈𝑈;  𝑋𝑋 ;  𝑌𝑌 ) , where 𝑋𝑋 and 𝑌𝑌 denote the 

spatial resolution of the SAIs, and 𝑈𝑈 and 𝑉𝑉 represent the angular resolution. We can construct the 

angular SR LF from the spatial resolution of 𝑋𝑋 and 𝑌𝑌: 

  𝐿𝐿ℎ𝑎𝑎𝑎𝑎 ( 𝑈𝑈;  𝑉𝑉 ;  𝐻𝐻 ;  𝑊𝑊 )  =  𝑓𝑓(𝐿𝐿(𝑈𝑈;  𝑉𝑉 ;  𝐻𝐻 ;  𝑊𝑊)   (1) 

In equation (1),𝑓𝑓 denotes the network parameter, while 𝐿𝐿 ( 𝑈𝑈;  𝑉𝑉 ;  𝐻𝐻 ;  𝑊𝑊) represents the sparse set 

of input views to reconstruct the high angular resolution LFs   𝐿𝐿ℎ𝑎𝑎𝑎𝑎  ( 𝑈𝑈;  𝑉𝑉 ;  𝐻𝐻 ;  𝑊𝑊 ). Following prior 

reconstruction methods  [37], [38], we consider only the 𝑌𝑌 channel information in the YCbCr color 

space as input. This choice avoids the increased model complexity and training difficulty associated with 

using full RGB channels. The proposed method consists of two modules: (i) multiple-representation-

based LF reconstruction and (ii) geometry-aware refinement network. The multiple-representation LF 

reconstruction module further consists of two reconstruction pipelines: (i) Sub-aperture-based LF 

reconstruction (SAIRP) and (ii) Micro-images-based LF reconstruction. We employed a multi-scale 
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residual network with varying receptive fields in the sub-aperture-based reconstruction pipeline, whereas 

a 3D UNet model was utilized in the MI-based reconstruction. The proposed method is shown in Fig. 

1.  

 

Fig. 1. Proposed method 

2.1. Multiple representation-based LF reconstruction 
LF representations have rich characteristics for angular reconstruction. An angular reconstruction-

based method requires dense data to synthesize wide-baseline views. In this study, we explore two types 

of LF representations: SAIs and MIs. 

2.1.1. Sub-Aperture-based LF Reconstruction (SAIRP) 
SAIRP is designed to handle the array of SAIs for the spatial feature extraction of LF images. These 

features are extracted through a multi-scale residual network. The multi-scale residual network consists 

of two Multi-Scale Residual Blocks (MSRBs). MSRBs are a type of neural network architecture, 

designed to improve feature extraction and representation learning by capturing information at multiple 

scales. These blocks incorporate multiple convolutional filters of different sizes within the same block, 

allowing the network to capture features at different scales simultaneously. This makes the network 

more effective at recognizing patterns that vary in size. In our approach, we used kernel sizes of 3, 5, 7, 

and 9 to extract dense features and then passed them to the warping module. The 4D ray depth maps 

are represented as D(x, u) and are estimated from the input views: 

𝐷𝐷(𝑥𝑥,𝑢𝑢)  =  𝑓𝑓𝑓𝑓(𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥′,𝑢𝑢′))   (2) 

In the above equations, 𝐷𝐷 represent Disparity estimation network, 𝑥𝑥 for spatial resolution and 𝑢𝑢 for 

angular resolution, 𝑓𝑓 is a network parameter,𝑑𝑑 is estimated depth from low angular resolution views 
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𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙 with spatial resolution 𝑥𝑥′ and angular resolution 𝑢𝑢′.Disparity maps 𝐷𝐷𝑡𝑡 are passed to the warping 

module to synthesize the dense views. The warping synthesizes the high angular resolution LF views at 

the target position 𝑡𝑡, using low angular resolution views (𝑈𝑈 × 𝑉𝑉) and disparity maps. The warping 

process can be mathematically expressed as. 

𝐿𝐿𝐻𝐻𝐻𝐻
(𝑡𝑡) = 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊�𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟  ,𝐷𝐷𝑡𝑡�, 𝑡𝑡 ∈ [1 … . ,𝑈𝑈′ × 𝑉𝑉′ ]   (3) 

Where Warping(∙) represent the back warping operation, 𝐿𝐿𝐻𝐻𝐻𝐻
(𝑡𝑡)

 represents the synthesized high-

angular-resolution LF at the target position 𝑡𝑡. 

2.1.2. Micro-Images-based LF Reconstruction (MIRP) 
First, we reshaped the SAIs into MI features and then employed 3D UNet to extract angular features 

from the MI format. This proposed module explores the spatial-angular correlation. The UNet 

architecture consists of two convolutional layers and two transposed convolutional layers. We use a 2D 

convolutional layer with a 1x1 kernel size to reshape the extracted features and then combine them with 

the output of the SAIRP module. The feature map in our U-Net-based model features 64, 128, and 192 

spatial and channel dimensions with upsampling and downsampling operations. 

2.2. Geometry-aware refinement network 
    While SAIRP and MIRP independently extract rich LF features, their outputs are concatenated 

and processed via a convolution layer to enforce geometric consistency and fuse the multi-dimensional 

features for high-angular-resolution LF reconstruction. 

3. Results and Discussion 
This section presents sufficient experimental results to validate the proposed method's performance. 

Firstly, the implementation details of the proposed method are briefly described. Then, the proposed 

method is comprehensively evaluated by comparing it with state-of-the-art methods both quantitatively 

and qualitatively. Subsequently, detailed ablation study experiments are conducted to validate the core 

modules of our method. Finally, we discuss the limitations of our proposed method. 

3.1. Implementation details 
The proposed method is implemented using the PyTorch framework. The experimental environment 

is configured with an Nvidia GTX4090Ti GPU and 128 GB of RAM. The proposed network is trained 

using an L1 loss and optimized with the Adam optimizer [39], with a batch size of 4. The initial learning 

rate is set to 2 × 10-4 and decreased by 0.5 every 15 epochs. This paper focuses on reconstructing densely 

sampled 7×7 LF data from sparsely sampled 2×2 LF data. Therefore, during training data preparation, 

ground truth (GT) samples are obtained by angularly cropping the central 7 × 7 SAIs of each LF. The 

input samples are generated using the 2×2 corner SAIs of the GT samples. To save GPU memory, each 

SAI is cropped into patches with 128×128 pixels during the training process. Several data augmentation 

strategies are employed to enhance robustness, including horizontal flipping, vertical flipping, and 90-

degree rotation. The proposed model has a channel size (C) of 64 and is trained for 80 epochs on both 

synthetic and real-world datasets. 

3.2. Dataset description 
We trained two networks: one on synthetic datasets and another on real-world datasets. The network 

trained on synthetic datasets uses 20 scenes from the HCI new dataset [40]. For evaluation on synthetic 

scenes, we utilize 4 scenes from the HCI new [40] and 5 scenes from the HCI old dataset [41]. Regarding 

the real-world training datasets, we employ one hundred LF images provided by Kalantari et al.[27] and 

the Stanford Lytro Archive. These real-world training scenes are captured using the Lytro Illum camera. 

The performance of the proposed method is evaluated on three real-world datasets: 30 LF scenes from 

the 30Scenes dataset [27], 25 scenes from the occlusion dataset [42], and 15 scenes from the reflective 

dataset[42]. Table 1 presents a detailed description of the datasets. 
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Table 1.  Dataset Description 

LF datasets Type Disparity 
range 

Angular 
resolution 

Spatial 
resolution 

Training 
scenes Test scenes 

HCI new [28] Synthetic [4, 4] 9 × 9 512 × 512 20 4 

HCI old [29] Synthetic [4, 4] 9 × 9 768 × 768 - 5 

Kalantari et al. [13] Real [1, 1] 14 × 14 376 × 541 100 - 

30 Scenes [30] Real [1, 1] 14 × 14 376 × 541 - 30 

Occlusions [30] Real [1, 1] 14 × 14 376 × 541 - 25 

Reflective [30] Real [1, 1] 14 × 14 376 × 541 _ 15 

3.3. Comparison with state-of-the-art methods 
To prove the efficiency and performance of our proposed methods, we compared it with four state-

of-the-art methods [27], [32], [20], [34], and [35]. For a fair comparison, we have retrained the methods 

on the same training datasets as our method. We use peak-to-signal-noise-ratio (PSNR) and structure-

similarity-index-measure (SSIM) metrics for performance evaluation. We calculated the PSNR and 

SSIM values on the Y channel images for all methods.  

Table 2 presents the performance of the proposed method in comparison to state-of-the-art methods 

on synthetic datasets. The proposed method achieved an average increase in PSNR of 1.564 dB and an 

average increase in SSIM of 0.0046, demonstrating superior reconstruction quality across diverse scenes.  

Table 2.  Quantitative results on the synthetic dataset for the Task 2×2 to 7×7 

Dataset 
 

Kalantari et 
al. [27] 

Jin et al.[32] 
 

LF-EASR 
[20] 

Liu et al.[34] 
 

Zubair et al. 
[35] 

Ours 

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM 

HCI New 32.01/0.928 33.60/0.934 34.08/0.931 34.24/0.935 34.49/0.935 34.51/0.935 

HCI old 38.58/0.944 39.90/0.954 40.42/0.966 40.64/0.954 41.22/0.958 41.66/0.961 

Average 35.29/0.936 36.75/0.944 37.25/ 0.948 37.44/0.944 37.85/0.945 38.08/0.948 

 

Table 3 shows the performance of the proposed method on real-world datasets. Compared to existing 

state-of-the-art techniques, the proposed method achieves an average PSNR improvement of 1.95 dB 

and an average SSIM improvement of 0.009. 

Table 3.  Quantitative results on a real dataset for the Task 2×2 to 7×7 

Dataset 
 

Kalantari et 
al. [27] 

Jin et al. 
[32] 

LF-EASR 
[20] 

Liu et al. 
[34] 

Zubair et al. 
[35] 

Ours 

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM 

30scenes 38.90/0.960 39.70/0.986 40.90/0.957 42.91/0.987 43.19/0.987 43.14/0.988 

Occlusions 33.89/0.958 34.60/0.964 34.98/0.976 39.06/0.981 39.26/0.982 39.28/0.982 

Reflective 36.95/0.925 37.81/0.972 38.56/0.975 39.04/0.962 39.20/0.963 39.24/0.965 

Average 36.58/0.947 37.37/0.974 38.15/0.969 40.34/0.977 40.55/0.977 40.55/0.978 

 

We used the error map to find the difference between the synthesized central view and the ground 

Truth (GT). Fig. 2 shows a visual comparison of the synthesized central view and corresponding error 

maps for one representative scene. Compared to Jin et al. [32], LF-EASR [20], Liu et al. [34], and 

Zubair et al. [35], the proposed method produces a more accurate reconstruction with visibly sharper 

texture details and reduced angular inconsistencies. The error maps further highlight that competing 
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methods exhibit higher residual errors, particularly along object boundaries and high-parallax regions, 

as indicated by the red boxes. In contrast, the proposed method yields lower error concentrations and 

better preserves structural fidelity in challenging areas. 

 

     

     
GT Jin et al.[32] LF-EASR [20] Liu et al.[34] Zubair et al. [35] Ours 

Fig. 2. Visual comparison of the proposed method with state-of-the-art methods on the Bedroom scene from 

the HCI_new dataset 

Fig.  3 and Fig.  4 illustrate visual comparisons between the proposed method and existing state-of-

the-art approaches on representative scenes from the 30Scenes and Reflective datasets, respectively.  

      
 

     
GT Jin et al.[32] LF-EASR [20] Liu et al.[34] Zubair et al. [35] Ours 

Fig. 3. Visual comparison of the proposed method with state-of-the-art methods on the IMG-1555_eslf scene 

from the 30scenes dataset 

In both cases, the error maps clearly show that the proposed method yields fewer reconstruction 

errors, particularly in regions with high-frequency textures, complex lighting, and reflective surfaces. 

Specifically, in Fig. 3, competing methods exhibit significant residual errors around object edges and 

detailed regions (e.g., foliage), as highlighted in the red boxes. In contrast, the proposed method 

produces a cleaner reconstruction with minimal error concentrations. Similarly, in Fig.  4, the proposed 

method demonstrates strong robustness against reflective surfaces, maintaining accurate geometry and 

structure. While other methods suffer from high-intensity errors near shiny surfaces and background 

objects, the proposed method successfully preserves fine details and suppresses distortion. 

      

     
GT Jin et al.[32] LF-EASR [20] Liu et al.[34] Zubair et al. [35] Ours 

Fig. 4. Visual comparison of the proposed method with state-of-the-art methods on the Reflective-12_eslf scene 

from the Reflective dataset 
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3.4. Angular Consistency 
To further validate the effectiveness of the proposed method, we evaluate its ability to preserve 

angular consistency, which is critical for accurately modeling parallax structure in synthesized LFs. As 

illustrated in Fig.  5, we extract Epipolar Plane Images (EPIs) from both the synthesized views and their 

corresponding GT to assess angular coherence. The proposed method produces smoother and more 

continuous EPI lines, particularly along slanted and high-parallax regions, indicating stronger spatial–

angular correlation. In contrast, existing methods, such as those by Liu et al. [34] and Zubair et al. [35], 

exhibit broken or distorted EPI structures, particularly near occlusion boundaries and fine geometric 

edges. These results confirm that our method better captures the geometric continuity and preserves 

angular consistency in challenging scenes. 

3.5. Ablation Study 
To assess the significance of each component in the proposed method, we conducted three controlled 

ablation experiments by removing each module in turn. In Variant I (Var-I), the SAIRP module was 

excluded while retaining the MIRP and the Geometry-Aware Refinement Network. This configuration 

resulted in a noticeable decline in reconstruction quality, underscoring the importance of spatial-angular 

interaction modeling. In Variant II (Var-II), the MIRP was removed while keeping SAIRP and the 

refinement network. The results indicate a degradation in angular detail synthesis, confirming the 

relevance of micro-image-based angular feature extraction. In Variant III (Var-III), the Geometry-Aware 

Refinement Network was excluded, revealing its contribution to enhancing structural consistency and 

depth-aware reconstruction. These ablation results demonstrate that each module plays a critical role, 

and their integration yields the best overall performance, as shown in Table 4. 

    

    

    
GT Liu et al. [34] Zubair et al. [35] Ours 

Fig. 5. Angular consistency comparison of the proposed method with the state-of-the-art methods 

Table 4.  These ablation results 

Variants SAIRP MIRP Geometry-aware Refinement Network Synthetic Datasets 
Var-I 

   36.53/0.888 

Var-II 
   37.43/0.911 

Var-II 
   37.91/0.922 

4. Conclusion 
In this work, we presented a learning-based end-to-end network for LFASR that extracts features 

from multiple representations of SAIs and MIs. The proposed method employs a multi-scale residual 

network with varying receptive fields to extract dense spatial features. At the same time, a 3D U-Net is 

utilized to capture angular features from the MI representation. This geometry-aware framework 

effectively synthesizes high-quality LFs and consistently outperforms state-of-the-art methods across 

multiple benchmark datasets, and is a potential application for rendering. The proposed method still 

struggles to synthesize high-angular-resolution views of challenging scenes. Future work will focus on 

non-depth-based methods that utilize advanced learning techniques to synthesize challenging scenes 
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across diverse datasets. These improvements are expected to benefit applications in virtual reality (VR), 

augmented reality (AR), and computational photography. The proposed method enables potential 

application of rendering. 
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